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Quantum-optical implementation of non-Hermitian potentials for asymmetric scattering
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Non-Hermitian, one-dimensional potentials which are also nonlocal, allow for scattering asymmetries, namely,
asymmetric transmission or reflection responses to the incidence of a particle from left or right. The symmetries
of the potential imply selection rules for transmission and reflection. In particular, parity-time (PT) symmetry
or the symmetry of any local potential do not allow for asymmetric transmission. We put forward a feasible
quantum-optical implementation of non-Hermitian, nonlocal, non-PT potentials to implement different scattering
asymmetries, including transmission asymmetries.
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I. INTRODUCTION

The asymmetric response of diodes, valves, or rectifiers to
input direction is of paramount importance in many different
fields and technologies, from hydrodynamics to microelec-
tronics, as well as in biological systems. We expect a wealth of
applications of such response asymmetries also in the micro-
scopic quantum realm, in particular, in circuits or operations
carrying or processing quantum information with moving
atoms. So far devices such as Maxwell demons, which let
atoms pass one way, have been instrumental, first as ideal de-
vices to understand the second law [1,2], and also as practical
sorting devices [3–11].

Asymmetric transmission and reflection probabilities for
one-dimensional (1D) particle scattering off a potential cen-
ter are not possible if the Hamiltonian is Hermitian [12,13].
Non-Hermitian (NH) Hamiltonians representing effective
interactions have a long history in nuclear, atomic, and molec-
ular physics, and have become common in optics, where wave
equations in waveguides could simulate Schrödinger equa-
tions [14–16]. Non-Hermitian Hamiltonians constructed by
analytically continuing Hermitian ones are useful and efficient
tools to find resonances [17]. They can also be set phenomeno-
logically, e.g., to describe gain and loss [14], or be found
as effective Hamiltonians for a subspace from a Hermitian
Hamiltonian of a larger system by projection [12,18,19].

Much of the recent interest in Non-Hermitian Hamilto-
nians focuses on parity-time (PT) symmetric Hamiltonians
[20,21] because of their spectral properties and useful applica-
tions, mostly in optics [15,16,22], but alternative symmetries
are also being studied [23–31]. Symmetry operations on
NH Hamiltonians can be systematized into group struc-
tures [26,28,29]. In particular, for 1D particle scattering
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off a potential center, the different Hamiltonian symmetries
imply selection rules for asymmetric transmission and reflec-
tion [26,28].1 Whereas hermiticity does not allow for any
asymmetry in transmission and reflection probabilities, PT
symmetry or the symmetry of local potentials, technically
“pseudohermiticy with respect to time reversal” [26], do not
allow for asymmetric transmission [12,13], see symmetries
II (Hermiticity), VII (PT symmetry), and VI (time-reversal
pseudohermiticity) in Table I. (Here a “local potential” is
defined as one whose only nonzero elements in coordinate
representation are diagonal, whereas a nonlocal one has
nonzero nondiagonal elements.) Thus nonlocal, non-PT, and
non-Hermitian potentials are needed to implement a rich set
of scattering asymmetries, and in particular, asymmetric trans-
mission.

In this paper, we put forward a physical realization of
effective NH, nonlocal Hamiltonians which do not posses PT
symmetry. Nonlocal potentials for asymmetric scattering had
been constructed as mathematical models [26], but a physical
implementation had been so far elusive. Using Feshbach’s
projection technique it is found that the effective potentials
for a ground-state atom crossing a laser beam in a region of
space are generically nonlocal and non-Hermitian. Shaping
the spatial-dependence of the, generally complex, Rabi fre-
quency, and selecting a specific laser detuning allows us to
produce different potential symmetries and asymmetric scat-
tering effects, including asymmetric transmission.

After a lightning review of Hamiltonian symmetries and
the corresponding scattering selection rules in Sec. II, we
shall explain in Sec. III how to generate different NH symme-
tries in a quantum optical setting of an atom impinging on a
laser illuminated region. Finally we provide specific example
devices (constructed using numerical optimisation) with dif-
ferent asymmetric scattering responses in Sec. IV. Realistic
experimental parameters are also examined. The asymmetric

1Throughout the paper, we assume a linear theory for systems
whose wave equation is linear in the wave function.
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TABLE I. Conditions leading to specific symmetries in the po-
tential (8). A given symmetry also implies others, see the last column.

Symmetry Conditions Implies

(I) 1H = H1 none –
(II) 1H = H†1 q = −q∗ (i.e. Re q = 0) I
(III) �H = H� �(x) = eiφ�(−x) I
(IV) �H = H †� q = −q∗ & �(x) = eiφ�(−x) III, II, I
(V) �H = H� q = −q∗ & �(x) = eiφ�(x)∗ VI, II, I
(VI) �H = H †� �(x) = eiφ�(x)∗ I
(VII) ��H = H�� q = −q∗ & �(x) = eiφ�(−x)∗ VIII, II, I
(VIII) ��H = H†�� �(x) = eiφ�(−x)∗ I

behavior can be intuitively understood based on a classical
approximation of the motion and the noncommutativity of
rotations on the Bloch sphere, which gives good estimates for
the potential parameters, see Sec. V.

II. SYMMETRIES OF SCATTERING HAMILTONIANS

We consider one-dimensional scattering Hamiltonians
H = H0 + V , where H0 is the kinetic energy for a particle of
mass m, and V is the potential, which is assumed to decay fast
enough on both sides so that H has a continuous spectrum
and scattering eigenfunctions. These eigenfunctions may be
chosen so that asymptotically, i.e., far from the potential cen-
ter, they are superpositions of an incident plane wave and a
reflected plane wave on one side, and a transmitted plane wave
on the other side. Reflected and transmitted waves include
corresponding amplitudes, whose squared-modulii (scattering
coefficients hereafter) sum to one for Hermitian potentials.
Instead, NH potentials may produce absorption or gain.

There are eight different symmetries that H could fulfill,
see Table I, with the forms

AH = HA, (1)

AH = H†A, (2)

where A is a unitary or antiunitary operator in the Klein four-
group K4 = {1,�, θ,�θ} [26]. Relation (2) is called here A-
pseudohermiticity of H [26,32]. The operators 1, �, θ and
�θ are the identity, parity, time reversal, and the consecutive
(commuting) application of both operators. Acting on position
eigenvectors |x〉, �c|x〉 = c| − x〉, and θc|x〉 = c∗|x〉, for any
complex number c. Note that symmetry I is a trivial symmetry
and is satisfied for all Hamiltonians.

The eight symmetries may be regarded as the invariance
of the Hamiltonian with respect to eight symmetry operations
that form the Abelian group E8 [28]. They are all operations
that can be done by inversion, transposition, complex con-
jugation, and their combinations. Making use of generalized
unitarity relations and the relations implied by the symmetries
on S-matrix elements, the transmission and reflection ampli-
tudes for right and left incidence, T r , Rr and T l , Rl , can be
related to each other, as well as their modulii [26]. “Right
and left incidence” are here shorthands for “incidence from
the right” and “incidence from the left,” respectively.

The possible asymmetric responses are allowed or forbid-
den, according to selection rules, by the symmetries of the

TABLE II. Device types for transmission and/or reflection asym-
metry in the first row (see main text for nomenclature, binary values
(0 or 1) for the transmission and reflection coefficients are considered
here as an ideal case). The second row gives the corresponding
symmetries that allow each device.

T R/A T /R T /A T R/R R/A T R/T
I I I,VIII I,VIII I,VI I, IV, VI, VII

Hamiltonian. If we impose that the transmission and reflection
coefficients have only 0 or 1 values, a convenient reference
scenario for devices intended to manage quantum-information
applications, six possible scattering asymmetries may be iden-
tified [26], see Table II. It is useful to label them according to
the response to incidence from the left or right. The possible
responses are encoded in the letters A, for “absorption’, and
T and R for “transmission” and “reflection” separated by
“/”. The letters on the left of / are for left incidence, and
the ones on the right are for right incidence. For example,
T /A means transmission for left incidence and absorption for
right incidence. From the selection rules [26], it is possible
to determine which symmetries allow for a given device, see
Table II.

The relations between the symmetries and “reciprocity”
are surely worth spelling out, in view of many works and
discussions in optics [33–36]. “Reciprocity” is a somewhat
vague term with different meanings for different authors and
communities, the reviews [37] and [38] give some useful
background. A primary formulation regards reciprocity as the
property of detecting the same effects when interchanging
source and detector without changing the scatterer. This con-
cept has lead to different formalizations that fix in more detail
what is exactly meant by “same effects” and “interchanging
source and detector.” In 1D scattering problems, we may first
distinguish a reciprocity for scattering amplitudes or for scat-
tering coefficients (their modulus squared). We shall hereafter
focus on coefficients as in the rest of the paper. Another
distinction can be made between reflection and transmission
reciprocities, namely, a system with |Rl |2 = |Rr |2 would be
“reflection reciprocal” and if |T l |2 = |T r |2 the system would
be transmission reciprocal.2 A formal definition of reciprocity
is that, for some antiunitary operator K [38],

HK = KH†. (3)

It follows that the scattering transition matrix obeys in mo-
mentum representation [38]

〈p|T|p′〉 = 〈K p′|T|K p〉. (4)

In our symmetry classification, symmetries VI and VIII obey
by definition reciprocity conditions of the form (3). Inserting
the results in the exact forms of transmission and reflection
amplitudes, which depend on diagonal and nondiagonal ele-
ments of the transition matrix, respectively, see, e.g., Ref. [12]

2Incidentally, for reflection reciprocity, “interchanging source and
detector” has to be understood in momentum space rather than spa-
tially.
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or the Supplementary Material, different physical conse-
quences follow. in symmetry VI, K = �, |K p〉 = | − p〉, and
the reciprocity condition implies transmission reciprocity. In
symmetry VIII, K = �� and |K p〉 = |p〉, so the reciprocity
condition implies reflection reciprocity. A first relevant obser-
vation is this: an arbitrary reciprocity condition of the form
(3), does not necessarily imply symmetrical transmission.
A second point is that “scattering selection rules,” i.e., the
set of forbidden phenomena, or compulsory relations among
right and left coefficients, see Table I in Ref. [26], depend
as well on generalized unitary relations. Putting together the
effect of symmetries on transition or S-matrix elements and
generalized unitarity relations, it turns out that symmetries
II (Hermiticity) and III (parity) are not capable of any, re-
flection or transmission, asymmetry; symmetries VI (time
reversal pseudohermiticity) and VII (PT symmetry) allow for
reflection asymmetry but not for transmission asymmetry;
symmetries V (time-reversal symmetry) and VIII (PT pseu-
dohermiticity) allow for transmission asymmetry but not for
reflection asymmetry, whereas I (trivial symmetry) and IV
(parity pseudohermiticity) allow for both scattering asymme-
tries. Note also the importance on nonlocality for asymmetric
transmission: All local potentials do satisfy automatically
symmetry VI, and are therefore necessarily transmission re-
ciprocal. Let us insist once more than all these results are for
linear (Schrödinger) dynamics. Nonlinearity allows to break
down these selection rules [33,36,39].

III. EFFECTIVE NONLOCAL POTENTIAL FOR THE
GROUND STATE OF A TWO-LEVEL ATOM

The key task is now to physically realize some of the po-
tential and device types described in the previous section. We
start with a two-level atom with ground level |1〉 and excited
state |2〉 impinging onto a laser illuminated region. For a full
account of the model and further references see [40]. The
motion is assumed one dimensional, either because the atom
is confined in a waveguide or because the direction x is uncou-
pled to the others. We only account explicitly for atoms before
the first spontaneous emission in the wavefunction [41–43].
If the excited atom emits a spontaneous photon it disappears
from the coherent wavefunction ensemble. We assume that
no resetting into the ground state occurs. The physical mech-
anism may be an irreversible decay into a third level [44],
or atom ejection from the waveguide or the privileged 1D

direction due to random recoil [45]. The state �k = (φ
(1)
k

φ
(2)
k

) for

the atom before the first spontaneous emission impinging with
wave number k in a laser adapted interaction picture, obeys,
after applying the rotating wave approximation, an effec-
tive stationary Schrödinger equation with a time-independent
Hamiltonian [19,40] H�k (x) = E�k (x), where

H = H01 + V = 1

2m

(
p2

0

0

p2

)
+ V (x), (5)

V (x) = h̄

2

(
0

�(x)∗
�(x)

−(2� + iγ )

)
. (6)

We assume perpendicular incidence of the atom on the laser
sheet for simplicity, oblique incidence is treated, e.g., in
Refs. [6,40]. Here E = h̄2k2/2m is the energy, and �(x) is

the position-dependent, on-resonance Rabi frequency, where
real and imaginary parts may be controlled independently
using two laser field quadratures [46]; γ is the inverse of the
life time of the excited state; � = ωL − ω12 is the detuning
(laser angular frequency minus the atomic transition angular
frequency ω12); p = −ih̄∂/∂x is the momentum operator; and
1 = |1〉〈1| + |2〉〈2| is the unit operator for the internal-state
space. Complementary projectors P = |1〉〈1| and Q = |2〉〈2|
are defined to select ground and excited state components.
Using the partitioning technique [18,47,48], we find for the
ground state amplitude φ

(1)
k the equation

Eφ
(1)
k (x) = H0φ

(1)
k (x) +

∫
dy 〈x, 1|W (E )|y, 1〉φ(1)

k (y), (7)

where W (E ) = PVP + PVQ(E + i0 − QHQ)−1QVP, is
generically non local and energy dependent. Specifically, we
have now achieved a physical realization of an effective (in
general) nonlocal, non-Hermitian potential whose kernel has
the form

V (x, y) = 〈x, 1|W (E )|y, 1〉 = m

4

ei|x−y|q

iq
�(x)�(y)∗, (8)

where q =
√

2mE
h̄ (1 + μ)1/2, Im q � 0, and μ = 2�+iγ

2E/h̄ .

Eq. (8) is worked out in momentum representation to do the
integral using the residue theorem. This is a generalized,
nonlocal version of the effective potentials known for the
ground state [44,49], which are found from Eq. (8) in the large
μ limit [19]. The reflection and transmission amplitudes Rr,l

and T r,l may be calculated directly using the potential (8) or
as corresponding amplitudes for transitions from ground state
to ground state in the full two-level theory (see Appendix).

A. Possible symmetries of the nonlocal potential

The necessary conditions for the different symmetries of
the potential (8) are outlined in the second column of Table I.
For example, symmetry III (parity) requires that V (x, y) =
V (−x,−y) [26]. Inserting the functional form of the potential
from Eq. (8) into this condition, it results in the require-
ment �(x)�(y)∗ = �(−x)�(−y)∗. This is fulfilled if �(x) =
�(−x)eiφ with some arbitrary phase freedom φ.

Since �(x) does not depend on q, symmetries IV, V and
VII imply that symmetry II is obeyed as well (Hermiticity).
Moreover symmetry III (parity) should be discarded for our
purpose since it does not allow for asymmetric transmission or
reflection [26]. This leaves us with three interesting symme-
tries to explore: VI, which allows for asymmetric reflection;
VIII which allows for asymmetric transmission, and I, which
in principle allows for arbitrary asymmetric responses, except
for physical limitations imposed by the two-level model (see
Appendix).

As seen from Table I, Re(q) = 0 makes the potential
Hermitian so we shall avoid this condition. If γ = 0, μ ∈
R. Hence μ + 1 < 0 gives Re(q) = 0 and μ + 1 > 0 gives
Im(q) = 0. μ + 1 > 0 amounts to a condition on the detuning
compared to the incident energy, namely � > −E/h̄. In the
following examples, we implement potentials with symme-
tries VIII, VI, and I, with detunings and energies satisfying
the condition μ + 1 > 0.
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FIG. 1. Left column: T /A device with symmetry VIII. (Top) �VIII(x). (Bottom) Transmission and reflection coefficients. v0/vd = 400,
aτ = 2618.19, x0/d = 0.1532, and τ� = 1413.01. (Middle column) R/A device with symmetry VI. (Top) �VI(x) (it is real). (Bottom)
Transmission and reflection coefficients. v0/vd = 400, bτ = −244516.1, cτ = 167853.9, x0/d = 0.1679, and τ� = 193.508. (Right column)
“Partial”–T R/A device with symmetry I. (Top) �I (x), real (blue, solid line) and imaginary parts (orange, dashed line). (Bottom) Transmission
and reflection coefficients. v0/vd = 8, bτ = 102.6520, cτ = 165.8355, x0/d = 0.1648, and τ� = 90.5337. In all cases, τ = md2/h̄ and vd =
h̄/(md ).

IV. DESIGN OF ASYMMETRIC DEVICES

We will now apply this method to physically realize nonlo-
cal potentials of the form (8). We shall work out explicitly
a T /A device with symmetry VIII, a R/A device with
symmetry VI, and a “partial”–T R/A device, having 1/2
transmission and reflection coefficients from the left, with
symmetry I. The T /A and the “partial”–T R/A device have
transmission asymmetry so they cannot be built with local or
PT -symmetric potentials. Let us motivate the effort with some
possible applications, relations and analogies of these devices.
T /A and R/A are, respectively, transmission and reflection
filters. They are analogous to half-wave electrical rectifiers
that either let the signal from one side “pass” (transmitted)
or change its sign (reflected) while suppressing the other half
signal. They may play the role of half-rectifiers in atomtronic
circuits. A T /A device allows us, for example, to empty a
region of selected particles, letting them go away while not
letting particles in. The “atom diode” devices worked out,
e.g., in Refs. [3–6] where of type R/A. As the mechanism
behind them was adiabatic, a broad range of momenta with
the desired asymmetry could be achieved. In comparison the
current approach is not necessarily adiabatic so it can be
adapted to faster processes.

As for the “partial”–RT /A device, it reflects and trans-
mits from one side while absorbing from the other side.
In an optical analogy, an observer from the left perceives
it as a darkish mirror. An observer from the right “sees”
the other side because of the allowed transmission but can-
not be seen from the left since nothing is transmitted from
right to left. Our device is necessarily “partial” one as there
cannot be net probability gain because of the underlying
two-level system, and a “full” version with both reflection
and transmission coefficients equal to one would need net
gain.

The three devices are worked out for γ = 0, a valid ap-
proximation for hyperfine transitions. We assume for the Rabi
frequencies the forms

�VIII(x) = a[g(x + x0) + ig(x − x0)],

�VI(x) = bg(x + x0) + cg(x − x0),

�I(x) = −ibg(x + x0) + cg(x − x0),

(9)

in terms of smooth, realizable Gaussians g(x) =
exp[−x2/w2]. We fix 2d as an effective finite width of
the potential area beyond which the potential is negligible
and assumed to vanish. We will express in the following the
different length parameters as a multiple of d to keep results
general. In addition, we will use as a scaling factor for the
velocity vd = h̄/(md ), and for time τ = md2/h̄.

In the following calculations, we fix the width of the Gaus-
sians to be w = √

2d/10. We always first set a target velocity
v0 to achieve the desired asymmetric scattering response. The
real parameters a, b, c, x0 in Eq. (9), and � are then nu-
merically optimized with the GRAPE (Gradient Ascent Pulse
Engineering) algorithm [50,51].

The Rabi frequencies will fulfill the indicated symmetries
VIII, VI, and I. �VI(x) should not be even (i.e., b �= c) to avoid
symmetry II. In addition, �I(x) should not fulfill any other
symmetry than I. The corresponding Rabi frequencies �(x)
are depicted in Fig. 1, top row. The scattering coefficients are
shown in the bottom row. Figure 1 demonstrates that the three
potentials satisfy the asymmetric response conditions imposed
at the selected velocity and also in a region nearby.

The “partial”–T R/A device fullfills |T l |2 = |Rl |2 = 1/2
and full absorption from the right. The potential we use for
that device has symmetry I only, i.e., “no symmetry” other
than the trivial commutation with the identity. No other po-
tential symmetry would allow this type of device.
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FIG. 2. Nonlocal potentials V (x, y): absolute value (top), argument (bottom). (Left column) Potential for T /A device with symmetry VIII.
(Middle column) Potential for R/A device with symmetry VI. (Right column) “Partial”–T R/A device with symmetry I. V0 = h̄2/(md3).

The effective nonlocal potential V (x, y), see Eq. (8), corre-
sponding to the v/vd ratios used for the three devices is shown
in Fig. 2. Note that the nonlocal potential has dimensions
energy/length, so we divide the absolute value by a factor
V0 = h̄2/(md3) to plot a dimensionless quantity.

In the parameter optimization, we see that increasing the
velocities further does not pose a problem for the T /A device,
it is more challenging for a R/A device, and it is quite difficult
for the partial-RT /A device. The device T /A is feasible
for an experimental implementation as the ratio v0/vd can be
easily increased to desired values, for reasonable values of the
Rabi frequency and laser waist [52].

Moreover the velocity width with the desired behavior is
much broader for T /A. Therefore a T /A device is the best
candidate for an experimental implementation. As a check
of feasibility, let us assume a Beryllium ion. Its hyperfine
structure provides a good two-level system for which we can
neglect decay (i.e., γ ≈ 0 is indeed realistic). We have m =
1.49 × 10−26 kg and set a length d = 10 μm compatible with
the small laser waists (in this case 1.4 μm) achieved for indi-
vidual ion addressing [52]. The scaling factors take the values

vd = 0.67 mm/s,

τ = 1.49 × 10−2 s,

which gives v ≈ 27 cm/s for v/vd = 400 (again, we see
no major obstacle to get devices for higher velocities, in
particular, the classical approximations in Sec. V can be
used to estimate the values of the parameters) and Rabi
frequencies, see Fig. 1, in the hundreds of kHz range. The
relative ion-laser beam velocity could be as well implemented
by moving the beam in the laboratory frame.

V. CLASSICAL APPROXIMATION FOR T /A DEVICE

In a T /A device such as the one presented an incident
plane wave from the left ends up as a pure transmitted wave
with no reflection or absorption. However, a wave incident

from the right is fully absorbed. How can that be? Should not
the velocity-reversed motion of the transmitted wave lead to
the reversed incident wave? For a more intuitive understand-
ing we may seek help in the underlying two-level model. In
the larger space, the potential is again local and Hermitian.
A simple semiclassical approximation is to assume that the
particle moves with constant speeds ±v for left (v > 0) or
right (−v < 0) incidence, so that at a given time it is subjected
to the 2 × 2 time-dependent potentials V (±vt ). The incidence
from the left and right give different time dependencies for the
potential. The scattering problem then reduces to solving the
time-dependent Schrödinger equation for the amplitudes of a
two-level atom with time-dependent potential, i.e., to solving
the following time-dependent Schrödinger equation (γ = 0)

ih̄
∂

∂t
χ±(t ) = V (±vt )χ±(t ), (10)

with the appropriate boundary conditions χ+(−∞) =
χ−(−∞) = (1

0). The solutions for v/vd = 400 are shown in
Fig. 3. In Fig. 3(a), χ+(t ) (left incidence) is depicted: the
particle ends with high probability in the ground state at final
time. In Fig. 3(b), χ−(t ) (right incidence) demonstrates the
ground-state population is transferred to the excited state.

(a) (b)

FIG. 3. Simplified model of the asymmetric T /A device with
symmetry VIII: (a) χ+(t ), (b) χ−(t ); ground-state population
|χ±(t ),1|2 (blue, solid line), excited- |χ±(t ),2|2 (orange, dashed line).
v/vd = 400, aτ = 2618.19, x0/d = 0.1532, and τ� = 1413.01.
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Projected onto the ground-state level alone, this corresponds
to full absorption of the ground-state population at final time.

For an even rougher but also illustrative picture, again in a
semiclassical time-dependent framework, we may substitute
the smooth Gaussians for Re(�) and Im(�) in Fig. 1 by
two simple, contiguous square functions of height � > 0 and
width w̃ > 0. Then, the 2 × 2 potential at a given time is, in
terms of Pauli matrices,

V (x) = h̄

2
�(σZ − 1) + h̄

2

⎧⎨⎩ �σX −w̃ < x < 0
−�σY 0 < x < w̃

0 otherwise
, (11)

where x = ±vt and let T = 2w̃/v.
The time evolution of this process, χ±(t ), up to a phase

factor may be regarded as two consecutive rotations Rj =
e−iβn j ·σ/2 ( j = 1, 2), with β = T

2

√
�2 + �2, of the two-level

state on the Bloch sphere about the axes

n1 = 1√
�2 + �2

(�, 0,�), (12)

n2 = 1√
�2 + �2

(0,−�,�). (13)

The initial state at time t = −T/2 is again χ+(−T/2) =
χ−(−T/2) = (1

0). The unitary time-evolution operator to

reach the final time T/2 takes the form ei�T/2R2R1 for inci-
dence from the left (χ+) and ei�T/2R1R2 for incidence from
the right (χ−). The time T and the parameters �,� will be
fixed to reproduce the results of the full calculation with the
exact model, namely, so that the system starts in the ground
state to end either in the ground state (|χ+(T/2)|2 = 1) or
in the excited state by performing the rotations in one order
or the reverse order (|χ−(T/2)|2 = 0). This gives �/� = √

2
and T = 4π/(3

√
3�). It follows that n1 = 1√

3
(
√

2, 0, 1) and

n2 = 1√
3
(0,−√

2, 1).
The different outcomes can thus be understood as the result

of the noncommutativity of rotations on the Bloch sphere, see
Fig. 4. In Fig. 4(a), first the rotation R1(T/2) and then the
rotation R2(T/2) are performed. Starting in the ground state
|1〉, the system ends up in the excited state |2〉. In Fig. 4(b),
first the rotation R2(T/2) and then the rotation R1(T/2) are
performed: now the system starts and ends in the ground state
|1〉.

These results can be even used to approximate the parame-
ters of the potential in the quantum setting. As an approxima-
tion of the height a we assume that the area a

∫ ∞
−∞ dx g(x) =

a
√

πw is equal to w̃� = Tv0�/2 = v0π (2/3)3/2. This results
in an approximation a ≈ v0

w

√
π (2/3)3/2. As an additional

approximation, we assume that (a/
√

2)/� ≈ �/� = √
2, so

we get � ≈ a/2 ≈ v0
2w

√
π (2/3)3/2. A comparison between

these approximations and the numerically achieved parame-
ters, see Fig. 5, shows a good agreement over a large velocity
range. This allows one to find good initial values for further
numerical optimization.

VI. DISCUSSION

Non-Hermitian Hamiltonians display many interesting
phenomena which are impossible for a Hermitian Hamilto-

FIG. 4. Simplified time-dependent model of the asymmetric
T /A device with symmetry VIII: Bloch sphere explaining non-
time-reversal invariance, see text for details. The state trajectories
are depicted in two-steps on the sphere. The rotation axes are also
depicted. (a) The process simulates incidence from the left. The state
starts and ends in |1〉. (b) The process simulates incidence from the
right. The state starts at |1〉 and ends at |2〉.

nian acting on the same Hilbert space. In particular, in the
Hilbert space of a single, structureless particle on a line
formed by square integrable normalizable functions, Her-
mitian Hamiltonians do not allow, within a linear theory,
for asymmetric scattering transmission and reflection co-
efficients. However, non-Hermitian Hamiltonians do. Since
devices of technological interest, such as one-way filters for
transmission or reflection, one-way barriers, one-way mir-
rors, and others, may be built based on such scattering
response asymmetries, there is both fundamental interest and
applications in sight to implement Non-Hermitian scattering
Hamiltonians. This paper is a step forward in that direction,
specifically we propose a quantum-optical implementation of
potentials with asymmetric scattering response. They are non-
local and non-PT symmetrical, which allows for asymmetric
transmission.

FIG. 5. Asymmetric T /A device with symmetry VIII: com-
parison between numerically achieved parameters (red dots) and
approximated parameters (blue, solid lines) vs velocity v0. (a) Height
of Rabi frequency a, (b) detuning �.
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In general, the chosen Hilbert space may be regarded as
a subspace of a larger space. For example, the space of a
“structureless particle” in 1D is the ground-state subspace for
a particle with internal structure, consisting of two levels in
the simplest scenario. It is then possible to regard the Non-
Hermitian physics in the reduced space as a projection of the
larger space, which may itself be driven by a Hermitian or
a Non-Hermitian Hamiltonian. We have seen the Hermitian
option in our examples, where we assumed a zero decay
constant, γ = 0, for the excited state. a nonzero γ implies
a Non-Hermitian Hamiltonian in the larger two-level space.
The description may still be enlarged, including quantized
field modes to account for the atom-field interaction with
a Hermitian Hamiltonian. As an outlook, depending on the
application, there might be the need for a more fundamental
and detailed descriptive level. Presently we discuss the de-
sired physics (i.e., the scattering asymmetries) at the level
of the smallest 1D space of the ground state, while tak-
ing refuge in the two-level space to find a feasible physical
implementation.
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APPENDIX: NUMERICAL CALCULATION OF
TRANSMISSION AND REFLECTION COEFFICIENTS

Here we will discuss how to numerically solve the sta-
tionary Schrödinger equation for the two-level system by the
invariant imbedding method [53,54].

Let the potential V (x) be nonzero in the region −d < x <

d . We introduce the following dimensionless variables: k̄ =
(2mE )1/22d/h̄, x̄ = x/(2d ) + 1/2, �̄(x̄) = (4md2/h̄)�(x)
and �̄ = (4md2/h̄)(γ − 2i�). The non-Hermitian dimen-
sionless Hamiltonian for the system takes the form

H̄ = H̄0 + V̄ (x̄), (A1)

H̄0 = − ∂2

∂ x̄2
+

(
0 0
0 −i�̄

)
, (A2)

V̄ (x̄) =
(

0 �̄(x̄)
�̄(x̄)∗ 0

)
. (A3)

To set the matrices. we use as in the main text the convention
for internal states |1〉 = (1

0) and |2〉 = (0
1). To simplify the

notation, we will from now on drop the bars above variables
and operators for the remaining part of this section. The cor-
responding stationary Schrödinger equation is now

k2ψ (1)(x) = − ∂2

∂x2
ψ (1)(x) + �(x)ψ (2)(x),

k2ψ (2)(x) = − ∂2

∂x2
ψ (2)(x) + �(x)∗ψ1(x) − i�ψ (2)(x).

Let us denote as |�α (x)〉 the wave vector for the atom imping-
ing in internal level α, α = 1, 2. This vector has ground and
excited state components, generically 〈β|ψα (x)〉, β = 1, 2,
which are still functions of x. We can define the matrices F (x)
and F̃ (x) as

Fβ,α (x) = 〈β|ψα (x)〉, F̃β,α (x) = 〈β|ψ̃α (x)〉, (A4)

so the stationary Schrödinger equation can be rewritten as

[k2 − H0 − V (x)]F (x) = 0,

[k2 − H0 − V (x)]F̃ (x) = 0. (A5)

1. Free motion, V = 0

When V (x) = 0 we get

[k2 − H0]|ψα (x)〉 = 0,

[k2 − H0]|ψ̃α (x)〉 = 0, (A6)

for α = 1, 2. We can write down the solutions for particles
“coming” from the left |ψα (x)〉 in internal state |α〉 as

|ψ1(x)〉 =
( 1√

k
eikx

0

)
, |ψ2(x)〉 =

(
0

1
4√k2+i�

ei
√

k2+i�x

)
,

where we assume the branch Im
√

k2 + i� � 0. |ψ2(x)〉 is a
regular traveling wave only for real

√
k2 + i�). If the square

root has an imaginary part, |ψ2(x)〉 decays from left to right.
The solutions for incidence from the right |ψ̃α (x)〉 in internal
state |α〉 are similarly

|ψ̃1(x)〉 =
( 1√

k
e−ikx

0

)
, |ψ̃2(x)〉 =

(
0

1
4√k2+i�

e−i
√

k2+i�x

)
.

The normalization is chosen in such a way that the dimension-
less probability current is constant (and equal) for all solutions
with real

√
k2 + i�.

The solutions are given by F (x) = h+(x) and F̃ (x) =
h−(x), where

h±(x) =
(

1√
k
e±ikx 0

0 1
4√k2+i�

e±i
√

k2+i�x

)
. (A7)

The Wronskian is W (h+, h−)(x) = 2i so that these are linearly
independent solutions.

2. General case

To solve the general case, we construct the Green’s func-
tion defined by

(k2 − H0)G0(x, x′) = δ(x − x′)1. (A8)

It is given by

G0(x, x′) = W −1

{
h+(x)h−(x′) x > x′,

h+(x′)h−(x) x′ > x,

= − i

2

(
1
k eik|x−x′| 0

0 ei
√

k2+i�|x−x′|√
k2+i�

)
. (A9)
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The Green’s function allows us to solve for F (x) and F̃ (x) in
integral form,

F (x) = h+(x) +
∫ ∞

−∞
dx′G0(x, x′)V (x′)F (x′),

F̃ (x) = h−(x) +
∫ ∞

−∞
dx′G0(x, x′)V (x′)F̃ (x′). (A10)

3. Asymptotic form of the solutions

From Eq. (A10), we find the following asymptotic forms
of F (x) and F̃ (x):

Fη(x) =
{

h+(x) + h−(x)R x < 0
h+(x)T x > 1 ,

F̃η(x) =
{

h−(x)T̃ x < 0
h−(x) + h+(x)R̃ x > 1

, (A11)

where the R and T matrices for incidence from the left are
given by

R = W −1
∫ 1

0
dx′h+(x′)V (x′)F (x′),

T = 1 + W −1
∫ 1

0
dx′h−(x′)V (x′)F (x′), (A12)

whereas, for right incidence,

R̃ = W −1
∫ η

0
dx′h−(x′)V (x′)F̃η(x′),

T̃ = 1 + W −1
∫ η

0
dx′h+(x′)V (x′)F̃η(x′). (A13)

In particular, for left incidence in the ground-state, we get if
x < 0,

|ψ1(x)〉 =
( 1√

k
eikx

0

)
+

(
R1,1

1√
k
e−ikx

R2,1
1

4√k2+i�
e−i

√
k2+i�x

)
, (A14)

and, if x > 1,

|ψ1(x)〉 =
(

T1,1
1√
k
eikx

T2,1
1

4√k2+i�
ei

√
k2+i�x

)
. (A15)

When
√

k2 + i� is real, the elements of T and R in Eqs. (A14)
and (A15) are transmission and reflection amplitudes for
waves traveling away from the interaction region. However
when Im

√
k2 + i� > 0 the waves for the excited state 2

are evanescent. In scattering theory parlance the channel is
“closed,” so the T2,1 and R2,1 are just proportionality factors
rather than proper transmission and reflection amplitudes for
traveling waves. By continuity however, it is customary to
keep the same notation and even terminology for closed or
open channels.

In a similar way, for right incidence in the ground state and
x > 1,

|ψ̃1(x)〉 =
( 1√

k
e−ikx

0

)
+

(
R̃1,1

1√
k
eikx

R̃2,1
1

4√k2+i�
ei

√
k2+i�x

)
, (A16)

whereas, for x < 0,

|ψ̃1(x)〉 =
(

T̃1,1
1√
k
e−ikx

T̃2,1
1

4√k2+i�
e−i

√
k2+i�x

)
. (A17)

Note that alternative definitions of the amplitudes may be
found in many works, without momentum prefactors.

The amplitudes relevant for the main text are T l = T1,1,
T r = T̃1,1, Rl = R1,1, and Rr = R̃1,1. The following section
explains how to compute them.

4. Differential equations for R and T matrices

To solve for R and T we will use cutoff versions of the
potential,

Vη(x) =
{
V (x) 0 � x � η

0 otherwise , (A18)

where 0 � η � 1, and corresponding matrices

Rη = W −1
∫ η

0
dx′h+(x′)V (x′)Fη(x′),

Tη = 1 + W −1
∫ η

0
dx′h−(x′)V (x′)Fη(x′),

R̃η = W −1
∫ η

0
dx′h−(x′)V (x′)F̃η(x′),

T̃η = 1 + W −1
∫ η

0
dx′h+(x′)V (x′)F̃η(x′). (A19)

Taking the derivative of these matrices with respect to η, we
find a set of four coupled differential equations,

dRη

dη
= W −1T̃ηh+(η)V (η)h+(η)Tη, (A20)

dTη

dη
= W −1[h−(η) + R̃ηh+(η)]V (η)h+(η)Tη, (A21)

dR̃η

dη
= W −1[h−(η) + R̃ηh+(η)]V (η)[h−(η) + h+(η)R̃η],

(A22)

dT̃η

dη
= W −1T̃ηh+(η)V (η)[h−(η) + h+(η)R̃η]. (A23)

The initial conditions are R0 = R̃0 = 0 and T0 = T̃0 = 1.

5. Improving numerical efficiency

The Eqs. (A22) and (A23) involve only matrices for inci-
dence from the right, they do not couple to any left-incidence
matrix, whereas the equations for left incidence amplitudes
involve couplings with amplitudes for right incidence. This
asymmetry is due to the way we do the potential slicing. The
asymmetry is not “fundamental” but we can use it for our ad-
vantage to simplify calculations. We can solve Eqs. (A22) and
(A23) to get amplitudes for right incidence. To get amplitudes
for left incidence we use a mirror image of the potential and
solve also these two equations. Thus it is enough to find an
efficient numerical method to solve Eqs. (A22) and (A23). In
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principle, one can now solve these differential equations from
η = 0 to 1 to get all reflection and transmission amplitudes
using the boundary conditions R̃0 = 0 and T̃0 = 1. However,
due to the exponential nature of the free-space solutions h±(x)
especially if Im

√
k2 + i� > 0, this is not very efficient numer-

ically.
To avoid this problem, we make new definitions:

Ŝη = 1 + h+(η)R̃ηh−1
− (η),

T̂η = h+(0)T̃ηh−1
− (η),

V̂ (η) = W −1h2
+(0)V (η),

Q̂ = ih−2
+ (0). (A24)

Rewriting Eqs. (A22) and (A23) in terms of these new vari-
ables, we get

dŜη

dη
= −2Q̂ + Q̂Ŝη + Ŝη[Q̂ + V̂ (η)Ŝη],

dT̂η

dη
= T̂η[Q̂ + V̂ (η)Ŝη], (A25)

with initial conditions T̂0 = Ŝ0 = 1.
Let us consider solely incidence in the ground state. For

right incidence in the ground state, the reflection coefficients
and transmission coefficient are

R̃1,1 = e−2ik[(Ŝη=1)1,1 − 1],

R̃2,1 =
4
√

k2 + i�√
k

e−ik−i
√

k2+i� (Ŝη=1)2,1,

T̃1,1 = e−ik (T̂η=1)1,1,

T̃2,1 =
4
√

k2 + i�√
k

e−ik (T̂η=1)2,1. (A26)

6. Bounds from unitarity

The S matrix

S =

⎛⎜⎜⎜⎜⎝
T11 T12 R̃11 R̃12

T21 T22 R̃21 R̃22

R11 R12 T̃11 T̃12

R21 R22 T̃21 T̃22

⎞⎟⎟⎟⎟⎠ (A27)

is unitary for Hermitian Hamiltonians, in particular, when γ =
0. Unitarity implies relations among the matrix elements and
in particular

1 � |R11|2 + |T11|2, (A28)

1 � |R̃11|2 + |T̃11|2, (A29)

1 � |R̃11|2 + |T11|2, (A30)

1 � |R11|2 + |T̃11|2. (A31)

While the first two Eqs. (A28) and (A29) are rather obvious
because of probability conservation, the last two Eqs. (A30)
and (A31) are less so, and set physical limits to the possible
asymmetric devices that can be constructed in the ground-
state subspace.
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