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Slow thermo-optomechanical pulsations in suspended one-dimensional photonic crystal nanocavities
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We investigate the nonlinear optical response of suspended one-dimensional (1D) photonic crystal nanocavi-
ties fabricated on a silicon nitride chip. Strong thermo-optical nonlinearities are demonstrated for input powers as
low as 2 μW and a self-sustained pulsing regime is shown to emerge with periodicity of several seconds. As the
input power and laser wavelength are varied the temporal patterns change in period, duty cycle, and shape. This
dynamics is attributed to the multiple timescale competition between thermo-optical and thermo-optomechanical
effects and closely resembles the relaxation oscillations states found in mathematical models of neuronal activity.
We introduce a simplified model that reproduces all the experimental observations and allows us to explain them
in terms of the properties of a 1D critical manifold which governs the slow evolution of the system.
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I. INTRODUCTION

Advances in the field of integrated optics rely on the de-
velopment of compact optical components where light can be
tightly confined and processed within a chip-scale photonic
structure [1–3]. Adversely, one of the results of successfully
localizing light at the submicron scale is the strong field en-
hancement within the photonic component, which may lead
to nonlinear optical effects even at moderate input powers.
While these effects can lead to deleterious device instabilities,
they also offer new opportunities for all-optical sensing and
low-power signal processing applications [4]. For this reason,
optical nonlinear phenomena in micro- and nanophotonic de-
vices have been the object of extensive investigations for many
years [5–7].

Due to its potential applications in all-optical memories,
switching and logic gates, optical bistability [8] (i.e., the
coexistence of two stable transmission states for a given wave-
length and power of the input field) received considerable
attention. Bistable behavior coming from different nonlinear
mechanisms has been reported for a vast number of micro-
and nano-optical resonators [9–12], whose combination of
high quality factors Q and small mode volumes Vm allows
us to achieve high intracavity optical power densities even at
very low input powers. Photonics crystal (PhC) nanocavities,
either in one or two dimensions (2D), have demonstrated in-
creasingly low bistability thresholds [13–16], until achieving
values as low as ∼2 μW [15,17].
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In the presence of competing nonlinearities operating at
very different timescales, the bistability often breaks down
and the system enters a regime of self-sustained pulsations
(SSPs), also known in dynamical systems theory as relaxation
oscillations [18]. The evolution is characterized by periods
of slow motion separated by faster relaxation jumps between
them, which result in a sequence of square-wave-like pulses.
This characteristic pattern is generally determined by the
multiple timescale competition between two effects, with the
slower driving the system across the hysteresis cycle induced
by the faster.

In the case of micro- and nanocavities, the above dynami-
cal mechanism manifests itself in the alternating shift of the
cavity resonance to opposite directions, with characteristic
frequencies that depend on the physical processes involved.
SSPs ranging between the kHz to the MHz scale have been
observed, e.g., in semiconductor microcavities [19–21] and
photonic crystals [22] due to the interplay between carrier-
induced and thermo-optic (TO) nonlinearities, and in silica
[23–25] and polymer [26] microresonators, due to competing
Kerr and TO effects. Faster oscillations from a few MHz
up to the GHz scale have been reported in silicon micro-
and nanocavities, where they originate from the nonlinear
coupling between optical, free-carrier, and thermal variables
[11,12,27,28], and in silica toroidal microcavities induced by
the interplay between radiation pressure and the intracavity
field [29]. On the other hand, when thermal expansion pro-
cesses come into play, SSPs can become extremely slow with
periods of a few seconds, as observed, e.g., in silicon nitride
microdisks [30] and calcium fluoride WGM resonators [31].

Different applications for systems displaying SSPs have
been proposed, for instance in continuous pulse laser
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FIG. 1. (a) Schematic processing steps and corresponding optical microscope images of the sample. (1) The Si3N4 membrane before any
fabrication step. (2) The sample after spin coating of a ∼300-nm-thick film of resist (CSAR 62) and 1 min baking to stabilize the resist.
(3) After exposure to an electron beam at 30 kV and 166 μA of emission current for 1 h. The sample is then introduced into a developer
(AR600-546) and a stopper (IPA), to remove the exposed regions and provide a mask for the following etching procedure. (4) The sample after
10 min RIE of the Si3N4 performed with O2 and CHF3 gases. (5) After 1 min O2 cleaning process for resist lift-off. (b) SEM image of the PhC
nanocavity with the Bragg grating couplers. (c) COMSOL simulation of the electric field profile at resonance.

generation [32] and sensing [33]. More recently, a new re-
search area, known as neuromorphic photonics, has emerged
aiming at establishing a bridge between photonic devices
and neural networks [34]. In this context, photonic systems
displaying SSPs are the key elements in view of realizing
“brain-inspired” computing platforms and/or simulating com-
plex neuron dynamics.

In this work we introduce a 1D suspended PhC nanocavity
device, fabricated on a free-standing Si3N4 thin membrane. Its
simple and compact on-chip geometry ensures full scalability,
while free-space optical access provides an easy opportunity
for parallel signal processing. As in similar designs [17,28],
the suspended configuration limits heat dissipation and favors
nonlinear effects due to strong thermo-optic confinement. As
a consequence, the nanocavity exhibits strong TO effects at
injected powers as low as ∼2 μW. When the laser is detuned
to the red side of the cavity resonance, periodic SSPs are
observed with sub-Hz characteristic frequencies. Such a slow
periodicity allows us to exclude a number of nonlinear effects
such as Kerr, carrier induced, and radiation pressure, and to
attribute SSPs to the interaction between a faster TO effect
and a slow thermo-optomechanical (TM) mechanism. On this
basis we construct a simplified model that reproduces all the
observed phenomenology and fits well the experimental data.
We finally show that the phase-space structure of the system
is equivalent to that of the Van der Pol–FitzHugh–Nagumo
(VdPFN) neuron model [35–37], where SSPs results from
the existence of a 1D critical manifold which organizes the
dynamics on a slow timescale.

The paper is organized as follows. In Sec. II we describe
the PhC nanocavity fabrication process and the experimental
apparatus. In Sec. III we show the cavity transmission spectra
obtained when the laser frequency is scanned downwards
across a single mode of the resonator. At higher input powers
the spectra become highly nonlinear providing a clear evi-
dence of TO effect. In Sec. IV we theorize about the TM

mechanism at the basis of our observations and introduce
a simplified physical model. In Sec. V we present the ex-
perimental results on the SSP dynamics and quantitatively
compare them with the numerical predictions. In Sec. VI we
analyze the bifurcations of the model and explain the emer-
gence of SSPs in our system by means of geometric singular
perturbation theory. Conclusions and future perspectives are
reported in Sec. VI.

II. PHC NANOCAVITY AND EXPERIMENTAL SETUP

The 1D Si3N4 PhC nanocavities are fabricated starting
from an amorphous 0.5 × 0.5 mm2 Si3N4 membrane (Nor-
cada), with thickness h = 200 nm. The steps of the fabrication
process are summarized in Fig. 1(a) and include an electron-
beam lithography procedure to pattern the desired structures
on the membrane, followed by a sequence of reactive ion
etching (RIE) and O2 plasma lift-off, to etch the Si3N4 and
remove any leftover resist. Fabrication is highly scalable, as
we can fit together up to 40 nanocavities within a single
membrane [38].

The optical resonator is formed by a suspended nanobeam
of length l = 38 μm and width w = 1 μm, containing a
periodic array of rectangular air holes that create the photonic
band gap [see Fig 1(b)]. The width of the two bridges above
and below the air holes is e � 130 nm. To confine light and
obtain a cavity mode, a defect is tailored where the period-
icity is quadratically reduced from the sides to the center of
the structure. The complete design includes 20 unit cells of
constant periodicity on each side (mirror cells) and 19 defect
cells at the center of the nanobeam. Light is coupled in and
out of the nanocavity through two curved Bragg-like grating
couplers [39,40] [see Fig. 1(b)]. A COMSOL simulation of
such a design reveals that the second order cavity mode is the
dominant optical mode to be confined within the band gap, as
shown in Fig. 1(c).
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FIG. 2. Schematic of the experimental setup. Light is coupled in
and out of the nanocavity via a high numerical aperture microscope
objective. The input light is linearly polarized to minimize waveguide
propagation losses. A 4 f system is used to image the nanocavity onto
an IR camera, and a D-shaped mirror allows us to only detect the
output light from the cavity.

A scheme of the optical setup is reported in Fig. 2. Light
from a tunable external-cavity laser (Tunics Plus) at 1550 nm
is injected into the nanocavity via a high-numerical-aperture
(NA = 0.85) microscope objective. Both the nanocavity
and the objective are mounted inside a vacuum chamber,
evacuated at p � 0.5 mbar, and the sample sits on a 3D piezo-
translational stage to optimize optical alignment. The light
transmitted by the cavity and scattered by the second coupler
is collected by the same objective and sent to detection. We
use a 4 f system of lenses to separate the cavity transmitted
signal from the input laser light before the photoreceiver,
and to image the nanocavity onto an IR camera. To esti-
mate the coupling efficiency, we use nonstructured waveguide
nanobeams fabricated on the same membrane, and compare
the amount of power going in from the objective, with the
final power detected by the photodiode. Taking into account
the different loss channels involved in the system, we estimate
that �10% of the light incident on the input coupler is injected
into the nanobeam.

III. COMPETING THERMAL NONLINEARITIES

We first characterize the system response, as both the laser
frequency and injected power are varied. Since the laser is
not frequency locked, drifts of the cavity resonance and/or
of the laser wavelength and power, prevent the construction
of the spectrum by adiabatically tuning the laser frequency.
On the other hand, the characteristic nonlinear features of
transmission spectra could be smoothened at high scanning
rates (of the order of frequency cutoff of the nonlinear effect,
or faster). In our measurements we use a scanning rate of
5 pm/s, sufficiently fast to avoid the effect of possible long-
term changes of the intracavity field and keep the same
experimental conditions, but slower than the expected TO
response in our system.

In Fig. 3 we show the transmitted intensity as the laser is
swept from shorter to longer wavelengths across the cavity
resonance at (a) atmospheric pressure and (b) at p ∼ 0.5 mbar.
For clarity, the intensity signals are normalized to be zero
away from resonance and equal to 1 at resonance. For the low-
est power used, the system still operates in the linear regime
showing a typical Lorentzian shape. From this spectrum we
estimate a cavity half-linewidth γ � 0.12 nm, corresponding
to a cavity quality factor Q = λres/2γ � 6500, where λres ∼
1.55 μm is the cavity resonant wavelength. When the input
power is increased, λres is redshifted, as expected in Si3N4

owing to a positive TO coefficient. The thermal origin of the
nonlinearity is further supported by the observation that the
threshold power to enter the nonlinear regime decreases as
p is lowered from atmospheric pressure, due to the reduced
contribution of convective heat dissipation [see spectra in
Figs. 3(a) and 3(b)]. At higher intensities and low pressure,
the spectral line takes an asymmetric sawtooth profile, with
a sharp drop on the red side of the resonance. While similar
spectral shapes are often interpreted as the signature of op-
tical bistability [13,17], they can also arise in the presence
of dynamical instabilities if the scanning rate of the laser
wavelength is of the order of (or faster than) the instability
growth rate. When the input power Pin is kept constant and the
laser wavelength λL is fixed and red detuned with respect to
the cavity resonance, the system enters a self-sustained oscil-
latory regime [see Fig. 3(c)]. The time series, consisting of a

. . .

FIG. 3. Cavity transmission spectra at different input powers at (a) atmospheric pressure and (b) p � 0.5 mbar, taken by scanning the
laser wavelength across resonance. (c) Time trace of the transmission intensity for input power Pin = 2.25 μW and detuning δ = λres − λL =
−0.13 nm. (d) Transmission spectra as obtained by numerical integration of Eqs. (1)–(3), by tuning the detuning parameter δ0 in the interval
[2,−2] (from shorter to longer wavelengths) with a scan rate ε = 10−3.
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periodic sequence of fast switchings between slowly evolving
high- and low-transmission states, display the characteristic
pattern of relaxation oscillations [18]. These dynamics imply
the existence of a second nonlinear effect, evolving on a
slower timescale and providing an opposite shift to the cavity
resonance with respect to the TO.

The slow timescale of the process (a few seconds) allows
us to rule out most of the typical nonlinear effects in PhC sus-
pended nanocavities such as Kerr, carrier induced, or radiation
pressure and suggests a thermo-optomechanical mechanism
[30,31]. The thermal expansion coefficient of Si3N4 is pos-
itive: in this case, the simple expansion of the material and
deformation of the structure would induce a redshift of the
resonance. On the other hand, local heating in PhC sus-
pended nanocavities gives rise also to complex buckling of
the nanobeam which may result in a slow blueshifting optical
nonlinearity [30]. For instance, we checked that a simple in-
ward bending at the center of the structure induces a blueshift
of the cavity resonance.

FEM simulation are required for a quantitative assess-
ment of both the thermo-optomechanical and the TO effect,
to account for thermally induced stress in the SiN nanon-
beam and to model the spatial extent of the absorbing region,
which strongly depends upon the geometry of the device.
Here instead we are interested in deriving a simple ordinary
differential equation (ODE) model that is able to reproduce
the observations and to identify the underlying mechanisms at
the basis of SSPs in our system. This is what we discuss in the
next section.

IV. PHYSICAL MODEL

We consider an optical resonator in which the optical in-
tensity and the intracavity optical path are nonlinearly coupled
through a TO effect and a slower thermomechanical process of
opposite sign. When light is injected into the cavity on the red
side with respect to the initial resonance (with no field), the
temperature of the nanobeam changes due to residual optical
absorption. This results in a redshift of the optical resonance
via TO effect and thus in an increase of the intracavity in-
tensity. The resonant field has the additional effect of slowly
blueshifting the cavity resonance through a thermo-optically
induced mechanical deformation.

Since the optical field evolves on a fast timescale as com-
pared to the thermal effects, it will instantaneously adapt to
any change of the resonant condition and thus its dynamics
can be adiabatically eliminated. The model thus reduces to
the following system of ODEs:

φ̇ = −φ + gφIc(φ, θ ), (1)

θ̇ = −ε[θ + gθ Ic(φ, θ )], (2)

Ic(φ, θ ) = 1

1 + (δ0 + φ + θ )2
,

where φ and θ describe the instantaneous changes of the reso-
nant wavelength due to thermo-optical and thermomechanical
effects, respectively; Ic is the intracavity field intensity,
normalized to its resonant value Imax

c and δ0 is the normal-
ized detuning between laser and cavity resonance. All these

quantities are normalized to the cavity half-linewidth (in
length units) γ and are thus dimensionless variables. The time
derivatives are calculated with respect to dimensionless time
γtot , where γto = G/(CρVc) is the ”thermo-optical rate”: here
G is the thermal conductance between the nanobeam and the
substrate, which depends on the thermal conductivity κ of
Si3N4 and on the geometrical details of the structure, whereas
C and ρ are the specific heat capacity and the density of the
material, respectively. The dimensionless parameter

gφ = 2α
dn

dT

Vc

G

Q

n0
Imax
c (3)

measures the strength of the TO effect, where α is the
optical-absorption coefficient, dn/dT is the thermo-optical
coefficient, n0 is the refractive index, Q is the cavity quality
factor, and Vc is the cavity volume. The intracavity intensity at
resonance Imax

c contains the dependency on the input power,
and scales as Imax

c = Q
√

T Pin/A, where T is the cavity trans-
mittance and A is the nanobeam cross section.

In Eq. (2) the dimensionless parameter ε is the ratio be-
tween the characteristic rate of the thermomechanical effect
and γto, thus ε � 1. The thermomechanic parameter gθ should
depend on the thermal expansion coefficient, thermal stresses,
and geometric details of the PhC nanostructure. Here we
phenomenologically express it in terms of the TO strength,
as gθ = bgφ , where b is a positive constant.

The phase space structure of Eqs. (1) and (2) is similar
to that of the model in [41,42] describing relaxation oscilla-
tions in optical cavities due to competing radiation pressure
and photothermal displacement. Mathematically, it could be
derived from Eqs. (9) of [41] after adiabatic elimination of the
second-order time derivative, i.e., in the singular limit Q = 0.
As such, we expect that many relevant features of that model,
in particular the exhibit of an SSP dynamics similar to the
VdPFN equations, should be found also in our case. This is
what we show in the next section.

As a first check of our approach, we characterize the re-
sponse of system (1) and (2) as the detuning parameter δ0 is
scanned over the cavity resonance for different injected pow-
ers. The detuning is scanned at a rate equal to ε, i.e., slower
than the TO rate which is O(1), and comparable to the TM
one. The resulting spectra of the intracavity intensity, plotted
in Fig. 3(d), are in good agreement with the experimental data,
while at slower scanning rates the dynamical instability would
become manifest in the form of sharp pulsations on the red
side of the resonance.

V. SELF-SUSTAINED PULSATIONS

We now analyze in detail the dynamical regimes.
Figure 4(a) shows six traces of the transmitted intensity as the
detuning between the cavity resonance and the laser frequency
is delicately decreased, approaching the resonance from the
red side. As we will see in the next section, the steady in-
tensity state becomes unstable in correspondence of a critical
value of the detuning via a supercritical Hopf bifurcation,
beyond which a finite-frequency limit cycle starts to grow.
The pulsation pattern, consisting of fast transitions between
high and low intensity states on which the evolution is much
slower, is indicative of multiple timescale dynamics. As the
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FIG. 4. Experimental time traces of cavity transmission signal in the SSP regime: (a) Fixed input power Pin = 2.5 μW and detunings
δ1 = −0.14 nm, δ2 = −0.12 nm, δ3 = −0.11 nm, δ4 = −0.10 nm, δ5 = −0.09 nm, δ6 = −0.08 nm. (b) Fixed detuning δ = −0.13 nm and
input powers P1 = 2.25 μW, P2 = 2.35 μW, P3 = 2.4 μW, P4 = 2.5 μW, P5 = 2.6 μW, P6 = 2.8 μW.

detuning is further decreased, the duty cycle of the oscillation
continuously changes and finally a high-intensity steady state
is reached. This sequence of dynamical regimes is fully com-
patible with the transition between the two stable branches of
the critical manifold of the vdPFN model [37].

A similar behavior is found by fixing the detuning and
progressively increasing the input power, although in this
case we also observe an increase in the pulsation period [see
Fig. 4(b)]. The change in the periodicity is accompanied by a
slope decrease in the evolution of the higher-intensity state.

We now compare the model predictions with the above
results by numerically solving Eqs. (1) and (2). The model
contains a number of physical parameters that can be mea-
sured independently or estimated from the experimental time
series. The switching between the lower and upper transmis-
sion states approximately occurs with a characteristic time
given by the inverse thermo-optical rate τto = 1/γto. In our
case this time is of the order of τto ∼ 10 ms, being roughly
independent of the values of input power and detuning. We
can thus use the measured τto to estimate the thermal conduc-
tivity κ of our PhC structure. Assuming that the heat generated
by the intracavity optical intensity can only diffuse through
the thin bridges of the nanobeam (radiative loss of heat is
neglected), it is possible to derive an approximate expression
for the thermal conductance G = κl

4eh , where κ is the thermal
conductivity [17]. Using the values C = 700 J/kg K and ρ =
3100 kg/m3 for the specific heat capacity and the density of
Si3N4, the cavity volume Vc = 7.2 × 10−18 m3, and the above
τto, we calculate κ � 0.6 W/m K. Typical values of thermal
conductivity for Si3N4 membranes range from 2 to 4 W/m K
[43–45] although they drop for thicknesses below 200 nm due
to predominant phonon-boundary scattering, in which case
also values around 0.5 W/m K have been reported [46].

The parameter gφ can be experimentally estimated from the
transmission spectra in Fig. 3, measuring the thermo-optical
shift per unit input power ∂φ/∂Pin. From Eq. (1) one can

readily verify that

∂φ/∂Pin = gφ/Pin = 2α
dn

dT

Vm

G

Q2

n0

√
T /A, (4)

where we used the relation between resonant intracavity inten-
sity and Pin. We obtain a shift of ∼8 × 105 W−1 and we will
use this value in all the simulations. From the shift we can also
evaluate the product α × dn

dT . Using the thermal conductance
derived from the rise-time measurements, a transmittance T =
0.01, and the cavity parameters previously reported, we find
α × dn

dT � 2 × 10−5 m−1 K−1, which quantifies the thermo-
optical response in our PhC structure.

The comparison between numerical and experimental time
series is illustrated in Fig. 5. In the simulations we fix all
thermo-optical parameters and the experimental values of

FIG. 5. Comparison between experimental (black) and numeri-
cal [red (light)] time traces of the optical intensity. Simulations are
obtained using the normalized detuning δ0 given by experimental
parameters δ/γ ∼ −1.08, and an input power Pin given by (a) P2 =
2.25 μW, (b) P3 = 2.35 μW, (c) P4 = 2.5 μW, and (d) P5 = 2.8 μW.
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detuning and input powers, and we adjust the phenomenolog-
ical thermomechanical coefficients to match the period, duty
cycle, and the shape of the SSPs. An excellent agreement is
obtained for b � 0.7 and ε � 3 × 10−3.

In the next section we demonstrate that all these features
can be explained in terms of the existence of a 1D slow
manifold which determines the SSP regime.

VI. BIFURCATION ANALYSIS

The steady state solutions of Eqs. (1) and (2) are implicitly
defined by the cubic equation for the stationary intracavity
intensity Is:

Is{1 + [δ0 + (gφ − gθ )Is]}2 − 1 = 0. (5)

Depending on the values of gφ , gθ , Pin, and δ0, the system
can have either one or three fixed points. The change in the
number of stationary points occurs when

(
δ2

0 − 3

9

)3

=
[

gφ − gθ

2
+ 1

3
δ0

(
1 + δ2

0

9

)]2

. (6)

where two steady states coalesce in a saddle-node bifurcation.
Equation (6) thus defines the boundaries in the (δ0, Pin) param-
eter space of the region where the system is bistable. These
boundaries meet in two cusp points at δ0 = ±√

3 and (gφ −
gθ ) = ±8/3

√
3 where a pitchfork bifurcation takes place (in

our case gφ > gθ and thus the relations with positive signs
hold). The second condition thus defines the optical bistable
threshold, i.e., the minimum power Pth at which the system
admits two stable states. Using relation (4), the experimental
thermo-optical shift ∼8 × 105 W−1, and the fact that gθ ≈
0.7gφ , we calculate Pth ≈ 6.5 μW.

We now study the stability of the system in the parameter
range for which it has a single steady state. It is in this regime
that SSPs arise. Linearizing Eqs. (1) and (2) around the fixed
point (φs, θs) we get the following characteristic equation for
the eigenvalues 
:


2 + a1
 + a2 = 0.

The coefficients are given by

a1 = 1 − gφI ′
c + ε(1 + gθ I ′

c),

a2 = ε[1 − (gφ − gθ )I ′
c], (7)

where I ′
c = dIc(φs, θs)/d (φs + θs). For parameters such that

a1 = 0, the characteristic equation has two purely imaginary
roots 
1,2 = ±iν. Here the steady state loses stability through
a supercritical Hopf bifurcation and a quasiharmonic limit cy-
cle develops, with an amplitude that scales as the square root
of the distance from the bifurcation point and frequency given
by ν = √

a2. Similarly to the VdPFN equations, the frequency
ν scales as

√
ε. However, the large split between timescales

associated with the smallness of ε makes the Hopf limit cycle
observable only within a parameter range of order ε around
the bifurcation point. Outside this range the amplitude of the
limit cycle abruptly (though continuously) jumps and reaches
a saturation value, the so-called relaxation-oscillation regime.
Likewise, the frequency of the oscillations experiences a sim-
ilar sudden change and becomes of the order of ε. Further
increasing of δ0 leads to the “inverse” bifurcation and the

system passes from the oscillatory dynamics to a new steady
state solution.

VII. GEOMETRIC THEORY OF SINGULAR
PERTURBATION

The dynamical mechanism underlying the SSP dynamics
can be understood by means of the following analysis. Since
ε � 1, the variable θ evolves at a much slower rate than φ.
Hence the dynamics of Eqs. (1) and (2) splits into periods of
fast and slow motion that can be analyzed separately [47]. On
the fast timescale t , the evolution is described by the thermo-
optic equation (1) (fast subsystem), with θ acting as a constant
parameter. The equilibria of this dynamical subsystem lay on
the one-dimensional manifold � = {φs, θ}, implicitly defined
by the equation φs = gφIc(φs, θ ) or, equivalently by the cubic:

Ic[1 + (δ0 + gφIc + θ )2] = 0. (8)

On the slow timescale τε = εt , the motion is governed by
the thermo-optomechnical equation (2) with an algebraic con-
straint given by φ̇ = 0 or, equivalently, Eq. (8). Therefore, the
(slow) motion on a timescale τε takes place on the critical
manifold � defined by the fixed points of the fast subsystem.
Since the trajectories of Eqs. (1) and (2) will be attracted by
stable parts of �, while they will be repelled by the unstable
ones [48], the stability properties of the critical manifold de-
termine the dynamics. Linearizing the fast subsystem on � we
find that these points are stable equilibria if gφIc(φs, θ ) < 1
(solid lines in Fig. 6) and unstable otherwise (dashed line).
Therefore the critical manifold is composed of two attractive
branches of high-intensity �H and low-intensity �L states,
separated by the repelling branch �R. Stable and unstable
branches coalesce in saddle-node bifurcations at the fold
points F1,2, which are determined by Eq. (8) together with the
condition gφIc(φs, θ ) = 1.

We can now understand the blowup of SSPs in our sys-
tem. In Fig. 6 we plot the numerical phase-space trajectories
together with the critical manifold �. Depending on the
initial conditions, the motion is attracted by either �H or
�L. On these branches Eq. (2) dictates that θ decreases if
θ + gθ Ic(θ ) > 0 and increases otherwise. These conditions
determine the flow direction on the slow manifold as indicated
by the arrows in Fig. 6. The trajectories are thus forced to
(slowly) follow an attracting part of the manifold until the cor-
responding fold point where it is rapidly pushed out towards
the opposite attracting branch. Then, it flows along this branch
until the other fold point where it jumps back and repeats
the cycle. The two-timescale evolution, slow on the attractive
branches �H or �L and fast in the transitions between them,
determine the typical square-wave-like profile of SSPs. The
shape of the critical manifold, and the portion of the branches
explored by the limit cycle depends on the thermo-optical
properties of the PhC cavity, the detuning, and the input
power through the parameter gφ . In particular, we observe that
the width of the slowly evolving parts and the slope of the
high-intensity branch �H change with the input power, which
explains the behavior observed in Figs. 4 and 5.

The bifurcations and the properties of the critical manifold
described above are common to many 2D dynamical systems
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FIG. 6. Numerical phase-space trajectories (red (light) curves) together with the critical manifold (black curve) Eq. (8) in the (Ic, θ ) plane
for δ0 = 1.08. (a) Pin = 2.25 μW, (b) Pin = 2.5 μW, (c) Pin = 2.8 μW. Solid (dashed) curves indicate the stable (unstable) branches �H,L (�R)
of the manifold coalescing at the fold points F1,2 (see text).

displaying relaxation oscillations and, in particular, to the
VdPFN neuron model.

VIII. CONCLUSIONS AND PERSPECTIVES

We have studied the nonlinear optical response of sus-
pended 1D PhC nanocavity devices, fabricated on a Si3N4

chip. Owing to the strong light and heat confinement, thermo-
optical nonlinearities become significant at injected powers
as low as ∼2 μW. When the laser is detuned to the red
side of the cavity resonance, we observe SSPs of the cav-
ity transmitted signal with sub-Hz periodicity. The observed
SSPs are sensitive to small changes in input power and laser
wavelength, not just in their period, but also in the duty
cycle and oscillations shape. These dynamics are attributed
to the interplay between a faster thermo-optical effect and
a slower thermo-optomechanical mechanism. On this basis
we constructed a simple physical model that reproduces all
the observed phenomenology and allows us to evaluate from
the time-series relevant quantities to our nanocavities, such as
the thermal conductivity and the product α × dn

dT . By means of
singular perturbation analysis we have shown that the phase
space structure of the system is equivalent to that of the
VdPFN model and that all features of SSPs can be explained
in terms of the stability properties of a 1D critical manifold
on which the slow dynamics takes place. In the vicinity of
the Hopf bifurcation point, the system is expected to dis-
play excitable features: time-localized perturbations above a

certain threshold induce large excursions in the phase space,
which are barely sensitive to the details of the perturba-
tion, before returning to the initial state. Excitability is one
of the most important functional properties of neurons and
photonic systems have long served as a platform for the
exploration of this phenomenon [34]. The possibility to cou-
ple several nanocavities within a single membrane [see, e.g.,
Fig. 1(a)] thus opens interesting perspectives in the context of
neuromorphic photonics, for instance in the implementation
of networks of individually addressable, excitable elements.
Overall this work shows that the optical properties of free
standing nanophotonic structures can only be understood once
their thermal and mechanical characteristics are taken into
account. Therefore, our results give important insights into the
design of free standing nanophotonic devices that are actively
explored for quantum information processing with individual
atoms [49].
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