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How to project onto an arbitrary single-photon wave packet
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The time-frequency degree of freedom of the electromagnetic field is the final frontier for single-photon
measurements. The temporal and spectral distribution a measurement retrodicts (that is, the state it projects onto)
is determined by the detector’s intrinsic resonance structure. In this paper, we construct ideal and more realistic
positive operator-valued measures (POVMs) that project onto arbitrary single-photon wave packets with high
efficiency and low noise. We discuss applications to super-resolved measurements and quantum communication.
In doing so we will give a fully quantum description of the entire photodetection process, give prescriptions for
(in principle) performing single-shot Heisenberg-limited time-frequency measurements of single photons, and
discuss fundamental limits and trade-offs inherent to single-photon detection.
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I. POVMs FOR PHOTODETECTION

Photodetection is at its core an information-theoretic pro-
cess; a measurement outcome—a click—reveals information
about the outside world quantifiable in bits [1]. In the case
of a single-photon detector (SPD), a click is correlated (im-
perfectly) with the presence of a particular type of photon,
thus revealing information about the presence of photons of
that type along with whatever else in the world such a photon
is correlated with. The most general quantum description of
this process is in terms of a positive operator-valued mea-
sure (POVM), a set of positive operators �̂k that sum to the
identity, where each k corresponds to a different measurement
outcome. Given an arbitrary input state ρ̂ the probability to
obtain outcome k is given by the Born rule:

P(k) = Tr(ρ̂�̂k ). (1)

Generically, each POVM element �̂k can be written as a
weighted sum over orthonormal quantum states

�̂k =
∑

i

w
(k)
i

∣∣φ(k)
i

〉〈
φ

(k)
i

∣∣, (2)

reducing to an ideal von Neumann measurement only when
the sum contains a single term with its weight w(k) equal to 1
[2]. The weight w

(k)
i equals the conditional probability to

obtain measurement outcome k given input i. The posterior
conditional probability that, given an outcome k, we project
onto input i is given by Bayes’ theorem [3]

P(i|k) = w
(k)
i P(i)

P(k)
(3)

with P(k) = ∑
i w

(k)
i P(i) and P(i) the a priori probabilities

to get outcome k and for input i to be present, respectively
[4]. Through Bayes’ theorem, an experimentalist is able to
retrodict—that is, update their probability distribution over
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possible inputs—but only if they know what measurement
their detector actually performs.

Knowledge of the POVM is essential for both gaining
information from a measurement device and characterizing
detector performance, hence the experimental need for de-
tector tomography [5–10]. Commercial photodetectors are
characterized by industry-standard figures of merit [11],
which can be calculated from a POVM (for an in-depth review,
see Ref. [12]). Here we will concern ourselves mostly with
two figures of merit, detection efficiency and time-frequency
uncertainty.

Efficiency. The maximum efficiency with which an SPD
outcome k (for instance, a single click) can be triggered by in-
put single-photon states is the maximum relative weight in (2)
ηmax = maxi[w

(k)
i ]. The maximum efficiency is achieved only

when the input quantum state is one the measurement projects
onto. This follows directly from the Born rule; P(k|i) =
Tr[�̂k ρ̂] → w

(k)
i if and only if ρ̂ = |φ(k)

i 〉〈φ(k)
i |.

Time-frequency uncertainty. The spectral uncertainty and
(input-independent) timing jitter are determined entirely by
the spectral and temporal widths of the states projected onto
by the measurement outcome k [13], which form a retrodictive
probability distribution. For any continuous variable X (here
either time t or frequency ω), we find it less convenient to use
the variance as measure of uncertainty and instead define the
uncertainty entropically [12–16],

�X (k) = 2H (k)
X δX. (4)

Here H (k)
X is the Shannon entropy defined as

H (k)
X = −

∑
j

p( j|k) log2 p( j|k) (5)

with the sum over discretized X -bins of size δX . p( j|k) is the
a posteriori probability for the detected photon to be in bin j
given outcome k, and is calculated

p( j|k) =
∫ jδX

( j−1)δX
dX

∑
i

P(i|k)|φi(X )|2, (6)
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where we have defined a normalized distribution over X given
by the norm squared of the quantum state |φi(X )|2 [where
φi(X ) ≡ 〈X |φi〉]. The conditional probability P(i|k) is pre-
cisely the one from Bayes’ theorem (3); P(i|k) reduces to
w

(k)
i /	(k) in the case of a uniform prior [17], where 	(k) =∑
i w

(k)
i is the bandwidth [12]. Critically, �X (k) is indepen-

dent of the bin size δX in the small-bin limit, even though
the entropy H (k)

X is strongly dependent on the bin size. One
can verify that this definition of uncertainty yields a Fourier
time-frequency uncertainty relation [14]

�ω�t � eπ. (7)

In this paper, we construct POVMs capable of pro-
jecting onto arbitrary quantum states (including minimum-
uncertainty Gaussian wave packets) with high efficiency.
The construction of measurements projecting onto arbitrary
single-photon states is critical in quantum optical and quan-
tum communication experiments. Mismatch between the
single-photon state generated and the state projected onto
by the measurement induces an irreversible degradation in
detection efficiency. As we show in Sec. II, arbitrary quantum
state measurements can be accomplished using a simple time-
dependent two-level system. In Sec. III, we show that realistic
implementations of minimum-uncertainty POVMs projecting
onto arbitrary quantum states are possible, even after includ-
ing the effects of the initial coupling of the photodetecting
system to the external world (transmission), the conversion of
a single excitation into a macroscopic signal (amplification),
and a noisy classical measurement of that final signal. The
capacity to efficiently project onto (a small set of) orthog-
onal single-photon states enables a wide range of quantum
information and quantum optical applications, as we discuss
in Sec. IV. In Sec. V, we will discuss the fundamental lim-
its and trade-offs to photodetector performance that manifest
in our work, as well as experimental implementation of the
derived POVM (for instance, using a lens to focus light onto
a molecule whose state is monitored with electron shelving
[18]) in detail. From a foundational perspective, a procedure
to build measurements efficiently projecting onto minimum-
uncertainty Gaussian single-photon wave packets paves the
way for future tests of fundamental quantum theory.

II. SIMPLIFIED MEASUREMENTS PROJECTING
ONTO ARBITRARY SINGLE-PHOTON STATES

We will now discuss how to construct a simple POVM
that efficiently projects onto an arbitrary single-photon wave
packet. To aid us, we will now make four simplifying assump-
tions. First, we will consider only the time-frequency degree
of freedom of the electromagnetic field, as the other degrees
of freedom (e.g., polarization) can be efficiently sorted prior
to detection in a prefiltering process [19–21]. Second, we
consider only a single excitation incident to the photodetec-
tor. Multiple photons can always be efficiently multiplexed
to achieve a photon number resolution using SPD pixels
[22]. Third, we will not model a continuous measurement
(as briefly discussed in the Appendix of [23]), but instead
a discretized measurement where at a particular time T we
ascertain whether or not a photon has interacted with the

SPD, ending the measurement. Lastly, we will consider only
a binary-outcome photodetector, “click” or “no click.” This
simplifies the POVM so that it only contains the two ele-
ments �̂T and �̂0, both projecting onto the Hilbert space
of single-photon states and the vacuum state. Generalizations
to non-binary-outcome SPDs are straightforward: one can
concatenate binary-outcome POVMs to generate non-binary-
outcome experiments.

We now begin construction of the POVM {�̂T , �̂0} in
earnest. Consider a two-level system with time-dependent
transition frequency �(t ), with time-dependent coupling to a
Markovian external electromagnetic continua of states [24].
Experimentally, a time-dependent decay rate κ (t ) is induced
by a rapid variation of density of states [25,26] and a
time-dependent resonance �(t ) can be varied with a time-
dependent external electric field (Stark effect [27]) or through
a two-channel Raman transition [28].

In the quantum trajectory picture we can assume the state
of the two-level system is pure and there are two types of
evolution of |ψ (t )〉: Schrödinger-like smooth evolution with
a non-Hermitian effective Hamiltonian and quantum jumps
(at random times) [29,30]. Then the time-dependent (unnor-
malized) state of the two-level system is written |ψ (t )〉 =
C0(t )|0〉 + C1(t )|1〉. A quantum jump will always corre-
spond to the excitation leaking out of the system and so,
in the absence of a dark count, we only need consider the
Schrödinger-like evolution in order to determine �̂T . In this
picture, the quantum state of the two-level system remains
pure with the time-dependent excited state amplitude C1(t )
obeying a Langevin equation of the form [31]

Ċ1(t ) = −κ (t )

2
C1(t ) − i�(t )C1(t ) +

√
κ (t ) f (t ), (8)

where f (t ) is a normalized input photon wave packet [32,33].
We can solve this equation with the result

C1(t ) =
∫ t

T0

dt ′′ f (t ′′)
√

κ (t ′′) exp

[
−

∫ t

t ′′
dt ′D(t ′)

]
, (9)

where

D(t ) = i�(t ) + κ (t )

2
, (10)

and where T0 is a time in the distant past where our pho-
todetector was still off, so that κ (T0) = 0 and C1(T0) = 0.
Our measurement consists in checking if the system is in the
excited state at time t = T . The probability to obtain a positive
result (corresponding to detecting the incident photon wave
packet) is |C1(T )|2. We can write

C1(T ) =
∫ T

T0

dt
∗(t ) f (t ) (11)

with


∗(t ) =
√

κ (t ) exp

[
−

∫ T

t
dt ′D(t ′)

]
. (12)

Whereas f (t ) is a normalized wave function, 
(t ) is subnor-
malized for finite T0, since

W =
∫ T

T0

dt |
(t )|2 = 1 − exp

[
−

∫ T

T0

dt κ (t )

]
. (13)
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FIG. 1. (a) Retrodictive probability amplitudes A(t ) = |
(t )| defined in (12) are plotted for polynomial decays of the form κ (t ) =
κ0( t−T0

σ
)
n
( T −t

σ
)
n

for T0 � t � T , with the polynomial order n varying from 0 (violet, lowest peak) to 15 (red, highest peak) denoted by the color
and time measured with respect to detection time T . (b) The square roots of the corresponding decay rates

√
κ (t ) are plotted themselves, with

polynomial order varying from 0 (violet, bottom within the central region) to 15 (red, top within the central region). Except for n = 0 (also in
Fig. 2 and included here for reference), these decays continuously become nonzero at T0 = −2.5σ (when the photodetector is turned on) so that
W from (13) is strictly less than unity. In (a), we observe that the time of maximum coupling strength t = T +T0

2 precedes the time of maximum
retrodictive probability amplitude. For no order n are the retrodictive probability distributions continuously differentiable; measurements with
polynomial couplings do not project onto smooth wave packets unlike the couplings plotted in Figs. 3 and 6.


(t ) is a complex function with real amplitude A(t ) and phase
φ(t ) such that 
(t ) = A(t )e−iφ(t ). We can interpret |
(t )|2
as a retrodictive probability distribution over times t ; indeed,
the conditional probability that a photon entered the system
between time t and t + dt given a detector “click” at a (later)
time T is P(t |T ) = |
(t )|2dt .

We plot in Fig. 1(a) the retrodictive probability distribution
amplitudes A(t ) = |
(t )| corresponding to simple polynomial
decay rates κ (t ) = κ0( t−T0

σ
)
n
( T −t

σ
)
n

for T0 � t � T , which are
themselves plotted in Fig. 1(b). For n > 0, these polynomial
decay rates incorporate finite response to detector on-time and
off-time. We observe that the time of maximum likelihood is
determined by competition between two effects, the probabil-
ity of photoabsorption and the rate at which the excited state
amplitude decays, both of which are directly determined by
κ (t ). This latter effect drives down the probability amplitude
for the distant past. As a result, the peaks of the retrodictive
distributions in Fig. 1(a) do not match the peaks of the decay
rates in Fig. 1(b) at time T0+T

2 (when absorption is highest),
but are instead located at a somewhat later time when the
two effects balance out. Only a constant κ (t ) = κ0 (n = 0)
yields a nonzero probability amplitude at t = T (where it is
maximum). For a constant decay rate, the most likely time
that a photon entered the system is now whereas for a time-
dependent decay rate with κ (T ) = 0, there is some time of
maximum likelihood determined by competition between the
two effects.

In Fig. 1(a), retrodictive probability distribution ampli-
tudes are plotted for similar polynomial decays of the form
κ (t ) = κ0( T −t

σ
)
n

taking into account finite off-time only, plot-
ted in Fig. 1(b). Although for n > 0 the decay rate κ (t ) is
not normalized and diverges as t → −∞, the retrodictive
probability amplitudes A(t ) generated are still well behaved.
This is because κ (t ) directly corresponds to the decay rate of
the excited state amplitude, so that a large κ (t ) drives down
the probability amplitude for the distant past. As n increases,
this divergence in κ (t ) occurs faster so that for t − T < σ

the decay rate κ (t ) is very large, going suddenly to near
zero for t − T > −σ , completely filling in the shaded region
and tending toward the black line for n → ∞ in Fig. 2(b).
These correspond to increasingly narrow retrodictive temporal
distributions [34], filling in the shaded region in Fig. 2(a).
Since the decay rate κ (t ) is very large for t − T < −σ an
excitation absorbed before t = −σ will leak back out, and

since the coupling to the continuum
√

κ (t )
2π

is very small for
t − T > −σ excitations incident after t = −σ will not be
absorbed. In the limit n → ∞ (depicted in Fig. 2 in black), the
retrodictive probability distribution is zero everywhere except
at t = −σ—the only time at which an excitation can enter the
system and not immediately leak back out.

Having defined a retrodictive probability distribution
in (12), we can define a normalized single-photon state

|
T 〉 = W−1/2
∫ T

T0

dt 
(t )â†
in(t )|vac〉 (14)

with the creation operator â†
in(t ) acting on the input continuum

of states. The arbitrary input single-photon state (which may
have been created long before our detector was turned on at
T0 or long after the measurement ended at time T ) is

| f 〉 = ∫ ∞
−∞ dt f (t )â†

in(t )|vac〉. (15)

The commutator relation for the input field operator is
[âin(t ), â†

in(t ′)] = δ(t − t ′).
The probability for an arbitrary input photon wave packet

f (t ) to result in the system being found in the excited state
at a time T is |C1(T )|2 = W〈 f |
T 〉〈
T | f 〉. We rewrite this
probability in terms of a POVM element containing a single
element,

�̂T = W|
T 〉〈
T |. (16)

The positive measurement outcome does not project onto
times after we have checked if the system is in the excited
state, nor onto times before the detector was turned on. (The
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FIG. 2. (a) The retrodictive probability amplitudes A(t ) = |
(t )| defined in (12) are plotted for polynomial decays of the form κ (t ) =
κ0( T −t

σ
)
n

with polynomial order n varying from 0 (violet, top) to 15 (red, bottom) denoted by color. (b) The square roots of the corresponding
decay rates

√
κ (t ) are plotted themselves, with polynomial order varying from 0 (violet, top for t/σ > −1) to 15 (red, bottom for t/σ > −1).

Couplings and retrodictive probability amplitudes for higher polynomial order n > 15 completely fill in the magenta shaded regions,
approaching their asymptotic limits as n → ∞ (black). In these plots, time is measured with respect to time of detection T and we set
T0 = −∞ so that W = 1 (13). As in Fig. 1, for no order n > 0 are the retrodictive probability distributions continuously differentiable, and
the implemented measurements will not project onto smooth wave packets unlike those described in Figs. 3 and 6.

other POVM element, describing the no-click outcome, does
project onto all times.)

To the extent that our detector has been open long enough,
such that W → 1, our detector could act as a perfectly effi-
cient detector for a specific single-photon wave packet with
temporal mode function 
(t ) [35]. This wave packet is the
time reverse of the wave packet that would be emitted by our
two-level system if it started in the upper state |1〉 [36].

For this simple system, the POVM element is both pure
(containing just one term [37]) and (almost) maximally ef-
ficient (the weight W may approach unity as closely as we
wish).

Here we observe an obvious trade-off between efficiency
and photon counting rate: one cannot project onto a long
single-photon wave packet in a short time interval without
cutting off the tails, lowering the overall detection efficiency
[38].

The two-level system described in Eq. (8) is a special case
but an important one; the two-level system is often a very good
approximation of more complicated systems near resonance
[39]. In this paper, we will focus on the simple time-dependent
system (8) as it is sufficiently general to perform a measure-
ment described by any time-independent system, and more
[40]. Indeed, (8) is general enough to project onto a com-
pletely arbitrary single-photon wave packet, a result we will
now prove.

Proof. Consider a photon with complex wave packet

∗(t ) = A(t )eiφ(t ), positive amplitude A(t ), and phase φ(t ).
Inserting this into (12), we arrive at two separate expressions:

A(t ) =
√

κ (t )e− ∫ T
t dt ′ κ (t ′ )

2 ,

φ(t ) = −
∫ T

t
dt ′�(t ′). (17)

The second line is always solvable by �(t ) = φ̇(t ) up to a
constant global phase shift provided φ(t ) is everywhere dif-
ferentiable (smooth). We now focus on the first line. Taking

the natural logarithm we arrive at an expression

2 log2[A(t )] − log2[κ (t )] = −
∫ T

t
dt ′κ (t ′). (18)

Taking the time derivative of both sides, we arrive at a
Bernoulli differential equation [41],

κ−2(t )
dκ (t )

dt
− 2

A(t )κ (t )

dA(t )

dt
= −1. (19)

Provided 1
A(t )

dA(t )
dt is continuous, this is solved by

κ (t ) = A2(t )

1 − ∫ T
t A2(t ′)dt ′ . (20)

Here, κ (t ) is given by the square of the electromagnetic
field, divided by a correction factor accounting for the finite
response time imposed by κ (t ) itself [42]. From (20), we
observe that the only condition imposed on A(t ) is that A2(t )
have an antiderivative. We simply require A2(t ) to be con-
tinuous, which in turn requires A(t ) to be continuous. Thus,
any wave packet with smooth phase profile φ(t ) and smooth
amplitude A(t ) is projected onto by some physically realizable
single-photon detection scheme. �

Special case: Minimum-uncertainty measurement

A minimum-uncertainty simultaneous measurement of
time and frequency is achieved with a Gaussian time-
frequency distribution. We want a temporal wave packet 
∗(t )
that is the complex square root a Gaussian distribution,


∗(t ) = 1

(2πσ 2)
1
4

e
−(t−t0 )2

4σ2 ei ω0
2 t , (21)

where σ is the temporal half width, and t0 and ω0 are the cen-
tral time frequency of the Gaussian distribution. We find that
this wave packet is projected onto by a time-dependent sys-
tem with constant resonance �(t ) = ω0 and a time-dependent
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FIG. 3. The square root of the time-dependent couplings κ (t )
defined in (22) generating the minimum uncertainty (Gaussian) wave
packet are plotted for times of detection T = 7σ (blue solid line,
W = 1 − 10−10) and T = 2σ (orange dashed line, W = 0.98) in
units of 1/

√
σ with detector on-time T0 = −∞. The retrodictive

probability amplitude is now a well-defined wave packet, with am-
plitude A(t ) (green dotted line) plotted in the rotating frame (without
the fast oscillations at the central frequency ω0), also in units of
1/

√
σ . Time is measured with respect to the wave packet’s central

time t0. For times near t ≈ T the coupling
√

κ (t ) is approximately
Gaussian as an excitation absorbed at this time will not have suf-
ficient time to decay back out. For earlier times,

√
κ (t ) is strictly

larger than A(t ) and is skewed toward earlier times to incorporate
the time it takes the system to respond [∼1/κ (t )]; one needs to
prepare the two-level system for the photon, accomplished via a
“shark fin” coupling that precedes the single-photon wave packet
[43]. Near t = −T , we observe that the coupling

√
κ (t ) rapidly

drops to zero, which is a direct consequence of the temporal wave
packet’s symmetry about t0. [From (12) one can quickly verify that if
A(t ) is time-symmetric around t = t0, the coupling κ (t ) must satisfy

κ (t0 − t ) = e
∫ t0+t

t0−t dt ′κ (t ′ )
κ (t0 + t ).]

coupling

κ (t ) = e− (t−t0 )2

2σ2

√
2πσ 2

(
1 + 1

2 erf
[ t0−T√

2σ

] − 1
2 erf

[ t0−t√
2σ

]) (22)

as in Fig. 3. Note that the coupling κ (t ) is dependent on the
time of detection T even though the projected state (21) is
T -independent, in agreement with the general case (20).

III. REALISTIC MEASUREMENTS PROJECTING
ONTO ARBITRARY SINGLE-PHOTON STATES

The model of a SPD as an isolated two-level system is
highly idealized. In a more realistic system, photodetection
is an extended process wherein a photon is transmitted into
the detector, interacting with the system and triggering a
macroscopic change of the photodetector state (amplification)
which can then be measured classically. Many theories of
single-photon detection have been developed over the past
century [44–55], and indeed there are numerous implemen-
tations of SPD technology [56–60]. Across all systems, we

FIG. 4. A POVM description of the three-stage model of pho-
todetection, where the chain of inference (left to right) moves
opposite the arrow of time, connecting a macroscopic “click” out-
come to the state of the input field. A “click” outcome represented
by the POVM element �̂T indicates k ∈ Kclick excitations were mea-
sured after amplification with detection efficiency η. [Here, we will
consider Kclick to be bounded below by a threshold kmin such that
Kclick = [kmin, ∞).] This suggests that n ≈ k/η (and, strictly, n � k)
excitations were present in the target mode for amplification. In
turn, this indicates that m ≈ (n − n̄th )/G � n excitations were likely
incident to the amplification process trigger, with n̄th the expected
number of thermal excitations already in the amplification target
mode. If m is larger than the expected number of thermal excitations
in the amplification trigger mode m̄th, we conclude that one (or
more) input photon of the form |T 
T 〉〈T 
T | was likely present.
In addition to the states written explicitly, there are other possible
states where k, n, and m deviate from their most likely values. These
states (denoted by parallelograms) contribute to the POVM element,
as the internal state of the photodetector is in general highly mixed.
Nonetheless, in the end a SPD POVM element �̂T only projects
onto the two input states |T 
T 〉〈T 
T | and |vac〉〈vac|, remaining
relatively pure.

identify these three stages of transmission, amplification, and
measurement as universal. In this section, we derive a POVM
that incorporates all three stages quantum-mechanically, at the
end of the section extending the model to include fluctuations
of system parameters. The time-dependent two-level system
from the previous section enabling arbitrary wave packet
projection is incorporated into the three-stage model as the
trigger for the amplification mechanism. We will assume in
this analysis that the system is left on for a sufficient time
such that the subnormalization of 
(t ) is minimal and W ≈ 1
(13).

In the spirit of what a POVM does (connect present out-
comes to probabilistic statements about quantum states in the
past), we will begin our endeavor at the very end of the pho-
todetection process following Fig. 4. Consider a macroscopic
measurement performed at time T with a binary response
triggered by k excitations measured in the amplified signal
[61]. Such a POVM can be written as a projector onto Fock
states in the Hilbert space internal to the system [62]:

�̂T =
∑

k∈Kclick

|k, T 〉〈k, T |. (23)
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Here, we have defined an arbitrary set Kclick that describes how
many amplification excitations must be measured to trigger
a macroscopic detection event. We will here assume Kclick =
[kmin,∞), describing a lower threshold for a photodetection
event. At this stage, we can already see that the internal state
the POVM projects onto is highly mixed, but this will not
directly translate to an impure measurement on the Hilbert
space of input photons. Indeed, this is what we would expect;
we do not need to know precisely the internal state of the pho-
todetector in order to use it to efficiently detect the presence
of a single photon.

The macroscopic measurement performed on the ampli-
fied signal will, in general, be inefficient. We model this in
a standard way [62], using a beam splitter with frequency-
independent transmission amplitude

√
η. We can then rewrite

the POVM element (23) so that it projects onto Fock states in
the amplification target mode prior to the measurement,

�̂T =
∑

k∈Kclick

∞∑
n=k

P(n|k)|n, T 〉〈n, T |, (24)

where we have defined

P(k|n) =
(

n

k

)
ηk (1 − η)n−k, (25)

the probability to detect k excitations given that there were n
excitations in the output mode of the amplification process,
which is the same as P(n|k) [the probability that given k de-
tected excitations n excitations were incident, needed in (24)]
in the absence of prior information [63]. An inefficiency 1 − η

affects photodetection by changing which postamplification
Fock states are projected onto: for a larger 1 − η the distri-
bution of postamplification states |n, T 〉〈n, T | that contribute
to the final outcome �̂T becomes larger. This increases the
overlap between �̂T and the null outcome �̂0, so that it is
harder to distinguish between signal and noise (dark counts).

We now move one step farther back in the chain of in-
ference (Fig. 4) so the POVM element �̂T projects onto the
number of excitations m input to the amplification trigger.
Amplification is a generic feature of photodetection; without
a macroscopic change in the internal state of a photodetec-
tor, there is no way to correlate detector outcomes with the
presence of a single photon [64–66] (that is, without invoking
additional single-excitation detectors in an argument circu-
lus in probando). There are many interesting methods for
implementing amplification [52,64–70], but the fundamental
quantum limit to amplification of any bosonic Fock state is
achieved by a Schrödinger picture transformation [71]

|m〉trig|M〉res|N〉targ 
−→ |m〉trig|M − Gm〉res|N + Gm〉targ

(26)

such that exactly G excitations are transferred from the reser-
voir mode to the target mode for each excitation in the trigger
mode. In using this expression we do impose a restriction that
there must be M > Gn excitations in the reservoir mode, but
restrictions of this type are to be expected (the energy for
amplification must come from somewhere) and we will be
most interested in a few photons (n = 0, 1, 2) in this analysis.
In most physical platforms G will fluctuate [72], as will other
(classical) system parameters which we will return to at the

end of this section. (Exceptions do exist; for Hamiltonians that
implement deterministic amplification schemes (with small
integer values for G), see Ref. [73].) However, even with a
definite gain factor G and number of input excitations m, we
will still not end up with exactly n = N + Gm excitations
if the target mode is initially in a thermal state with mean
occupation number N̄ (as opposed to a Fock state with exactly
N excitations). We now assume this, writing the state of the
target mode in the Fock basis

ρ̂
(th)
targ =

∞∑
N=0

Pth
N, T |N, T 〉〈N, T |, (27)

with the probability for N thermal excitations given by

Pth
N = 1

1 + N̄

(
N̄

1 + N̄

)N

, N̄ = 1

e
h̄ω′
τ − 1

, (28)

where ω′ and τ are the frequency and the fundamental tem-
perature of the target mode. Assuming the ideal amplification
scheme in (26), we now write the POVM element �̂k in terms
of the number m of excitations that trigger the application
mechanism

�̂T =
∑

k∈Kclick

∞∑
n=k

P(n|k)

Fl[ n
G ]∑

m=0

Pth
n−Gm|
T 〉〈
T |⊗m, (29)

where we define |
T 〉〈
T |⊗0 = |vac〉〈vac| and Pth
N = 0 for

N < 0 and have introduced the floor function Fl[x] =
max[n ∈ Z | n � x]. We can now see the benefit of having a
large gain factor G; it shifts the probability distribution over n
that corresponds to nonzero excitations in the trigger mode,
minimizing its overlap with the probability distribution for
zero excitations. In this way, one can dramatically reduce the
background noise (dark counts) without decreasing signal by
changing min[Kclick]. In (29) we have reintroduced the state
|
T 〉 defined in (14) as the state described by being projected
onto by the trigger mechanism. As we did in the previous sec-
tion, we will assume a time-dependent resonance frequency
�(t ) and decay rate κ (t ) so that arbitrary pulse-shaping is
possible.

The POVM element in (29) now projects onto quantum
states internal to the photodetector. We need to connect the
internal continuum of states coupled to the amplification trig-
ger to the external continuum containing the photons we
wish to detect (the transmission stage in Fig. 4). This is
accomplished by introducing an arbitrary two-sided quan-
tum network [23]. This is completely described by a single
complex frequency-dependent transmission coefficient T (ω)
[related to a reflection coefficient at each frequency via
|T (ω)|2 + |R(ω)|2 = 1 and R(ω)T ∗(ω) + R∗ω)T (ω) = 0].
We now invoke the single-photon assumption so that there
is at most a single excitation input to the quantum network.
Any other excitations present in the internal continua will be
from internally generated thermal fluctuations reflected by the
quantum network back to the trigger mechanism. In this way,
we can construct a POVM element that projects onto prod-
uct states |ψex〉〈ψex| ⊗ |ψin〉〈ψin| of the external and internal
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continua:

�̂T =
∑

k∈Kclick

∞∑
n=k

P(n|k)

⎛
⎝Pth

n |vac〉〈vac| ⊗ |vac〉〈vac| +
Fl[ n

G ]∑
m=1

Pth
n−Gmβ2m|vac〉〈vac| ⊗ |R
T 〉〈R
T |⊗m

+
Fl[ n

G ]∑
m=1

mPth
n−Gmα2β2(m−1)|T 
T 〉〈T 
T | ⊗ |R
T 〉〈R
T |⊗m−1

⎞
⎠. (30)

The first term corresponds to dark counts generated from
thermal excitations after amplification and the second term
corresponds to dark counts generated by thermal excita-
tions that then trigger the amplification mechanism. Only
the third term contains a projection onto a photon to
be detected. (The multiplicative factor m in the third
term is combinatorial in origin: m total excitations in the
trigger mode with m − 1 generated from thermal fluctu-
ations.) In writing (30) we have defined transmitted and
reflected normalized single-photon states and coefficients

|T 
T 〉 = 1

α

∫ ∞

−∞
dω
̃(ω)T ∗(ω)ei ω T â†(ω)|vac〉,

|R
T 〉 = 1

β

∫ ∞

−∞
dω
̃(ω)R∗(ω)ei ω T b̂†(ω)|vac〉,

α =
√∫

dω|
̃(ω)|2|T (ω)|2,

β =
√∫

dω|
̃(ω)|2|R(ω)|2, (31)

where â† and b̂† are the creation operators for the external and
internal continua and we have defined a Fourier-transformed
wave packet for the amplification trigger mode 
̃(ω) =
FT[

√
κ (t )
(t )]. We can now see how preamplification dark

counts [the second line of (30)] can be suppressed: by re-
ducing the overlap of |
̃(ω)|2 and |R(ω)|2, that is, by only
amplifying the frequencies we wish to detect so that β2 �
1. In this case, the POVM element (30) will be dominated
by the m = 1 term of the third line (the signal to be de-
tected with no thermal excitations), as well as potentially
the first line. (To reiterate, these are dark counts after am-
plification, but these can be reduced by amplifying at a high
frequency such that h̄ω′ � τ , where ω′ and τ are the fre-
quency and fundamental temperature of the target mode.)

Finally, we trace over the internal continua, which we
assume are in a thermal state with fundamental temperature
τ ′ so that the POVM projects onto the external continua only:

�̂T =
∑

k∈Kclick

∞∑
n=k

P(n|k)

⎛
⎝Fl[ n

G ]∑
m=0

Pth
n−GmP′th

m β2m |vac〉〈vac|

+
Fl[ n

G ]∑
m=1

mPth
n−GmP′th

m−1α
2β2(m−1)|T 
T 〉〈T 
T |

⎞
⎠

≡ w0|vac〉〈vac| + wT |T 
T 〉〈T 
T |, (32)

where in the last line we have absorbed the sums in front of
the two projectors into weights so that the POVM element
has the form of (2) and with P′th

j the probability to have j
thermal excitations [now in the nonmonochromatic reflected
mode defined in (31)]. For a finite detector on-time T0 > −∞,
the weights w0 and wT will be slightly less than in (32) due
to wave packet subnormalization (13). However, this devia-
tion is negligible provided the detector is left on for a time
comparable to the temporal mode’s width.

We now reconsider the question of projecting onto an arbi-
trary wave packet, including the full quantum description. We
find that this is possible to do in principle, provisio T (ω) is
nowhere zero (except at infinity), a result we will now prove.
That is, we can ensure that the single-photon wave packet
|T 
T 〉 has any desired (smooth) shape and will be projected
onto with a high-efficiency and high-purity measurement.

Proof. Consider a photon with complex normalized spec-
tral wave packet f̃ (ω). If detection is achieved with a
time-dependent two-level system preceded by a quantum net-
work with filtering transmission function T (ω), the system
will project onto a state |T 
T 〉 as defined in (31). In the
low-noise limit this will be the only state projected onto by the
(pure) POVM element. From the Born rule, the probability of
detection will be

PT = wT
1

α2

∣∣∣∣
∫ ∞

−∞
dω f̃ (ω)
̃(ω)T ∗(ω)

∣∣∣∣
2

(33)

with wT the overall weight given by (32) and maximum possi-
ble detection efficiency, which can be arbitrarily close to unity.
It is possible to achieve PT = wT (mode-matched detection)
in (33) if and only if


̃(ω) = f̃ ∗(ω)

T (ω)
eiωT . (34)

From (12), we know that it is possible to generate an arbi-
trary temporal wave packet FT−1[
̃(ω)] = √

κ (t )
(t ) from a
time-dependent two-level system. The Fourier transform of a
continuous smooth function is itself smooth and continuous.
Thus, if the right-hand side of (34) is a well-defined spectral
wave packet (smooth and continuous), one can find functions
κ (t ) and �(t ) such that 
̃(ω) has the form of (34). �

Remark. Arbitrary wave packet detection (and thus
Heisenberg-limited simultaneous measurements of time and
frequency) is in principle possible only when there are no
photonic band gaps induced by the filter; if T (ω′) = 0 for
some frequency ω′, there is simply no way to compen-
sate for the lost information about ω′. Photonic band gaps
are a generic feature of parallel (and hybrid) quantum net-
works [23] as well as certain non-Markovian systems [74].
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FIG. 5. The effects of classical fluctuations in system parameters
on the final POVM: either the weights and states are changed, or
only the weights are changed. The fluctuations over the functions

̃(ω) and T (ω) [and thus R(ω) by unitarity] could be caused by
fluctuations in other system parameters (decay rates, resonances)
internal to those functions. A subset of fluctuations in 
̃(ω) are
fluctuations in the time of detection T . Importantly, these shift the
wave packet 
(t ) projected onto, resulting in a mixed measurement
with larger temporal uncertainty (jitter) that depends on the ratio of
the fluctuations in T to the width of the temporal wave packet.

Network/reservoir engineering must be employed to ensure
any ω′ where T (ω′) = 0 is not a frequency of interest.

The POVM {�̂T , �̂0} with �̂T defined in (32) and �̂0 =
1̂ − �̂T provides a complete description of the single-photon
detection process that is fully quantum from beginning to
end (Fig. 4). However, there is a final element that must
be considered to make the description applicable to labora-
tory systems: classical parameter fluctuations. For continuous
parameter fluctuations over any system parameter or set of
system parameters X , these are naturally incorporated

�̂T =
∫

dXP(X )(w0|vac〉〈vac| + wT |T 
T 〉〈T 
T |), (35)

where we have assumed a (known) probability distribution
P(X ). In (35), the system parameter(s) X could be such that
only the weights w0 and wT depend on X , or X could be such
that the state |T 
T 〉 depends on X as well (for a summary, see
Fig. 5). In the case of the latter, the POVM will become less
pure and will need rediagonalization to determine which states
are projected onto [75]. This final POVM not only includes
ignorance about the internal state of the photodetector as was
depicted in Fig. 4, but also classical ignorance about the state
of the photodetector due to system-lab interactions. For ex-
ample, let us start with our ideal detector from Sec. II, which
projects onto a Gaussian wave packet (21) with a central time
t0, a fixed duration before T , and a width σ determined by the
specific form of κ (t ). Suppose the parameter T fluctuates such
that t0 fluctuates but σ stays fixed. For definiteness, assume
a Gaussian distribution for the central time τ0 of the wave
packet

P(τ0) = 1√
2πw2

exp[−(τ0 − t0)2/2w2] (36)

with w the width of that distribution. One effect on the POVM
“click” element of this uncertainty about the value of τ0 is
that its purity decreases. Since that consequence has been
discussed in a slightly different context in Ref. [76], we focus

here on a second effect: that the probability of detecting the
single-photon wave packet (21) our detector was designed
to detect perfectly decreases. The probability to detect our
favorite wave packet given a parameter τ0 is

P(t0|τ0) = exp[−(τ0 − t0)2/4σ 2]. (37)

Averaging this probability over the Gaussian distribution over
τ0 gives ∫

dτ0 P(τ0)P(t0|τ0) = 1√
1 + (w/σ )2/2

, (38)

which in the limit of w → 0 reaches 1, as it should, and
which for large w decays to zero as

√
2σ/w. If one ad-

ditionally includes other realistic factors [finite temperature,
finite gain, and the threshold value kmin of Kclick = [kmin,∞)],
the conditional probability P(t0|τ0) remains uniform across
the parameter τ0 and thus the overall detection efficiency
decreases by the factor wT as defined in (32).

We may take this description one step further and con-
sider X not as a set of classical parameters but as (discrete)
outcomes Xn of quantum measurements. That is, there is a
higher-level POVM πn describing measurements on one or
more auxiliary system (e.g., a quantum clock for measuring
time [77]), with the possible outcomes labeled by the parame-
ters Xn. When the probability of the measurement outcome Xn

is P(Xn), then we would get the same type of mixed POVM
(35)—but with the integral replaced by a sum over n—when
different outcomes correspond to orthogonal outcomes of a
standard von Neumann measurement, such that Tr(πnπm) =
δnm. In case different outcomes are not orthogonal (as would
be the case for quantum measurements of phase and time), the
probability distribution P(X ) must be replaced according to∫

dX P(X )�̂(X ) 
−→
∑

n

∑
m

Tr(πnπm)

Tr(πm)
P(Xm)�̂(Xn), (39)

since an outcome πm �= πn may still project onto the single-
photon state corresponding to Xn. Apart from this change the
result (35) retains the same form.

IV. APPLICATIONS

Using the time-dependent two-level system, we are able to
project onto orthogonal quantum states (Fig. 6). This enables
efficient detection of photonic qubits, an essential component
of any quantum internet [78,79]. More generally, temporal
modes provide a complete framework for quantum informa-
tion science [80], with efficient detection of orthogonal modes
(and their superpositions to create mutually unbiased bases) a
key ingredient. Fully manipulable temporal modes also play a
key role in error-corrected quantum transduction [81], where
a time-reversed temporal mode can restore an unknown su-
perposition in a qubit. Here, efficient detection of arbitrary
temporal modes is essential so that quantum jumps out of the
dark state are efficiently heralded.

High-purity measurements that project onto orthogonal
single-photon wave packets also enable super-resolved mea-
surements [84]. Suppose we have two single-photon sources
emitting almost identical pure states differing slightly in either

053707-8



HOW TO PROJECT ONTO AN ARBITRARY … PHYSICAL REVIEW A 102, 053707 (2020)

FIG. 6. The time-dependent coupling κ (t ) that generates a wave
packet exactly orthogonal to the minimum uncertainty Gaussian
wave packet in Fig. 3 is plotted in units of 1/

√
σ for times of detec-

tion T = 7σ (solid blue line, W = 1 − 10−5) and T = 2σ (dashed
orange line, W = 0.72) and detector on-time T0 = −∞. In the rotat-
ing frame, the wave packet’s time-dependent amplitude A(t ) (green
dotted line, also in units of 1/

√
σ ) is an approximate first-order

Hermite-Gaussian pulse, where the singular region of zero has been
expanded with half width of z = 0.5σ . In this way, the wave packet’s
phase (thick black line, not to scale) can go from 0 to π in a finite
time, whereas the Heaviside phase flip in the exact Hermite-Gaussian
pulse requires an unphysical delta-function detuning [second line
of (17)]. Both the phase and amplitude have been convolved with
a triangular smoothing function with full width s = 0.5σ , ensuring
that A(t ) is continuously differentiable to first order [82,83], which
is prerequisite for solving the Bernoulli equation (19). For any fi-
nite z � s > 0 the phase flip [here implemented with a triangular
detuning �(t )] occurs while the amplitude is zero. This ensures
exact orthogonality of the approximate first-order Hermite-Gaussian
to the Gaussian pulse. In the limit s, z → 0, an exact first-order
Hermite-Gaussian is recovered. This smoothing procedure general-
izes to higher-order Hermite-Gaussian pulses, forming a mutually
unbiased basis for efficient detection of higher-dimensional qudits
[80].

emission time or central frequency,

|φ̃1〉 = |φ1〉+√
ε|φ2〉√

1+ε
,

|φ̃2〉 = |φ1〉−√
ε|φ2〉√

1+ε
, (40)

with 〈φ̃1|φ̃2〉 real, ε � 1, and 〈φ1|φ2〉 = 0. Alternatively, we
may imagine a single source of light but the light we receive
may have either been slightly Doppler shifted or it may have
been slightly delayed.

Suppose now that we receive one photon that could equally
likely be from either source so that our input state is

ρ̂ = 1
2 |φ̃1〉〈φ̃1| + 1

2 |φ̃2〉〈φ̃2|. (41)

If we can measure both �̂1 = η|φ1〉〈φ1| and �̂2 = η|φ2〉〈φ2|
[that is, if we have separate photodetectors with these
(pure) POVM elements, or a single non-binary-outcome

photodetector], then we find the probability of clicks

P1 = Tr[�̂1ρ̂] = η
1

1 + ε
,

P2 = Tr[�̂2ρ̂] = η
ε

1 + ε
, (42)

so that the ratio of clicks gives a direct estimate of ε, even for
low efficiency η. Here all that is needed for time-frequency
domain super-resolved measurement of ε is SPDs with time-
dependent couplings and resonance frequencies as opposed to
nonlinear optics [85].

In traditional quantum key distribution (QKD) schemes
[that is, not measurement-device-independent (MDI) QKD],
specification of the measurement POVM is essential to
robust security proofs [86–88]. Here, we have verified
several assumptions about an eavesdropper’s capabilities
common in security proofs: that high-purity measurements
are possible, that high-efficiency measurements are possible,
and [for continuous-variable (CV) QKD proofs] minimum
time-frequency uncertainty measurements are possible. In
particular for CV-QKD, an eavesdropper can perform mea-
surements that project onto variable-width spectral modes,
disrupting temporal correlations between Alice and Bob (who
are assumed to use fixed time-frequency bins) [89]. Here,
the capacity to adjust the width of the spectral mode 
̃(ω)
provides Alice and Bob a new strategy to mitigate Eve’s attack
and extract a secure key.

More generally, detector tomography is an important
tool across implementations of single-photon and number-
resolved photodetection [7,8,90,91]. Real-time tomography
could be useful in QKD protocols resistant to “Trojan-
horse attacks” [92] or any SPD platform subject to time-
dependent environmental parameter fluctuations: for instance,
atmospheric turbulence in MDI-QKD [93] or interplane-
tary medium in deep-space classical communications [94].
Recently tomography speedups have been achieved using
machine-learning-assisted tomography protocols [95]. The
POVMs derived in this paper provide priors which can further
speed up detector tomography [96]. These include approxi-
mate effects of environmental fluctuations as outlined in Fig. 5
and a global optimum POVM for single-photon detection (32)
which can be used to incorporate detector calibration and
optimization into in situ tomographic protocols.

V. CONCLUSIONS

Having gone through applications of our work, we return
to the fundamental (as opposed to practical) limits to single-
photon detection and their implications, as well as possible
experimental implementations.

Here we have constructed single-photon measurements
that are Heisenberg-limited in two ways: the first is that
they can project onto Gaussian time-frequency states as il-
lustrated in Fig. 3, and the second is that the amplification
scheme reaches a Heisenberg-limited (linear in the gain G)
signal-to-noise ratio, surpassing the standard quantum limit
(a signal-to-noise ratio going like of

√
G) [71]. Achieving

these simultaneously is possible in principle with no draw-
back. Indeed, the only stringent trade-off we encounter in
this analysis is between efficiency and photon counting rate,
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which becomes substantial when an SPD is reset at a faster
rate than ∼1/�t . (The photon does not have sufficient time to
excite the two-level system with high probability before the
system is reset.) For other figures of merit, we find that they
are either independent, or deteriorate together [97]. While it
does appear from (32) that improving efficiency also increases
dark counts, these are decoupled by ensuring the coefficient
β � 1—that is, by making T (ω) broader than 
̃(ω) as in
(31). While it is commonsense that one should only am-
plify the frequencies they wish to detect, our work clarifies
how enormously important this is. The dark counts produced
in this way are insuperable; they cannot be removed after
amplification without removing the single-photon signal as
well.

Another conclusion from this work is rather optimistic.
Here we have given a quantum description of an entire
single-photon detection process projecting onto arbitrary
single-photon states and the only fundamental limitations
encountered are Heisenberg limits. Incorporating realistic de-
scriptions of amplification and a final measurement reduce
efficiency and increase dark counts, but even so a Heisenberg-
limited measurement is still achievable in principle. Similarly,
incorporating the filtering of a first irreversible step does
not impede implementation of Heisenberg-limited measure-
ments provided no frequencies are completely blocked from
entering the trigger mechanism. Even considering parameter
fluctuations (35) in internal temperatures τ and τ ′, amplifi-
cation frequency ω′, and amplification gain factor G—which
are unavoidable in any realistic system—Heisenberg-limited
time-frequency measurements are achieved. To the authors’
knowledge, this is first proposed quantum procedure for
reaching Heisenberg-limited time-frequency measurements in
a realistic quantum system. In addition to being a fundamental

limit to SPD performance, probing Heisenberg limits paves
the way for future experimental tests of foundational quantum
theory.

Experimental implementation of the POVM derived in
this work relies on several well-established technological
elements. The first is passive filtering to couple the pho-
todetecting system to an external continuum of states (i.e.,
transmission). This could be an optical fiber or a lens to focus
light (e.g., onto a set of molecules as in the eye). Additionally,
an electron-shelving three-level system turned on at a time
T is needed to implement amplification of the input single
photon into a macroscopic signal with minimal noise (see
Ref. [18] for details on electron shelving). The last stage
of the photodetecting process is an inefficient measurement
of the macroscopic signal, which can be implemented with
an avalanche photodiode or a photomultiplier tube. In this
work, the three stages of photodetection (transmission, am-
plification, and measurement) have been considered separate
and sequential so that we could elucidate the fundamental
limits and trade-offs that arise at each step. However, there
has been recent progress unifying these key ingredients for
photodetection in a single Hamiltonian [98]. Future work will
connect that progress to the limits derived in this paper, and
elucidate how the shift from a discrete photodetection event
at time T to a continuously monitored system affects the final
photodetection POVM.
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