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Multiphoton pulses interacting with multiple emitters in a one-dimensional waveguide
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We derive a generalized master equation for multiphoton pulses interacting with multiple emitters in a
waveguide-quantum electrodynamics system where the emitter frequency can be modulated and the effects of
nonguided modes can also be considered. Based on this theory, we can calculate the real-time dynamics of
an array of interacting emitters driven by an incident photon pulse which can be vacuum, a coherent state, a
Fock state, or their superpositions. Moreover, we also derive generalized input-output relations to calculate the
reflectivity and transmissivity of this system. We can also calculate the output photon pulse shapes. Our theory
can find important applications in the study of waveguide-based quantum systems.
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I. INTRODUCTION

In recent years, there has been a great interest in building a
large-scale quantum network from single quantum system [1].
However, it remains a big challenge to manufacture a single
quantum system which contains a large number of qubits. In
contrast, it is relatively easy to first build a small quantum sys-
tem with high-precision controls and interconnect these small
systems into a large-scale quantum network via certain quan-
tum channels. Waveguide quantum electrodynamics (QED),
which studies the interaction between emitters and waveguide
photons, is a good system for realizing a large-scale quantum
network. A large number of studies have been made in the
past two decades in the field of waveguide QED [2–4]. The
emitter-photon interaction can be significantly enhanced in
the reduced dimensions, and the emission of an emitter can
be collected by a waveguide with nearly unit efficiency [5].
This can have important applications in producing highly effi-
cient single-photon sources [6], single-photon detection [7],
and formation of atom cavities [8–11]. The emitter-emitter
interaction mediated by the one-dimensional (1D) waveguide
modes can be long range. This provides a unique system for
studying many-body physics [12,13] and long-range quan-
tum information transfer [14,15]. Due to confinement of the
transverse field, the photon modes in a quasi-1D waveg-
uide can also have intrinsic direction-dependent longitudinal
angular momentum [16], which is suitable for studying
chiral quantum optics [17–23]. The waveguide-QED the-
ory can be applied to a number of systems such as the
photonic line defects coupling to quantum dots [24], cold
atoms trapped along an alligator waveguide [25], super-
conducting qubits interacting with microwave transmission
lines [26,27], and plasmonic nanowire coupling to quantum
emitters [28].
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The theory of single-photon transport provides the basics
for studying the waveguide-QED system. Shen and Fan used
the real-space Hamiltonian together with the Bethe-ansatz
to study the stationary properties of single-photon scattering
by a single quantum emitter coupled to a 1D waveguide
[29]. This method was then extended to multi-emitter [30,31]
and multilevel systems where many interesting effects can
occur such as photon frequency conversion [32–34], elec-
tromagnetic induced transparency (EIT) [35], and realization
of single-photon transistors [36] and single-photon switches
[37]. In addition to the stationary spectrum, the real-time dy-
namics of the emitter system are also very interesting because
the emitters are important units for quantum information pro-
cessing and storage. Chen et al. applied the wave function
approach to study the dynamics of a single-photon pulse in-
teracting with a single emitter [38]. We generalized the wave
function approach to situations of multiple identical [39] and
nonidentical [40] emitters. This allowed us to study many
interesting applications in collective many-body physics and
quantum information, such as quantum state preparation [41]
and waveguide-based quantum sensing [42]. Recently, Dinc
et al. developed an analytical method based on the Bethe-
ansatz approach to study the time dynamics of a single-photon
transport problem [43].

Compared with the single-photon problem, the multipho-
ton transport problem can provide more interesting physics.
However, calculations become much more complicated. The
Bethe-ansatz approach can be extended to calculate the few-
photon-scattering problem where photon-photon bound states
can occur [44–47]. However, when this method is gener-
alized to more than two photons, the calculation becomes
extremely cumbersome [48–51]. Alternative methods such
as the Lehmann-Symanzik-Zimmermann reduction method
[52,53], the Green’s function decomposition of multiple
particle scattering matrix [54], the input-output formalism
[55–58], Feynman diagrams [59,60], and the SLH formalism
[61,62] have also been proposed. In these stationary-state
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calculations, the photons are usually assumed to be a plane
wave and the real-time dynamics of the emitters are usu-
ally ignored. Based on the Heisenberg-Langevin approach,
Domokos et al. studied the coherent photon pulse scatter-
ing by a single quantum emitter in a 1D waveguide [63].
Chumak and Stolyarov investigated the propagation of few-
photon pulses interacting with a single two-level system by
the method of distribution functions in coordinate-momentum
space [64,65]. Kony and Gea-Banacloche generalized the
wave-function approach to study one- and two-photon scat-
tering by two emitters coupled to a 1D waveguide [66]. In
2015, Caneva et al. used the effective Hamiltonian approach
to derive a master equation to calculate the emitter dynamics
driven by a coherent photon pulse [67], and this method can
be generalized to various systems [68,69]. In Refs. [68,69],
although they mentioned that the Fock states can be expressed
as derivations of a coherent state, it usually requires that the
system dynamics has analytical solutions. Otherwise, it is
very difficult to directly calculate the dynamics with the Fock
state input. For the continuous-mode Fock state inputs, Gheri
et al. derived a mater equation to study the dynamics of a
single emitter driven by a single and two photon wave packets
[70]. Baragiola et al. generalized this method to the general
N-photon case based on the Ito-Langevin approach [71] where
they mainly focused on the scattering of a single-emitter sys-
tem. By modeling the input pulse as the output of a virtual
cavity with time-dependent coupling strength, the probability
to generate a specific prechosen output field can be calculated
from the master equation of a virtual cascaded system [72]. In
2018, we derived a master equation to study the dynamics of
multiple emitters driven by continuous squeezed vacuum field
in a 1D waveguide [73] and found that steady-state population
inversion of multiple �-type emitters can occur in this system
[74].

In this article, we explicitly derive a generalized master
equation to study the dynamics of multiphoton pulses in a 1D
waveguide interacting with multiple emitters whose transition
frequencies can be modulated, and the effects of nonguided
modes are also considered. Moreover, we also derive a gener-
alized input-output theory to calculate the output photon pulse
shapes and the reflectivity and transmissivity of this system
for various input photon fields. In particular, our theory allows
us to study the collective dynamics of multi-emitter systems
driven by nonclassical photon pulses, which was seldom stud-
ied before. The theory developed here can thus find important
applications in the research of waveguide-based quantum
systems.

This paper is arranged as follows: In Sec. II, we derive
a generalized master equation for the emitter dynamics and
present a generalized input-output theory to study the scatter-
ing field properties. In Sec. III, we apply this theory to the
cases of coherent state, single- and general N-photon state
inputs. Finally, we summarize our results.

II. MULTIPHOTON SCATTERING THEORY

In this section, we first derive a generalized master equa-
tion for general multiphoton pulses interacting with multiple
emitters coupled to a 1D waveguide. Then we derive a gen-

FIG. 1. Multiphoton wave packet interacting with multiple emit-
ters in a 1D waveguide.

eralized input-output theory to calculate the reflection and
transmission properties of the photon field.

A. Generalized master equation for arbitrary photon input

The model we study in this paper is shown in Fig. 1. A light
pulse which may contain multiple photons is injected into a
1D waveguide and can interact with Na emitters with arbitrary
spatial distributions. The emitter positions are denoted �r j and
their z components are z j where j = 1, 2, . . . , Na. Here, we
consider a general case where the emitters can have time-
modulated transition frequencies and can couple to both the
waveguide and nonwaveguide photon modes. It is convenient
to work in the rotating frame with the original emitter fre-
quency ωa. The total Hamiltonian of the system and reservoir
fields in the rotating frame is given by

H (t ) = h̄

2

Na∑
j=1

ε j (t )σ z
j + h̄

∑
k

�ωka†
kak + h̄

∑
�qλ

�ω�qλ
a†

�qλ
a�qλ

+ h̄
Na∑
j=1

∑
k

(
gj

keikz j σ+
j ak + H.c.

)

+ h̄
Na∑
j=1

∑
�qλ

(
gj

�qλ
ei �q·�r j σ+

j a�qλ
+ H.c.

)
. (1)

The physical meaning of each term in the Hamiltonian is as
follows: The first term is the emitter Hamiltonian with time-
dependent modulating frequency ε j (t ). σ z

j and σ+
j (σ−

j ) are
the zth component and the raising (lowering) Pauli operators
of the jth emitter. The second term is the Hamiltonian of
the waveguide photons with the detuning frequency �ωk =
ωk − ωa and ak (a†

k) is the annihilation (creation) operator
of the waveguide photon mode with frequency ωk . When
the emitter transition frequency is not very close to the pho-
tonic band edge, a linear dispersion approximation can be
applied, where �ωk = δkvg with δk = |k| − ka and vg is the
group velocity of the guided photon pulse. The third term is
the nonguided reservoir field Hamiltonian where a�qλ

(a†
�qλ

) is
the annihilation (creation) operator of the nonguided photon
mode with frequency ω�qλ

(�q is the wave vector and λ denotes
the polarization) and �ω�qλ

= ω�qλ
− ωa. The fourth term is

the emitter-waveguide photon interaction Hamiltonian with
gj

k = �μ j · �Ek (�r j )/h̄ being the coupling strength, where �μ j is
the transition dipole moment of the jth emitter, and �Ek (�r j )
is the strength of the electric field with wave vector k at
position �r j . The last term describes the interaction between
the emitters and the nonguided reservoir field with coupling
strength gj

�qλ
= �μ j · �E�qλ

(�r j )/h̄. h̄ is the reduced Planck con-
stant. We should note that the rotating wave approximation is
applied in the Hamiltonian shown in Eq. (1). Thus, our theory
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developed here is valid for the weak- and strong-coupling
regimes, while it is invalid in the ultrastrong-coupling
regime where the rotating wave approximation may break
down.

According to the Heisenberg equation, the dynamics of an
arbitrary emitter operator Os is given by

ȮS (t ) = i

2

Na∑
j=1

ε j (t )
[
σ z

j (t ), OS (t )
]

+ i
Na∑
j=1

∑
k

(
gj

keikz j [σ+
j (t ), OS (t )]ak

+ gj∗
k e−ikz j a†

k[σ−
j (t ), OS (t )]

)

+ i
Na∑
j=1

∑
�qλ

(
gj

�qλ
ei �q·�r j [σ+

j (t ), OS (t )]a�qλ

+ gj∗
�qλ

e−i �q·�r j a†
�qλ

[σ−
j (t ), OS (t )]

)
, (2)

and the dynamics of the field operators are given by

ȧk (t ) = −i�ωkak − i
Na∑
j=1

gj∗
k e−ikz j σ−

j (t ), (3)

ȧ†
k (t ) = i�ωk + i

Na∑
j=1

gj
keikz j σ+

j (t ), (4)

ȧ�qλ
(t ) = −i�ω�qλ

a�qλ
− i

Na∑
j=1

gj∗
�qλ

e−i �q·�r j σ−
j (t ), (5)

ȧ†
�qλ

(t ) = i�ω�qλ
a†

�qλ
+ i

Na∑
j=1

gj
�qλ

ei �q·�r j σ+
j (t ). (6)

Formally integrating Eqs. (3)–(6), we can obtain

ak (t ) = ak (0)e−i�ωkt − i
Na∑
j=1

gj∗
k e−ikz j

∫ t

0
σ−

j (t ′)ei�ωk (t ′−t )dt ′,

(7)

a†
k (t ) = a†

k (0)ei�ωkt + i
Na∑
j=1

gj
keikz j

∫ t

0
σ+

j (t ′)e−i�ωk (t ′−t )dt ′,

(8)

a�qλ
(t ) = a�qλ

(0)e−i�ω�qλ
t − i

Na∑
j=1

gj∗
�qλ

e−i �q·�r j

∫ t

0
σ−

j (t ′)ei�ω�qλ
(t ′−t )dt ′,

(9)

a†
�qλ

(t ) = a†
�qλ

(0)ei�ω�qλ
t + i

Na∑
j=1

gj
�qλ

ei �q·�r j

∫ t

0
σ+

j (t ′)e−i�ω�qλ
(t ′−t )dt ′,

(10)

from which we can see that the field at time t is the inter-
ference between the incident field and the field emitted by
the emitters. Inserting Eqs. (7)–(10) into Eq. (2) and using

the Weisskopf-Wigner approximation, we can obtain (see Ap-
pendix A)

ȮS (t ) = i

2

Na∑
j=1

ε j
[
σ z

j (t ), OS (t )
]

+ i
Na∑
j=1

√
	 j

2
[σ+

j (t ), OS (t )][a j (t ) + b j (t )]

+ i
Na∑
j=1

√
	 j

2
[a†

j (t ) + b†
j (t )][σ−

j (t ), OS (t )]

+
∑

jl


 jl [σ
+
j (t ), OS (t )]σ−

l (t )

−
∑

jl


∗
jlσ

+
l (t )[σ−

j (t ), OS (t )], (11)

where aj (t ) =
√

vg

2π

∫ ∞
−∞ eikz j ak (0)e−iδωkt dk describes the ab-

sorption of the incident waveguide photons and bj (t ) =√
vg

2π

∫∫∫
ei �qλ·�r j a�qλ

(0)e−iδω�qλ
t d3 �qλ is the absorption of the in-

cident nonguided photons. The collective interaction between
the emitters can be calculated as [40]


 jl =
√

	 j	l

2
eika|z jl | + 3

√
γ jγl

4

[
sin2 φ

−i

kar jl

+ (1 − 3 cos2 φ)

(
1

(kar jl )
2 + i

(kar jl )
2

)]
eika|r jl |, (12)

where the first term is the effective interaction mediated by
the waveguide photons, and the second term is the usual
dipole-dipole interaction induced by the nonguided reservoir
fields. |r jl | = | �r j − �rl | is the distance between the jth and lth
emitters, and |z jl | = | �z j − �zl | is the distance in the zth direc-
tion. 	 j = 4π |gj

ka
|2/vg is the decay rate due to the waveguide

vacuum field, and γ j is the spontaneous decay rate due to the
nonguided photon modes. φ is the angle between the direction
of the transition dipole moment and the waveguide direction.
In deriving Eq. (11), we have neglected the time-retarded ef-
fects which is a good approximation when the largest emitter
separation is not very large. To be more specific, the photon
propagation time through the system should be much less than
the decay time of the emitter [i.e., Max(zi j )/vg � 1/	i, j].
Indeed, this is the usual case. For example, if vg ≈ 108 m/s
and 	 ≈ 108 Hz, we require that the largest distance between
the emitters be much less than 1 m, which is the usual
case.

From Eq. (11), we can derive a corresponding master equa-
tion for the emitters. Since TrS+R[OS (t )ρ] = TrS[OSρS (t )]
where ρS (t ) = TrR[ρ(t )] is the emitter system density opera-
tor, by time derivation on both sides we have TrS[OSρ̇S (t )] =
TrS+R[ȮS (t )ρ], and from Eq. (11) we obtain (see
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Appendix A)

ρ̇S (t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρS (t )
] − i

Na∑
j=1

√
	 j

2
[σ+

j , ρ ′
j (t )]

− i
Na∑
j=1

√
	 j

2
[σ−

j , ρ ′†
j (t )] − i

∑
jl

Im(
 jl )

× [σ+
j σ−

l , ρS (t )] −
∑

jl

Re(
 jl )[σ
+
j σ−

l ρS (t )

+ ρS (t )σ+
j σ−

l − 2σ−
l ρS (t )σ+

j ]. (13)

where ρ ′
j (t ) = TrR{U (t )[a j (t ) + b j (t )]ρ(0)U †(t )} is a new

operator appearing in the equation. Here, we consider the
case that the incident photons are from the waveguide pho-
tons while the nonguided reservoir field is initially in the
vacuum. Since a�qλ

|0〉 = 0, we have b j (t )ρ(0) = 0. Then we
have ρ ′

j (t ) = TrR[U (t )aj (t )ρ(0)U †(t )] which accounts for the
driving of the incident waveguide photons. This is the main
equation of this section.

The first term in Eq. (13) describes the modulation of the
emitter transition frequencies. The second and third terms
describe the excitation and deexcitation due to the incident
photon field, respectively. The forth term describes the dipole-
dipole interactions between the emitters induced by the guided
and nonguided vacuum field. The last term is the collective
dissipation due to the guided and nonguided vacuum fluctu-
ation. However, we should note that Eq. (13) itself is not,
in general, closed because we have the new operators like
ρ ′

j (t ) and ρ ′†
j (t ). In some special cases, Eq. (13) is closed.

For example, if there is no external driving field, the second
and third terms disappear and the equation is closed, from
which the emitter excitation transport can be studied. Another
example is that, if the incident field is a coherent field or
superposition of coherent fields, the ρ ′

j (t ) and ρ ′†
j (t ) terms can

then be reduced to a complex number multiplying ρS (t ) and
Eq. (13) becomes closed again from which the full dynamics
of the emitters driven by a coherent field can be calculated. For
the coherent-state input, the master equation shown in Eq. (13)
is reduced to the results shown in Ref. [67] when there is no
frequency modulation and the effects of nonguided modes are
ignored. In general cases such as the Fock state input, we have
to repeat the above procedures to derive equations for ρ ′

j (t )
until all the equations are closed. For the Fock state input,
Eq. (13) is reduced to the results shown in Ref. [70] when
there is only a single emitter.

B. The generalized input-output theory

In the previous sections, we derive the master equations
for the emitter system, which allows us to calculate the real
dynamics of the emitters for an arbitrary photon wave packet
input. In this section, we derive the generalized input-output
relations of this system by expressing the output field oper-
ators as a function of input operators and system operators.
Together with the master equations derived in the previous
section, we can then study the reflection and transmission
properties of this system.

If we integrate Eq. (3) from t to t f where t f > t , we can
obtain

ak (t ) = ak (t f )ei�ωk (t f −t )

+ i
Na∑
j=1

gj∗
k e−ikz j

∫ t f

t
σ−

j (t ′)ei�ωk (t ′−t )dt ′. (14)

Comparing Eq. (7) with Eq. (14) we readily obtain

ak (t f )ei�ωk (t f −t )

= ak (0)e−i�ωkt − i
Na∑
j=1

gj
ke−ikz j

∫ t f

0
σ+

j (t ′)ei�ωk (t ′−t )dt ′.

(15)

We can define the following input-output operators [75]:

aR
in(t ) =

√
vg

2π

∫ ∞

0
ak (0)e−i�ωkt dk, (16)

aL
in(t ) =

√
vg

2π

∫ 0

−∞
ak (0)e−i�ωkt dk, (17)

aR
out (t ) =

√
vg

2π

∫ ∞

0
ak (t f )eiδkzN e−i�ωk (t−t f )dk, (18)

aL
out (t ) =

√
vg

2π

∫ 0

−∞
ak (t f )e−iδkz1 e−i�ωk (t−t f )dk, (19)

where z1 is the position of the leftmost emitter and zN is the
position of the rightmost emitter. Since the right output field
propagates freely after scattering by the rightmost emitter and
the left output field propagates freely after scattering by the
first emitter, phase factors eiδkzN and e−iδkz1 are added in the
definitions of the right and left output operators, respectively
[67]. From Eq. (15) we can obtain the generalized input-
output relations (see Appendix B)

aR
out (t ) = aR

in(t − zN/vg) − i
Na∑
j=1

√
	 j

2
e−ikaz j σ−

j (t ), (20)

aL
out (t ) = aL

in(t + z1/vg) − i
Na∑
j=1

√
	 j

2
eikaz j σ−

j (t ), (21)

where zN j = zN − z j . From these two generalized input-
output relations we can calculate the properties of the
scattering field of this system. We can define the instant field
intensity propagating to the right and to the left at time t
by r(t ) = 〈aR+

out (t )aR
out (t )〉 and l (t ) = 〈aL+

out (t )aL
out (t )〉, respec-

tively, which are given by

r(t ) = 〈
aR+

in (t − zN/vg)aR
in(t − zN/vg)

〉
− 2

Na∑
j=1

√
	 j

2
Im

[
eikaz j 〈σ+

j (t )aR
in(t − zN/vg)

]

+
∑

jl

√
	i	l

2
eika (z j−zl )〈σ+

j (t )σ−
l (t )〉, (22)
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l (t ) = 〈
aL+

in (t + z1/vg)aL
in(t + z1/vg)

〉
− 2

Na∑
j=1

√
	 j

2
Im

[
e−ikaz j 〈σ+

j (t )aL
in(t + z1/vg)

]

+
∑

jl

√
	i	l

2
eika (zl −z j )〈σ+

j (t )σ−
l (t )〉. (23)

On the right-hand side of Eqs. (22) and (23), the first terms
are the incident field intensities, the second terms are the
absorption and stimulated emission of the system, and the last
terms are the spontaneous emission of the system. From r(t )
and l (t ), we can obtain the pulse shape propagating to the right
and to the left after the scattering process. The field intensity
reflected to the left and the right in the whole scattering
process is then given by IR = ∫ ∞

0 r(t )dt and IL = ∫ ∞
0 l (t )dt .

Supposing that the photon pulse is initially propagating to the
right, the reflectivity of the pulse is then given by

R = IL

IR + IL
, (24)

and the transmissivity T = 1 − R.
The scattering power spectrum can usually be obtained

from the two-time correlation function of the output field
operator

S(ω) =
∫ ∞

0

∫ ∞

0
〈a+

out (t1)aout (t2)〉eiω(t1−t2 )dt1dt2, (25)

where the average is over the initial state of the whole system.
According to the generalized input-output relation shown in
Eqs. (20) and (21), aout (t ) can be expressed as the summation
of the input field operator ain(t ) and the emitter operators
σ−

j (t ). The results when the ain(t ) operator acts on the ini-
tial state can readily be worked out. Usually, the two-time
average of the emitter operators 〈σ+

j (t )σ−
l (t + τ )〉 can be

calculated from the master equation according to the quan-
tum regression theorem [76]. However, to apply the quantum
regression theorem to calculate the two-time correlation func-
tion, it usually requires that the reservoir field does not change
significantly. This condition may not be very well satisfied
in the waveguide-QED system because the waveguide photon
can be significantly absorbed by the emitters, especially near
the resonance frequency. Therefore, direct use of the quantum
regression theorem to numerically calculate the spectrum here
may cause some errors and needs to be treated carefully.
However, at the plane-wave limit, an alternative strategy can
be used to calculate the scattering property of the system.
If the incident photon pulse has a very narrow bandwidth,
we can calculate its reflectivity and transmissivity from the
above discussions. Repeating these procedures for each inci-
dent frequency, we can then obtain the scattering property of
the waveguide-QED system in the plane-wave limit. However,
we should note that the general power spectrum of this system
driven by a pulse with finite bandwidth cannot be completely
captured by this frequency-sweep strategy, and it should be
calculated from Eq. (25).

III. APPLICATION TO DIFFERENT PHOTON
WAVE PACKETS

In this section, we take the coherent states and the Fock
states as example to show how to apply the theory we devel-
oped in the previous section to study the emitter dynamics and
the field scattering property.

A. Coherent-state wave packet

We first consider the case when the incident field is a
coherent photon pulse. Suppose that the incident field is a
continuous-mode coherent state described by the wave func-
tion |�cs〉 = �k|αk〉, where

|αk〉 = e−|αk |2/2
∞∑

nk=0

(αk )nk

√
nk!

|nk〉. (26)

The average photon for the kth mode n̄k = |αk|2.
Since ak|�cs〉 = αk|�cs〉, the operator ρ ′

j (t ) =
TrR[U (t )aj (t )ρ(0)U †(t )] = α j (t )ρS (t ), where

α j (t ) =
√

vg

2π

∫ ∞

−∞
eikz j e−iδωktαkdk (27)

describes the real-time evolution of the incident coherent pho-
ton pulse. Therefore, the operator ρ ′

j (t ) is reduced to a number
multiplying the system density operator ρS (t ). The master
equation shown in Eq. (13) then becomes

ρ̇S (t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρS (t )
]

− i
Na∑
j=1

√
	 j

2
[α j (t )σ+

j + α∗
j (t )σ−

j , ρS (t )]

+ i
∑

jl

Im(
 jl )[ρS (t ), σ+
j σ−

l ] + L[ρS (t )], (28)

where L[ρS (t )] = −∑
jl Re(
 jl )[σ+

j σ−
l ρS (t ) + ρS (t )σ+

j σ−
l

− 2σ−
l ρS (t )σ+

j ] describes the collective dissipation process.
Equation (28) is a general master equation of the waveguide-
QED system when the incident photon pulse is in a coherent
state, and it reduces to the results shown in Ref. [68] when
there is no frequency modulation.

The master equation shown in Eq. (28) is itself a closed
equation from which we can calculate the real-time dynamics
of the emitters for an arbitrary coherent pulse input. Our
theory can be applied to calculate the dynamics of the system
with arbitrary photon pulse shapes. Here, without loss of gen-
erality we assume that the photon pulse has a Gaussian shape
throughout this paper. Supposing that the incident coherent
field has a Gaussian pulse shape with average photon number
n̄, its spectrum can be written as

αk =
√

n̄

π1/4
√

�
e−(k−k0 )2/2�2

e−ikz0 , (29)

where z0 is the initial central peak position of the pulse and k0

is the wave vector corresponding to the central frequency of
the photon pulse. When k0 > 0 (k0 < 0), the pulse is propagat-
ing to the right (left). The average photon number is given by
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FIG. 2. Coherent state pulse interacting with two emitters. (a) emitter excitation as a function of time for two different average photon
number (n̄ = 1 and n̄ = 20). �vg/	 = 1. (b) Reflected and transmitted pulse shapes after the scattering for the same parameters as (a). (c) The
average reflected photon number as a function of average incident photon number for two different pulse width (�/	 = 1 and �/	 = 5).
For comparison, the results for one emitter are also shown as the black lines with solid (�/	 = 5) and open circles (�/	 = 1). The emitter
distance d = 0.125λa for all three figures.

n̄ = ∑
k n̄k = ∫ ∞

−∞ |αk|2dk. For the right-propagating incident
pulse (i.e., k0 > 0), we have

αR
j (t ) =

√
n̄�vg

π1/4
e− �2(z j0−vgt )2

2 eikaz j0 ei�k (z j0−vgt ). (30)

For the left-propagating incident pulse (i.e., k0 < 0), we then
have

αL
j (t ) =

√
n̄�vg

π1/4
e− �2(z j0+vgt )2

2 e−ikaz j0 e−i�k (z j0+vgt ), (31)

where z j0 = z j − z0 and �k = |k0| − ka is the detuning be-
tween the center frequency of the pulse and the emitter
transition frequency.

The numerical results for the coherent-state input are
shown in Fig. 2 where the coherent state is scattered by
two emitters. We assume that the distance between these two
emitters is 0.125λa, where λa = 2π/ka. The excitations of the
two emitters as a function of time for two different incident
average photon numbers (n̄ = 1 and n̄ = 30) are shown in
Fig. 2(a). When the average incident photon number is small,
e.g., n̄ = 1, both emitters are first excited and then deexcited
as the coherent pulse passing through. However, when the
average incident photon number is large, e.g., n̄ = 20, the
excitations of both emitters can have multiple peaks, which
is the signature of Rabi oscillations.

The corresponding reflected and transmitted photon pulse
shapes after the scattering are shown in Fig. 2(b). When the
average photon number is small, the reflected pulse (thin-
ner orange solid line) has a single peak and the transmitted
pulse (thinner olive dashed line) has two peaks due to the
interference between the incident photon wave function and
the re-emitted photon wave function. When the average pho-
ton number is large, most photons are transmitted (thicker
olive dashed line) and only a very small part of the pho-
tons are reflected (thicker orange solid line). This is because
the pulse with large photon number can saturate the emitter
excitation quickly and only a very small part of the pho-
tons can be absorbed. Here, the reflection photon pulse can
have two peaks instead of one peak due to the Rabi os-
cillations, which does not occur when the photon number
is small.

For a coherent pulse with finite time duration, the average
photon number reflected by the emitters may be saturated.
Here, we also study the average reflected photon number n̄R

as a function of average incident photon number n̄in for two
fixed pulse spectrum widths (� = 	 and � = 	/5), and the
results are shown in Fig. 2(c) when the distance between the
two emitters is 0.125λa. When the pulse width is about 	, the
average reflected photon number increases quickly first as n̄in

increases but then it increases extremely slowly when n̄in is
large due to the saturation effect [red line with open circles
in Fig. 2(c)]. It is also noted that, when the incident photon
number is large, the average reflected photon number can be
larger than two despite there being only two emitters. This
is because the incident pulse is not short enough to saturate
the emitters immediately. When the incident pulse duration is
shorter, i.e., the incident pulse has a broader spectrum (e.g.,
� = 5	), n̄R first increases and then oscillates as n̄in increases
[red line with solid circles in Fig. 2(c)] due to the stimulated
emission effects. The average reflected photon number is ob-
viously less than two because the shorter pulse can saturate
the emitters quickly. For comparison, we also plot the results
when there is only a single emitter in the system (black lines
with open and closed circles). We can see that their behavior
is similar but the average reflected photon number for two
emitters is larger than that of the single emitter. When the
pulse duration is much smaller than the decay time of the
emitter, the average photon number being reflected by a single
emitter is always less that which can be exploited to produce
single-photon sources [77].

B. Single-photon wave packet

Compared with the coherent-state input, the calculation of
the Fock state input is more involved mostly because of its
quantum nature. The theory developed in Sec. II can also be
applied for the arbitrary Fock state inputs. In this section, we
consider the simplest case where the pulse only contains a sin-
gle photon. Actually, for the single-photon pulse case, we have
developed a dynamical transport theory for calculating the
real-time evolution of the system based on the wave function
approach [39,40]. Here, we instead use the master equation
developed in Sec. II to calculate the system dynamics.
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FIG. 3. A single-photon wave packet interacting with two emitters. (a) Emitter excitation as a function of time. �/	 = 1. (b) Reflected
and transmitted pulse shapes after the scattering for the same parameters as in panel (a). (c) The reflectivity and transmissivity as a function of
photon frequency where the symbols are the numerical results and the solid lines are the analytical results. In all three figures, d = 0.125λ.

The single-photon wave packet can be described by the
wave function

|�F 〉 =
∫ ∞

−∞
α(k)a†

k |0〉dk, (32)

where
∫ ∞
−∞ |α(k)|2dk = 1. Since ak|�F 〉 = αk|0〉, the ρ ′

j (t )
term in Eq. (13) is then given by

ρ ′
j (t ) = TrR[U (t )a j (t )ρ(0)U +(t )] = α j (t )ρS

01(t ), (33)

where α j (t ) is given by Eq. (27) and we define a new op-
erator ρS

01(t ) = TrR[U (t )ρS (0) ⊗ |0〉〈�F |U +(t )]. If we define
ρS

11(t ) = TrR[U (t )ρS (0) ⊗ |�F 〉〈�F |U †(t )], we can obtain
from Eq. (13) that

ρ̇S
11(t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρ
S
11(t )

]

− i
Na∑
j=1

√
	 j

2

[
α j (t )σ+

j (t ), ρS
01(t )

]

− i
Na∑
j=1

√
	 j

2

[
α∗

j (t )σ−
j (t ), ρS†

01 (t )
]

− i
∑

jl

Im(
 jl )
[
σ+

j σ−
l , ρS

11(t )
] − L

[
ρS

11(t )
]
, (34)

where L[ρS
11(t )] = ∑

jl Re(
 jl )[σ+
j σ−

l ρS
11(t ) + ρS

11(t )σ+
j σ−

l

− 2σ−
l ρS

11(t )σ+
j ] is the collective dissipation term. ρS

01(t ) is
not a valid density matrix because it is traceless but satisfies
ρ

S†
01 = ρS

10. Since a new operator ρS
01(t ) appears, Eq. (34) is

itself not a closed equation and we need to derive an extra
equation for ρS

01(t ).
The dynamical equation for ρ01(t ) can be derived by using

similar procedures as deriving ρS (t ) shown in Sec. II, and it is
given by (see Appendix C)

ρ̇S
01(t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρ
S
01(t )

]

− i
Na∑
j=1

√
	 j

2
α∗

j (t )
[
σ−

j , ρS
00(t )

]

− i
∑

jl

Im(
 jl )
[
σ+

j σ−
l , ρS

01(t )
] − L

[
ρS

01(t )
]
, (35)

where ρS
00(t ) = TrR[U (t )ρS ⊗ |0〉〈0|U †(t )] is another density

matrix describing the evolution of the system when the field
is initially in the vacuum. Using a similar procedure, it is not
difficult to obtain

ρ̇S
00(t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρ
S
00(t )

]

− i
∑

jl

Im(
 jl )
[
σ+

j σ−
l , ρS

00(t )
] − L

[
ρS

00(t )
]
, (36)

where we see that no new density operator appears.
Hence, the master equation for the single-photon state

input consists of three cascaded equations as given by
Eqs. (34)–(36), while only a single equation is needed in
the coherent-state input. The dynamics of the emitters for
an arbitrary single-photon pulse input can then be calculated
from these three equations. The time evolution of the average
value of an arbitrary emitter operator O(t ) can be calculated
as 〈O(t )〉 = TrS[OρS

11(t )].
One numerical example is shown in Fig. 3, where we

consider a single-photon wave packet interacting with two
emitters. Here, we assume that the single-photon wave packet
has a Gaussian spectrum as shown in Eq. (29) and the distance
between emitters is λa/8. The emitter excitation as a function
of time is shown in Fig. 3(a). Due to the collective interaction,
the first emitter can have much higher excitation probability
than the second emitter and the excitation of the second emit-
ter has Rabi-like oscillations, which does not occur when the
incident photon pulse is in a coherent state with n̄in = 1. This
is due to the interference between the two excitation channels,
i.e., the excitation of the incident photon and the excitation
by the first excited emitter. In the coherent-state input, this
interference, however, is concealed.

The reflected and transmitted photon pulse shapes are
shown in Fig. 3(b), from which we can see that the transmitted
pulse has multiple peaks due to the quantum interference
between the incident photon and the re-emitted photons by the
two emitters. The visibility of the oscillation is much larger
than that in the coherent-state input. The emitter dynamics and
the scattering pulse shapes shown in Figs. 3(a) and 3(b) are
the same as those calculated by the wave function approach
[39]. The reflected and transmitted spectra when the incident
single photon is a plane wave are shown in Fig. 3(c), where the
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symbols are the numerical results and the solid lines are the
analytical results calculated by the stationary scattering theory
such as the Bethe-ansatz approach [29]. It clearly shows that,
for single-photon input, the results calculated by our theory
here are consistent with those shown in the previous literature.
The spectrum shown in Fig. 3(c) clearly shows an asymmetric
Fano-like structure. This is caused by the interference between
the two collective emission channels, i.e., the emission from
the two collective excited states |±〉 = 1√

2
(|eg〉 ± |ge〉) which

have different energy shifts and decay rates. The results shown
in this section confirm the validity of our theory developed
here.

C. N-photon wave packet

In addition to the single-photon Fock state, we can also
derive generalized master equations for the multiphoton Fock-
state inputs. Compared with the single-photon input, the
calculation of a multiphoton Fock state input is more com-

plicated. We first consider a relative simple subset, which is
the direct generalization of the single-photon wave packet,
i.e.,

|Nα〉 = 1√
N!

[∫ ∞

−∞
dkα(k)a†

k

]N

|0〉, (37)

where we have the normalization condition
∫ ∞
−∞ |αk|2dk = 1

[71]. A general N-photon wave packet can be always decom-
posed into the superposition of the wave function shown in
Eq. (37), and we have

ak|Nα〉 =
√

Nα(k)|N − 1α〉. (38)

In general, we have the relation ak|mα〉 = √
mα(k)|m − 1α〉

and therefore

akρs(0) ⊗ |mα〉〈nα| = √
mα(k)ρs(0) ⊗ |m − 1α〉〈nα|. (39)

Using the similar procedures to derive Eq. (13), we can
derive a ladder set of dynamical equations for the N-photon
wave packet input which is given by

ρ̇S
mn(t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρ
S
mn(t )

] − i
Na∑
j=1

√
	 j

2

{√
mα j (t )

[
σ+

j , ρS
m−1,n(t )

] + √
nα∗

j (t )
[
σ−

j (t ), ρS
mn−1(t )

]}
− i

∑
jl

Im(
 jl )
[
σ+

j σ−
l , ρS

mn(t )
] − L

[
ρS

mn(t )
]
, (40)

where ρS
mn(t ) = TrR[U (t )ρS (0) ⊗ |m〉〈n|U +(t )] and 0 � m, n � N . Considering that ρS

mn = ρS†
nm, (N + 1)(N + 2)/2 master

equations are required to make the equations closed, where N is the total incident photon number. For example, three master
equations are needed for single-photon input, which is shown in the previous section, while for a two-photon input we need six
cascaded master equations.

Taking the two-photon input as an example, the master equations are given by

ρ̇S
22(t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρ
S
22(t )

] − i
Na∑
j=1

√
	 j

2

{√
2α j (t )

[
σ+

j , ρS
12(t )

] +
√

2α∗
j (t )

[
σ−

j (t ), ρS
21(t )

]}
−i

∑
jl

Im(
 jl )
[
σ+

j σ−
l , ρS

22(t )
] − L

[
ρS

22(t )
]
, (41)

ρ̇S
12(t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρ
S
12(t )

] − i
Na∑
j=1

√
	 j

2

{
α j (t )

[
σ+

j , ρS
02(t )

] +
√

2α∗
j (t )

[
σ−

j (t ), ρS
11(t )

]}
−i

∑
jl

Im(
 jl )
[
σ+

j σ−
l , ρS

12(t )
] − L

[
ρS

12(t )
]
, (42)

ρ̇S
11(t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρ
S
11(t )

] − i
Na∑
j=1

√
	 j

2

{
α j (t )

[
σ+

j , ρS
01(t )

] + α∗
j (t )

[
σ−

j (t ), ρS
10(t )

]}

−i
∑

jl

Im(
 jl )
[
σ+

j σ−
l , ρS

11(t )
] − L

[
ρS

11(t )
]
, (43)

ρ̇S
02(t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρ
S
02(t )

] − i
Na∑
j=1

√
	 j

2

{√
2α∗

j (t )
[
σ−

j (t ), ρS
01(t )

]} − i
∑

jl

Im(
 jl )
[
σ+

j σ−
l , ρS

02(t )
] − L

[
ρS

02(t )
]
, (44)

ρ̇S
01(t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρ
S
01(t )

] − i
Na∑
j=1

√
	 j

2

{
α∗

j (t )
[
σ−

j (t ), ρS
00(t )

]} − i
∑

jl

Im(
 jl )
[
σ+

j σ−
l , ρS

01(t )
] − L

[
ρS

01(t )
]
, (45)

ρ̇S
00(t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρ
S
00(t )

] − i
∑

jl

Im(
 jl )
[
σ+

j σ−
l , ρS

00(t )
] − L

[
ρS

00(t )
]
, (46)
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FIG. 4. Two-photon wave packet interacting with two emitters. (a) Emitter excitation as a function of time. (b) The excitation of different
eigenstates as a function of time. (c) Reflected and transmitted pulse shapes after the scattering for the same parameters as in panel (a). In all
these three subfigures, the distance between emitter is λa/8 and �vg/	 = 1.

and we have ρS
nm = ρS†

mn. Hence, for a two-photon wave
packet, six cascaded master equations are required to calculate
the dynamics of the system.

A numerical example is shown in Fig. 4, where we con-
sider a two-photon wave packet interacting with two emitters.
Similar to the single-photon case, we also assume that the
two-photon pulse has a Gaussian spectrum and the distance
between the emitters is λa/8. Compared with the single-
photon case, the emitter excitation in the two-photon case
is larger and both excitations increase first and then de-
crease, which is somewhat similar to the coherent-state input
[Fig. 4(a)]. Different from the single-photon case, the emitter
2 does not have Rabi-oscillation-like structure. This is mainly
because the double-excited state |ee〉 can also be populated
in the two-photon cases [red dashed-dotted line in Fig. 4(b)]
and it can cover the interference effect which occurs in the
single-photon case. From Fig. 4(b), we can also see that
the subradiant state |−〉 can be populated and can last for
an extended period of time (green short dashed line). The
symmetric state |+〉 is excited and deexcited much faster
than the subradiant state |−〉 and is a superradiant state (blue
dashed line). The corresponding reflected and transmitted
pulse shapes are shown in Fig. 4(c) from which we can see
that they are similar to those in the single-photon case but
the transmitted pulse has only a small oscillation in the two-
photon case.

D. Effects of pulse spectral width

In stationary scattering theory, the incident field is usually
assumed to be a plane wave. In practical experiments, the
incident light is always a pulse with finite time duration and
finite spectral bandwidth. Here, our theory allows us to study
the effects of pulse width.

Taking the single emitter as an example, we investigate
the average reflected photon number as a function of pulse
spectral width for different input photon states. The results
are shown in Fig. 5. For all four incident pulses, the average
reflected photon number n̄R decreases when the pulse spectral
width increases (i.e., the pulse time duration becomes shorter).
This is because of saturation effects. When the pulse is short,
it can quickly saturate the emitter absorption and therefore
the average reflected photon number decreases. When the
pulse has a white spectrum (i.e., the pulse duration is ex-

tremely short), almost no photon will be reflected for both
the coherent-state inputs and the Fock-state inputs because
most photons have frequencies far detuned from the resonance
frequency of the emitter. In contrast, when the pulse spectrum
is extremely narrow (i.e., the pulse is at the plane-wave limit)
and its frequency is in resonance with the emitter transition
frequency, almost all of the incident photons will be reflected
for both the Fock-state inputs and the coherent-state inputs.
When the pulse spectrum width is finite, the Fock state input
can have larger reflectivity than that of the coherent-state input
with the same average incident photon number. For the same
pulse width, the pulse with n̄in = 1 has larger reflectivity than
that of the pulse with n̄in = 2 due to saturation effects.

E. Scattering property at plane-wave limit

Our theory allows us to study the scattering property of the
system at the plane-wave limit. The reflectivity and transmis-
sivity by a single emitter as a function of detuning frequency
for the Fock-state input and the coherent-state input at the

FIG. 5. The average reflected photon number by a single emitter
as a function of pulse width for four different incident photon states.
Fock-1: a single-photon state; Fock-2: a two-photon state; Coherent-
1: a coherent state with an average photon number of one; Coherent-
2: a coherent state with an average photon number of two. The orange
dashed line is the corresponding reflectivity for the two-photon state.
The olive dashed-dotted line is the corresponding reflectivity of the
Coherent-2 state.
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FIG. 6. The reflectivity and transmissivity at the plane-wave limit. (a) A single-emitter case for coherent-state input and Fock-state input.
(b) Comparison of a single-emitter case and two-emitter case with a separation of 0.5λa.

plane-wave limit are shown as the symbols in Fig. 6(a). It is
seen that the reflectivity and transmissivity are the same for
the Fock-state input and the coherent-state input when the in-
cident photon is a plane wave. When the incident frequency is
resonant with the emitter transition frequency, it will be com-
pletely reflected back due to quantum interference. When the
photon frequency is large detuned from the emitter frequency,
it can pass through the emitter without being scattered. The
widths of the reflectivity and transmissivity depend on the
emitter decay rate. The solid lines are the analytical results
calculated by the stationary theory [29], from which we can
see that our results here match the previous theoretical results
very well. We also find that the reflectivity and transmissivity
for a certain frequency is a property of the waveguide-QED
system and does not depend on the photon statistics of the
incident photons. However, if an incident photon has finite
spectral width, the reflectivity and transmissivity of the pulse
can strongly depend on the pulse width and the photon statis-
tics of the incident photons.

In Fig. 6(b), we compare the reflectivity and transmissivity
when there is a single emitter or two emitters with separation
a = 0.5λa. The symbols are numerical results calculated by
our input-output theory and the solid lines are theoretical
results [39]. We can see that the theoretical results match our
numerical results very well, which again indicates the validity
of our theory. We also find that the reflectivity spectrum when

there are two emitters has a broader linewidth than when there
is only a single emitter due to the collective effect.

F. General multiple-emitter case

In addition to the one or two emitters, our theory can in
principle be applied to calculate the dynamics of an arbitrary
number of emitters interacting with a multiphoton pulse. Here,
we take five emitters with nearest-neighbor distance 0.25λa

as an example. The excitation probabilities for the five emit-
ters as a function of time are shown in Fig. 7(a) where we
assume that the incident photon pulse is in a coherent state
with average photon number of one. We can see that the first
emitter has the largest excitation probability, but it is quickly
deexcited and can transfer its energy to the other emitters.
The other emitters have smaller excitation probabilities, but
they can oscillate and last for a period of time much longer
than the decay time of single emitters and the incident pulse
duration. This is a signature of collective many-body effects,
where the collective subradiant states can be generated due to
the emitter-emitter interactions and these subradiant states can
be populated by the incident photon pulse. The corresponding
reflected and transmitted photon pulses are shown in Fig. 7(b).
Most energy is reflected and the reflected pulse has a major
peak. In contrast, the transmitted pulse has multiple peaks
due to quantum interference between the incident field and
the re-emitted fields by the emitters. The reflectivity as a

FIG. 7. (a) Emitter excitation as a function of time for five emitters. The distance between nearest emitters is 0.25λa. The pulse spectral
width �vg = 	. (b) The reflected and transmitted pulse shapes for the same parameters as in panel (a). (c) The reflectivity as a function of
number of emitters for two different incident pulse spectral widths. The emitter separation is assumed to be 0.5λa for panel (c).
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FIG. 8. (a) Emitter excitation as a function of time for a single emitter with frequency modulation (solid red line). For comparison, the
excitation without modulation is also shown as the black dashed line. ε(t ) = 10	 sin(10	t ). The pulse spectrum width �vg = 	. (b) The
reflected and transmitted pulse shapes for the same parameters as in panel (a).

function of number of emitters is shown in Fig. 7(c) for two
different coherent pulse spectral widths (i.e., �vg = 	 and
�vg = 	/2), where we assume that the emitter distance is
0.5λa. It is clearly seen that the reflectivity increases when
the number of emitters increases and it can approach almost
unity when the number of emitters is large. This is another
indication of collective effects, where superradiant states can
be formed. This phenomena can be utilized for atomic mirrors
with large frequency bandwidth.

G. Emitter frequency modulation

Our theory also allows us to calculate the transport dynam-
ics when the emitter frequencies are externally modulated. As
an example, we consider a single emitter interacting with a
coherent photon pulse. The emitter’s frequency is modulated
such that ε(t ) = 10	 sin(10	t ). The emitter excitation as a
function of time is shown as the red solid line in Fig. 8(a). For
comparison, the result without frequency modulation is also
plotted as the black dashed line. It is seen that the excitation
with modulation is smaller and has some small oscillations.
The corresponding scattering pulses are shown in Fig. 8(b)
where the thicker orange solid line is the reflected pulse and
the thicker olive dashed line is the transmitted pulse. We can
see that the reflected pulse has small modulations, while the
transmitted pulse has very significant modulations. In compar-
ison, the scattering pulses without modulations have smooth
shapes (thinner black solid and thinner dashed lines). Hence,
by frequency modulation we can realize complicated photon
pulse shaping. Since photon pulse shape is very important for
high-efficiency quantum state preparation and transfer [41],
the theory here may find important applications in the quan-
tum information.

IV. SUMMARY

In this article we derive master equations for multiphotons
interacting with multiple emitters coupled to 1D waveguide.

Our theory can be applied to calculate the transport of arbi-
trary incident photon wave packets with very general states of
light such as coherent states, Fock states, and their superposi-
tions. It can also be used to calculate the scattering of multiple
emitters with random distribution and even with external fre-
quency modulation. We compare the dynamics of emitters
and scattering pulse shapes when the incident photon pulses
are a coherent state, single-photon state, or multiple photon
states. With finite incident pulse width, different states of light
can induce different system dynamics and different scattering
properties. The average reflected photon number by a single
emitter decreases when the incident pulse duration is shorter
for both the coherent-state input and the Fock-state input, but
the Fock-state input can have higher average reflected photon
number than that of the coherent-state input with the same
average photon number. The results shown here can be useful
for single-photon generation. At the plane-wave limit, the
reflectivity and transmissivity of the waveguide-QED system
for a certain frequency are the same and do not depend on the
statistics of the incident photons. Our theory also allows us to
study the scattering properties of a photon pulse by emitters
with frequency modulations, which can be used for photon
pulse shaping. We also show that the reflectivity can signif-
icantly increase for a broad spectrum due to the collective
interaction between the emitters, which may be useful for de-
signing atomic mirrors with wide bandwidth. Thus, the theory
developed here can become an important basis for studying
the many-body physics and quantum information applications
in the waveguide-QED systems.
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APPENDIX A: DERIVATION OF EQ. (13)

Upon inserting Eqs. (7)–(10) in the main text into Eq. (2), we can obtain

ȮS (t ) = i

2

Na∑
j=1

ε j (t )
[
σ z

j (t ), OS (t )
] + i

Na∑
j=1

∑
k

gj
keikz j e−i�ωkt [σ+

j (t ), OS (t )]

(
ak (0) − i

Na∑
l=1

gl∗
k e−ikzl

∫ t

0
σ−

l (t ′)ei�ωkt ′
dt ′

)

+ i
Na∑
j=1

∑
k

gj∗
k e−ikz j ei�ωkt

(
a†

k (0) + i
Na∑

l=1

gl
keikzl
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0
σ+

l (t ′)e−i�ωkt ′
dt ′

)
[σ−

j (t ), OS (t )]

+ i
Na∑
j=1

∑
�qλ

gj
�qλ

ei �q·�r j e−i�ω�qλ
t
[
σ+

j (t ), OS (t )
](

a�qλ
(0) − i

Na∑
l=1

gl∗
�qλ

e−i �q·�rl

∫ t

0
σ−

l (t ′)ei�ω�qλ
t ′
dt ′

)

+ i
Na∑
j=1

∑
�qλ

gj∗
�qλ

e−i �q·�r j ei�ω�qλ
t

(
a†

�qλ
(0) + i

Na∑
l=1

gl
�qλ

ei �q·�rl

∫ t

0
σ+

l (t ′)e−i�ω�qλ
t ′
dt ′

)[
σ−

j (t ), OS (t )
]

= i

2

Na∑
j=1

ε j (t )
[
σ z

j (t ), OS (t )
] + i

Na∑
j=1

∑
k

gj
keikz j e−i�ωkt [σ+

j (t ), OS (t )]ak (0) + i
Na∑
j=1

∑
k

gj∗
k e−ikz j ei�ωkt a†

k (0)[σ−
j (t ), OS (t )]

+ i
Na∑
j=1

∑
�qλ
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�qλ

ei �q·�r j e−i�ω�qλ
t [σ+
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�qλ

gj∗
�qλ

e−i �q·�r j ei�ω�qλ
t a†

�qλ
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Na∑
jl
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kgl∗

k eik(z j−zl )e−i�ωkt [σ+
j (t ), OS (t )]

∫ t

0
σ−

l (t ′)ei�ωkt ′
dt ′

−
Na∑
jl

∑
k

gj
kgl∗

k e−ik(z j−zl )ei�ω
j
k (t )t

∫ t

0
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l (t ′)e−i�ωkt ′
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j (t ), OS (t )]

+
Na∑
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∑
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gj
�qλ
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�qλ

ei �q·(�r j−�rl )e−i�ω�qλ
t [σ+

j (t ), OS (t )]
∫ t

0
σ−

l (t ′)ei�ω�qλ
t ′
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−
Na∑
jl

∑
�qλ
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t
∫ t

0
σ+

l (t ′)e−i�ω�qλ
t ′
dt ′[σ−

j (t ), OS (t )]. (A1)

According to the Weisskopf-Wigner approximation, we have [40]

∑
k

gj
kgl∗

k eik(z j−zl )e−i�ωkt ei�ωkt ′ =
√

	 j	l

2
eika|z jl |eiε j (t )t−iεl (t ′ )t ′

δ

[
t ′ −

(
t − |z jl |

vg

)]
, (A2)

∑
k

gj
kgl∗

k e−ik(z j−zl )ei�ωkt e−i�ωkt ′ =
√

	 j	l

2
e−ika|z jl |e−iε j (t )t+iεl (t ′ )t ′

δ

[
t ′ −

(
t − |z jl |

vg

)]
, (A3)

∑
�qλ

gj
�qλ

gl∗
�qλ

ei �q·(�r j−�rl )e−i�ω�qλ
t ei�ω�qλ

t ′ = � jl e
iε j (t )t−iεl (t ′ )t ′

δ

[
t ′ −

(
t − |r jl |

vg

)]
, (A4)

∑
�qλ

gj∗
�qλ

gl
�qλ

e−i �q·(�r j−�rl )ei�ω�qλ
t e−i�ω�qλ

t ′ = �∗
jl e

−iε j (t )t+iεl (t ′ )t ′
δ

[
t ′ −

(
t − |r jl |

vg

)]
, (A5)

where 	i = 2L
vg

|gi
k0
|2 with gi

k0
=

√
	ivg

2L and

� jl = 3
√

γ jγl

4

[
sin2 φ

−i

kar jl
+ (1 − 3 cos2 φ)

(
1

(kar jl )2
+ i

(kar jl )2

)]
eikar jl

with r jl = | �r j − �rl |.
To proceed, we assume that the emitters are close such that zi j/vg � 1/	. We can approximate σ−

j (t − z jl

vg
) ≈ σ−

j (t ) in the

rotating frame. Indeed, this is the usual case. For example, if vg ≈ 108 m/s and 	 ≈ 108 Hz, we require that the distance between
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the emitters zi j � 1 m, which is the usual case. By doing this approximation, Eq. (13) then becomes

ȮS (t ) = i

2

Na∑
j=1

ε j
[
σ z

j (t ), Os(t )
] + i

Na∑
j=1

√
	 j

2
[σ+

j (t ), OS (t )][a j (t ) + b j (t )] + i
Na∑
j=1

√
	 j

2
[a†

j (t ) + b†
j (t )][σ−
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+
∑

jl


 jl [σ
+
j (t ), OS (t )]σ−

l (t ) −
∑

jl


∗
jlσ

+
l (t )[σ−

j (t ), OS (t )], (A6)

where aj (t ) =
√

vg

2π

∫ ∞
0 eikz j ak (0)e−iδωkt dk is the absorption of the incident waveguide photons and bj (t ) =√

vg

2π

∫∫∫
ei �qλ·�r j a�qλ

(0)e−iδω�qλ
t d3 �qλ is the absorption of the incident nonguided photons. The collective interaction between

the emitters is given by [40]


 jl =
√

	 j	l

2
eika|z jl | + 3

√
γ jγl

4

[
sin2 φ

−i

kar jl
+ (

1 − 3 cos2 φ
)( 1

(kar jl )2
+ i

(kar jl )2

)]
eika|r jl |. (A7)

From Eq. (A6), we can derive a corresponding master equation for the emitters. Since TrS+R[OS (t )ρ] = TrS[OSρS (t )] where
ρS (t ) = TrR[ρ(t )], we have

TrS[OSρ̇S (t )] = TrS+R[ȮS (t )ρ]

= i

2

Na∑
j=1

ε j (t )TrS+R
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σ z
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]
ρ
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Na∑
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√
	 j

2
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+ i
Na∑
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√
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+
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jl
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jl


∗
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= − i

2

Na∑
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ε j (t )TrS
{
OS

[
σ z

j , ρS (t )
]} + i

Na∑
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√
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2
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{
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[
ρ

j
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j
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Na∑
j=1

√
	 j

2
TrS{OS[ρ j†
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j ]}

−
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j σ−
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l ρS (t )σ+

j ]} −
∑
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∗
jl TrS{OS[ρS (t )σ+

l σ−
j − σ−

j ρS (t )σ+
l ]}, (A8)

where ρ
j
in(t ) = TrR{U (t )[a j (t ) + b j (t )]ρ(0)U †(t )} is the contribution from the incident sources. In this paper, we consider

that the incident photon is coming from the waveguide photons and the nonguided modes are initially in the vacuum. Since
a�qλ

(0)|0〉 = 0, we have b j (t )ρ(0) = 0 and therefore ρ
j
in(t ) = TrR{U (t )a j (t )ρ(0)U †(t )} is due to the contribution of the incident

waveguide photons. Comparing both the size of Eq. (A8), we can obtain the master equation for the system density matrix given
by

ρ̇S (t ) = − i

2

Na∑
j=1

ε j (t )
[
σ z

j , ρS (t )
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Na∑
j=1
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Na∑
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√
	 j
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j†
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Im(
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Re(
 jl )[σ
+
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l ρS (t ) + ρS (t )σ+
j σ−

l − 2σ−
l ρS (t )σ+

j ], (A9)

which is the master equation shown in Eq. (13) in the main text.

APPENDIX B: DERIVATION OF INPUT-OUTPUT RELATIONS

From Eqs.(15)–(19) in the main text, we can obtain

aR
out (t ) = aR

in(t − zN/vg) − i
Na∑
j=1

√
	 jvg

4π

∫ t f

0
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Na∑
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√
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4π

√
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e−ikaz j

∫ t f
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j (t ′)dt ′
∫ ∞

0
eiδk(zN −z j )eiδkvg(t ′−t )dk
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= aR
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where zN j = zN − z j . Similarly, we have
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Equations (B1) and (B2) are the input-output relations of the system from which we can calculate the field scattering properties
of this system.

APPENDIX C: DERIVATION OF EQ. (35)

We can derive a dynamical equation for ρ01(t ) using a similar method as that used for deriving ρS (t ). Since TrS+R[OSρ01(t )] =
TrS+R[OS (t )ρ01(0)], where ρ01(0) = ρS (0) ⊗ |0〉〈�F |, we have
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= − i
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(C1)

where ρ00(t ) = U (t )ρS ⊗ |0〉〈0|U †(t ). Comparing both sides, we have

ρ̇S
01(t ) = − i
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Na∑
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where ρS
00(t ) = TrR[ρ00(t )].
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