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Nonstationary force sensing under dissipative mechanical quantum squeezing
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We study the stationary and nonstationary measurement of a classical force driving a mechanical oscillator
coupled to an electromagnetic cavity under two-tone driving. For this purpose, we develop a theoretical
framework based on the signal-to-noise ratio to quantify the sensitivity of linear spectral measurements. Then
we consider stationary force sensing and study the necessary conditions to minimize the added force noise. We
find that imprecision noise and back-action noise can be arbitrarily suppressed by manipulating the amplitudes
of the input coherent fields; however, the force noise power spectral density cannot be reduced below the level
of thermal fluctuations. Therefore, we consider a nonstationary protocol that involves nonthermal dissipative
state preparation followed by a finite time measurement, which allows one to perform measurements with a
signal-to-noise ratio much greater than the maximum possible in a stationary measurement scenario. We analyze
two different measurement schemes in the nonstationary transient regime: a back-action-evading measurement,
which implies modifying the drive asymmetry configuration upon arrival of the force, and a nonstationary
measurement that leaves the drive asymmetry configuration unchanged. Conditions for optimal force noise
sensitivity are determined, and the corresponding force noise power spectral densities are calculated.

DOI: 10.1103/PhysRevA.102.053515

I. INTRODUCTION

The problem of measuring a force by monitoring the po-
sition of a mechanical quantum oscillator has served as a
longstanding inspiration for the theory of quantum measure-
ment [1–6]. Further, the use of optomechanical systems as a
sensitive platform for the measurement of very weak forces
has been especially motivated by the endeavour to detect
gravitational waves [7,8]. However, the development of ultra-
sensitive force measurement technologies is also relevant in
many other applications, such as atomic force microscopes
[9,10], magnetic resonance force microscopy [11], absolute
rotation detection [12,13], proposals for the detection of dark
matter [14,15], and in studying the interplay of quantum me-
chanics and gravity on a tabletop scale [16–20].

It was first described by Braginsky [21], that the maximum
achievable sensitivity in the measurement of weak forces
will be attained via an optimal trade-off between measure-
ment imprecision and quantum back-action [22], defining a
lower limit which in the case of a simplified experimental
scheme is known as the standard quantum limit (SQL) for
force detection. Nonetheless, this SQL may be beaten using
more sophisticated measurement protocols; but even in that
case, the sensitivity will ultimately be limited by thermal
and quantum fluctuations of the mechanical oscillator and the
electromagnetic field that make up the sensor [23].

Since the 1970s there have been a number of proposals
regarding an improvement of sensitivity beyond the SQL, and
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ultimately surpassing quantum and thermal fluctuations asso-
ciated with the measurement [2,24,25]. However, important
experimental demonstrations in the last few years [26,27],
and the first direct detection of gravitational waves [28], have
motivated new ideas and sophisticated experiments feeding
back to the problem of the detection of a weak classical
force coupled to a quantum-mechanical oscillator. Among
the latest experimental breakthroughs, it is worth highlight-
ing the demonstration of force and position measurement
below the SQL [29], and the achievement of quantum am-
plification of the displacement of a mechanical oscillator
using a single-trapped ion [30]. On the theoretical side, re-
cent proposals in the modification of the sensor design have
included, inserting a degenerate optical parametric amplifier
in an optomechanical cavity [31,32], introducing an auxil-
iary mechanical oscillator [33,34], using hybrid atom-cavity
optomechanical setups [35–37], and taking advantage of the
electromagnetically induced transparency in an ensemble of
three-level atoms [38].

Here we propose an alternative route based on a time-
dependent protocol that does not require the inclusion of
additional components to the optomechanical cavity. We con-
sider a mechanical oscillator parametrically coupled to an
electromagnetic cavity which is driven at the two sidebands
associated with the mechanical motion. Such a system has
been used before to perform back-action-evading (BAE) mea-
surements of a single mechanical quadrature in microwave
electromechanical systems [39–42] and optical systems [43].
In addition, it has been used to achieve dissipative mechan-
ical and electromagnetic squeezed states [44–49]. Further,
recently it has been used to demonstrate a two-tone optome-
chanical instability in BAE measurements [50]. Moreover,
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FIG. 1. Nonstationary strategy for the measurement of impulsive
forces. The strategy consists of two stages, nonthermal state prepara-
tion and nonstationary force measurement. Thus, first the mechanical
oscillator is prepared in a dissipative squeezed state, and then upon
arrival of the impulsive force, the force measurement is performed
in the nonstationary transient regime before the rethermalization
of the mechanical oscillator takes place. This strategy enables the
measurement of impulsive forces with a SNR much greater than the
maximum achievable with steady-state measurements (cf. Fig. 8).

considering two mechanical oscillators coupled to a common
cavity mode, this scheme has been used to perform two-mode
BAE measurements [51,52] and to prepare entangled mechan-
ical states [53–55].

We study two techniques for the measurement of a classical
force using the aforementioned quantum optomechanical sys-
tem and determine the conditions for optimal signal-to-noise
ratio (SNR) in the force measurement. First, we consider
force sensing in the steady state under dissipative state prepa-
ration, for which we use the stationary force noise power
spectral density (PSD) as a figure of merit to quantify the
sensitivity of the force measurement. Second, we consider a
time-dependent sensing protocol, where the mechanical os-
cillator fluctuations are first reduced dissipatively, and then
sensing is conducted in a finite measurement time before the
rethermalization of the mechanical oscillator takes place (see
Fig. 1). Since nonstationary measurements depend on the ini-
tial state of the system, the careful manipulation of the initial
conditions can lead to an improvement in the sensitivity of the
force sensor. We have identified regimes where such an ap-
proach is beneficial and analyzed this scenario quantitatively.
A nonstationary strategy similar to the one discussed here was
presented in Refs. [56,57] in the context of feedback cooling.

This paper is organized as follows. In Sec. II, we introduce
the model and obtain the Heisenberg-Langevin equations of
motion describing the system dynamics. In Sec. III, we con-
sider the definition of SNR for a generic linear nonstationary
force measurement, which gives a theoretical framework to
the rest of this work. In Sec. IV, we describe the stationary
force sensing protocol under two-tone driving and determine
the conditions for optimal force measurement based on the
corresponding stationary force noise PSD. In Sec. V, we dis-
cuss a nonstationary strategy that significantly improves the
SNR for force measurements, which considers a measurement
in the nonstationary transient regime using a mechanical os-

FIG. 2. Sketch of the optomechanical/electromechanical system
under consideration. A classical force f (t ) drives a mechanical
oscillator with resonance frequency ωm, which in turn is coupled
to an electromagnetic cavity with resonance frequency ωc under
two-tone driving. The frequencies of the input coherent tones are
ω± = ωc ± ωm.

cillator initially prepared in a dissipative squeezed state. In
Sec. VI, we conclude.

II. THEORETICAL MODEL

In this section we present the theoretical model with which
we will describe the dynamics of the physical system con-
sidered in this work. As mentioned in the introduction, this
system has been extensively studied in the past, and quite
often a model very similar to the one we present here is
used (e.g., Refs. [43,44], and supplementary materials for
Refs. [47–49]). However, different from what has been done
before, here we describe the dynamics of the mechanical
oscillator by a set of generalized quantum Langevin equations
[58–60] (see Appendix A for more details), which allow us to
give a more accurate description of the system in the nonsta-
tionary transient regime. Thus, the reader familiar with cavity
quantum optomechanical (electromechanical) systems under
two driving may skip this section but should nevertheless be
aware that the correlation functions for the mechanical noise
operators are not as usual.

We consider a classical force acting on a mechanical os-
cillator, which is coupled to an electromagnetic cavity driven
at the two sidebands detuned from the cavity resonance fre-
quency by the mechanical resonance frequency, as represented
in Fig. 2. The mechanical oscillator is described as a sin-
gle quantum harmonic oscillator with mass m and resonance
frequency ωm. This description is valid since the detuning
of the input coherent drives is adjusted to select a particular
mechanical mode. Further, we consider a high quality factor
electromagnetic cavity with free spectral range much greater
than ωm and, hence, we focus on a single cavity mode with
resonance frequency ωc selected by the external driving and
neglect scattering into other electromagnetic modes. The fre-
quencies of the input coherent tones will be ω± = ωc ± ωm,
such that they drive the two sidebands corresponding to the
chosen mechanical mode. The weak classical force to be mea-
sured acts on the mechanical oscillator shifting its position,
this accordingly modifies the effective length of the cavity
whose change can be monitored through the output electro-
magnetic field.
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The linearized Hamiltonian for this system, which is de-
rived in Appendix A, is given by (h̄ = 1)

H = ωc a†a + ωm b†b − g (α a† + α∗a) (b† + b)

− F√
2

(b† + b), (1)

where a and b are the electromagnetic and mechanical
annihilation operators, respectively; g is the single-photon
optomechanical coupling strength, and F = F (t ) corresponds
to the classical force to be measured. Further, α = ā+e−iω+t +
ā−e−iω−t , where ā± are real constants corresponding to
the amplitudes of the coherent cavity field in the steady
state.

Now, with the intention of eliminating explicit time de-
pendence in the interaction terms due to α, we move to an
interaction picture with respect to H0 = ωc a†a + ωm b†b, via
HI = U †HU − i U †∂U/∂t with U = e−iH0t . Furthermore, if
the external force is near-resonant with the mechanical oscil-
lator, we may write

F (t ) = F (t ) e−iωmt + F
∗
(t ) eiωmt , (2)

where F (t ) is a slowly varying amplitude. Thus, the Hamilto-
nian in the interaction picture will be given by

HI = − a†{[G+ + G−e2iωmt ] b† + [G+e−2iωmt + G−] b}

− F√
2

[b† + b e−2iωmt ] + H.c., (3)

where G± = g ā± (G+, G− � 0) are the effective optome-
chanical coupling strengths. Moreover, if ωm � G±, |F | [with
|F | the magnitude of F (t )], we can make a rotating-wave
approximation (RWA) and neglect the fast-oscillating terms
in Eq. (3), such that HI reduces to the effective Hamiltonian

Heff = − a† (G+ b† + G−b) − F√
2

b† + H.c. (4)

It is useful to write the effective Hamiltonian in Eq. (4) in
terms of the dimensionless mechanical and electromagnetic
quadratures. Here the mechanical quadratures are defined
as Q = (b† + b)/

√
2, P = i (b† − b)/

√
2, while the electro-

magnetic quadratures are given by X = (a† + a)/
√

2, Y =
i (a† − a)/

√
2. Hence, the effective Hamiltonian takes the

form

Heff = − [(G− + G+) Q X + (G− − G+) P Y ]

− F re Q − F im P, (5)

where F re and F im are the real and imaginary parts of F ,
respectively.

Finally, from the effective Hamiltonian in Eq. (4), the
Heisenberg-Langevin equations in the interaction picture for
the operators a and b will be given by

ȧ = −κ

2
a + i [G+ b† + G− b] + √

κ ain, (6a)

ḃ = −γ

2
b + i [G+ a† + G− a] + i√

2
[F + W]. (6b)

The electromagnetic input noise ain = ain(t ) satisfies the fol-
lowing correlation functions:

〈ain(t ) a†
in(t ′)〉 = δ(t − t ′),

〈ain(t ) ain(t ′)〉 = 〈a†
in(t ) a†

in(t ′)〉 = 〈a†
in(t ) ain(t ′)〉 = 0, (7)

as well as the input-output relation

aout (t ) + ain(t ) = √
κ a(t ), (8)

where aout (t ) will be associated with the output electromag-
netic field in the interaction picture. The mechanical quantum
Langevin force W is defined and treated in Appendix A.

In this work we focus on the dynamics of the mechanical
and electromagnetic quadratures in the interaction picture;
therefore, we stress that if the conditions considered to ensure
the validity of Eqs. (6) are satisfied (see Appendix A and
previously in this section), then the system quadratures will
obey the following system of Heisenberg-Langevin equations
[44]:

v̇ = M · v + f + ξ, (9)

where

v = [Q, P, X, Y ]T (10)

is the vector of quadrature operators, M describes the system
dynamics in the interaction picture

M =

⎡⎢⎣ −γ /2 0 0 −(G−−G+)
0 −γ /2 G−+G+ 0
0 −(G−−G+) −κ/2 0

G−+G+ 0 0 −κ/2

⎤⎥⎦,

(11)

and f is the force vector, which contains the information about
the force applied to the mechanical oscillator:

f = [−F im, F re, 0, 0]T. (12)

Further,

ξ = [−W im, W re,
√

κ Xin,
√

κ Yin]T (13)

is the input noise vector describing the Langevin noise due
to the mechanical and electromagnetic reservoirs, where
W re and W im are the real and imaginary parts of W , and
Xin = (a†

in + ain )/
√

2 and Yin = i (a†
in − ain )/

√
2 are the in-

put noises associated with the electromagnetic quadratures.
The correlation functions of the input electromagnetic noises
are given by

〈Xin(t )Xin(t ′)〉 = 〈Yin(t )Yin(t ′)〉 = 1

2
δ(t − t ′), (14a)

〈Xin(t )Yin(t ′)〉 = 〈Yin(t )Xin(t ′)〉∗ = i

2
δ(t − t ′). (14b)

Moreover, from the input-output relation in Eq. (8), we have

Xout (t ) + Xin(t ) = √
κ X (t ), (15a)

Yout (t ) + Yin(t ) = √
κ Y (t ), (15b)
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where the output electromagnetic quadratures are given by
Xout = (a†

out + aout )/
√

2, Yout = i (a†
out − aout )/

√
2. On the

other hand, the correlation functions involving the mechanical
quantum Langevin forces W re(t ) and W im(t ) are as follows:

〈W re(t )W re(t ′)〉 = 〈W im(t )W im(t ′)〉 = γ

4πωm

{∫ 	

0
dω ω coth

[
h̄ω

2kBT

]

× cos {(ω − ωm )(t − t ′)} − i
∫ 	

0
dω ω sin {(ω − ωm )(t − t ′)}

}
, (16a)

〈W re(t )W im(t ′)〉 = −〈W im(t )W re(t ′)〉 = γ

4πωm

{∫ 	

0
dω ω coth

[
h̄ω

2kBT

]
sin {(ω − ωm )(t − t ′)}

+ i
∫ 	

0
dω ω cos {(ω − ωm )(t − t ′)}

}
, (16b)

where 	 is a cutoff frequency for the continuous spectrum of
reservoir quantum harmonic oscillators [59,60].

From the Heisenberg-Langevin equation (9), it is clear
that if G+ = G−, which can be achieved by tuning the input
coherent drives, then we can perform a BAE measurement of
the mechanical Q quadrature as described in Refs. [39,40].
Otherwise, if G+ �= G−, the electromagnetic quadrature Y
will act as a force for the mechanical oscillator, introducing
additional noise in the measurement process. However, this
unbalanced detection scheme allows one to obtain arbitrarily
large dissipative squeezing of the mechanical quadratures, as
demonstrated in Ref. [44]. On the other hand, Eqs. (9) show
that each quadrature of the force affects a different mechanical
quadrature, and each mechanical quadrature is coupled to
only one quadrature of the electromagnetic field. Thus, the
continuous homodyne measurement of the output electromag-
netic field quadrature Yout (Xout) corresponds to continuously
monitoring the mechanical quadrature Q (P), which in turn
implies sensing the classical force quadrature F im (F re).

III. SIGNAL-TO-NOISE RATIO IN
FORCE MEASUREMENTS

The sensitivity of a measurement is commonly quantified
by a signal-to-noise ratio (SNR), where a more sensitive mea-
surement will have a greater associated SNR. Thus, in this
work we are interested in a definition of SNR that is able to
describe the sensitivity of stationary and nonstationary force
measurements. A SNR with these characteristics has been
presented by Vitali et al. in Refs. [56,57]. Here we provide
a thorough justification for this metric.

In order to give a formal definition of SNR, first we shall
consider how to obtain information about a classical force
applied to a mechanical oscillator using an optomechanical
scheme like the one we study here. For this purpose, we shall
focus on the sensing of the F im(t ) quadrature of the force,
which can be done through the measurement of the elec-
tromagnetic output quadrature Yout (t ), as described in the
following relationship:

Yout (t ) = A(t ) ∗ F im(t ) + N (t ), (17)

where ∗ denotes convolution, A(t ) is the amplification of the
force signal, and N (t ) is the zero-mean noise added due to

the measurement. Equation (17) can be evaluated from the
Heisenberg-Langevin equations (9) and the input-output re-
lation (8), as will be done in Sec. V.

To estimate F im(t ) from Yout (t ), we apply Yout (t ) to a lin-
ear filter with impulse response h(t ) and frequency response
H (ω), such that

Fest (t ) ≡ h(t ) ∗ Yout (t ), (18)

where Fest (t ) is the quantum estimator of the classical force
quadrature F im(t ). The estimated force may be broken down
into a signal and a noise component,

Fest (t ) = F S
est (t ) + F N

est (t ), (19)

where F S
est (t ) is the response due to the signal F im(t ) and

F N
est (t ) is the added force noise due to the measurement. These

are given by

F S
est (t ) = h(t ) ∗ A(t ) ∗ F im(t ), (20a)

F N
est (t ) = h(t ) ∗ N (t ), (20b)

respectively.

A. Signal-to-noise ratio

In the following, we shall consider the SNR of the linear
force measurement described by Eqs. (17)–(20). The SNR
is usually defined as the ratio of the mean to the standard
deviation of a given filtered measured signal [61], where the
signal is identified with the mean while the noise corresponds
to the standard deviation. Since we are interested in spectral
measurements that are in general nonstationary, we will focus
on making a description in frequency domain that accounts
for the effects of a finite measurement time. For this purpose,
we shall consider the truncated Fourier transform, which is
defined as

O(ω, Tm ) =
∫ +∞

−∞
dteiωt
Tm (t )O(t ), (21)

where O(t ) is a generic operator, 
Tm (t ) is a rectangular
window satisfying the normalization condition

1

Tm

∫ +∞

−∞
dt
∣∣
Tm (t )

∣∣2 = 1, (22)
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and Tm is the measurement time.
Thus, we define the truncated SNR as

SNR(ω, Tm ) ≡ S (ω, Tm )

N (ω, Tm )
, (23)

where the signal S (ω, Tm ) is given by

S (ω, Tm ) = |〈 Fest (ω, Tm ) 〉|, (24)

while the noise N (ω, Tm ) is defined as

N (ω, Tm ) =
√

Var[ Fest (ω, Tm ) ] . (25)

Here Fest (ω, Tm ) is the truncated Fourier transform of Fest (t )
as defined in Eq. (21), while

Var[ Fest (ω, Tm ) ] = 〈 F †
est (ω, Tm ) Fest (ω, Tm ) 〉

− 〈 F †
est (ω, Tm ) 〉〈 Fest (ω, Tm ) 〉 (26)

is the variance of Fest (ω, Tm ) [62,63]. Therefore, S (ω, Tm )
and N (ω, Tm ) correspond to the mean and standard deviation
of the truncated quantum estimator Fest (ω, Tm ), respectively.
Further, the absolute value in the definition of the sig-
nal S (ω, Tm ) in Eq. (24) was included to guarantee that
SNR(ω, Tm ) is always positive and real-valued.

Taking the truncated Fourier transform of Eq. (19), we have
that Fest (ω, Tm ) is by

Fest (ω, Tm ) = F S
est (ω, Tm ) + F N

est (ω, Tm ), (27)

with F S
est (ω, Tm ) and F N

est (ω, Tm ) the truncated Fourier trans-
forms of F S

est (t ) and F N
est (t ), respectively. Now, from Eq. (27)

and taking into account that 〈F N
est (ω, Tm )〉 = 0 given that

〈F N
est (t )〉 = 0, we may write signal and noise in Eqs. (24) and

(25) as

S (ω, Tm ) = ∣∣F S
est (ω, Tm )

∣∣, (28a)

N (ω, Tm ) =
√〈

F N†
est (ω, Tm ) F N

est (ω, Tm )
〉

= √
Tm SFest (ω, Tm ) . (28b)

Here

SFest (ω, Tm ) = 1

Tm

〈
F N†

est (ω, Tm ) F N
est (ω, Tm )

〉
(29)

is the truncated force noise PSD, which mimics the classical
definition of a periodogram PSD estimator [64–66] (see Ap-
pendix B for details). Therefore, the truncated SNR in Eq. (23)
takes the form

SNR(ω, Tm ) =
∣∣F S

est (ω, Tm )
∣∣√

Tm SFest (ω, Tm )
, (30)

which we identify as the most suitable figure of merit for
quantifying the sensitivity of any nonstationary quantum mea-
surement of a classical force. Thus, our goal is to find the
optimal conditions that maximize SNR(ω, Tm ) and, accord-
ingly, the sensitivity of the measurement.

B. Signal-to-noise ratio: Stationary case

It is common for measurements to be made in the stationary
regime, where the measurement time is much larger than the
relaxation times of the system. In this regime, the definition

of SNR given in Eq. (30) will describe the sensitivity of
the force measurement; thus, we take into account that in
this limit 
Tm (t ) � 1 [56,57], which is consistent with the
normalization condition in Eq. (22) if we consider 
Tm (t ) =
θ (t + Tm/2) − θ (t − Tm/2) and then we assume that
Tm → ∞.

Therefore, we obtain the following expressions for signal
and noise in the stationary regime:

Sst (ω) = ∣∣F S
est (ω)

∣∣, (31a)

Nst (ω, Tm ) = √
Tm SFest (ω) , (31b)

where F S
est (ω) is the Fourier transform of F S

est (t ), while SF (ω)
is the stationary force noise PSD given by (see Appendix B)

SFest (ω) =
∫ +∞

−∞

dω′

2π

〈
F N

est (ω
′) F N

est (ω)
〉
, (32)

with F N
est (ω) the Fourier transform of F N

est (t ), and it was as-
sumed that the force signal F S

est (t ) is different than zero from
t = 0. Hence, the SNR in the stationary regime will be given
by

SNRst(ω, Tm ) = Sst (ω)

Nst (ω, Tm )
=

∣∣F S
est (ω)

∣∣√
Tm SFest (ω)

. (33)

If an inverse filter is considered (see below in this section),
the expression in Eq. (33) is equivalent to the one used in
Ref. [57] to calculate the SNR for force measurements in the
stationary regime. However, since in the stationary regime the
measurement time is an arbitrary parameter, the SNR may be
rescaled with respect to 1/

√
Tm such that we have

SNR(ω) = √
Tm SNRst(ω, Tm )

=
∣∣F S

est (ω)
∣∣√

SFest (ω)
, (34)

which corresponds to the standard definition of stationary
SNR for a steady-state force measurement [37]. It is impor-
tant to note that this rescaling will modify the units of the
SNR, making it no longer dimensionless but now with units
of Hz−1/2.

A stationary SNR equal to one, SNR(ω) = 1, is often as-
sociated with the minimum force that can be measured using
a given sensing protocol [37,67]; therefore, from Eq. (34) we
can see that

√
SFest (ω) will correspond to the minimum mag-

nitude of the frequency component of the force |F S
est (ω)| that

can be measured in a given bandwidth. Hence, the stationary
force noise PSD SFest (ω) as given in Eq. (32) will be a good
figure of merit for the sensitivity of force measurements in the
stationary regime, such that the smaller SFest (ω) is, the more
sensitive the measurement will be [36,68].

As a final step in describing the quantification of force
sensitivity for a stationary force measurement, we shall con-
sider the filtering of the force signal in the real frequency
domain. To this end, first we must take the Fourier transform
of Eqs. (18)–(20). Thus, from Eq. (18), we have

Fest (ω) = H (ω)Yout (ω), (35)

where Fest (ω) and Yout (ω) are the Fourier transforms of Fest (ω)
and Yout (t ), respectively, while H (ω) is the frequency response
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of the linear filter. It is worth noting that Fest (ω) corresponds
to the estimated frequency component of the force quadrature
F im(t ). Further, following Eqs. (19) and (20), Fest (ω) may be
broken down as

Fest (ω) = F S
est (ω) + F N

est (ω), (36)

where

F S
est (ω) = H (ω) A(ω) F im(ω), (37a)

F N
est (ω) = H (ω)N (ω), (37b)

where F S
est (ω), F N

est (ω), A(ω), and N (ω), the Fourier transforms
of F S

est (t ), F N
est (t ), A(t ), and N (t ), respectively. Here, as is

standard for stationary linear measurements, we will consider
an inverse filter, which frequency response is given by

H (ω) = 1

A(ω)
. (38)

Hence, the inverse filter will rescale Yout (ω) in such a way that
Fest (ω) will have the same units of F im(ω), and F S

est (ω) and
F N

est (ω) will be given by

F S
est (ω) = F im(ω), (39a)

F N
est (ω) = N (ω)

A(ω)
. (39b)

Therefore, using Eqs. (39a) and (39b), we are able to calculate
the stationary force noise PSD as well as as the stationary SNR
using Eqs. (32) and (34), respectively.

C. Signal-to-noise ratio: Exponential window

The definition of truncated SNR given in Eq. (23), which
yields to Eqs. (30) and (34), assumes that the measurement
record is truncated using the rectangular window function

Tm (t ); however, this is not the best option when analyz-
ing experimental data, since the use of rectangular windows
reduces the frequency resolution of PSD estimates [64]. In
addition, a rectangular window function is not convenient
either to obtain simple analytical results in the nonstationary
regime, which is possible with other window functions, as we
will see below.

Therefore, in order to consider a more convenient window
function in the definition of SNR we introduce the windowed
Fourier transform

Fw{O(t )} =
∫ +∞

−∞
dteiωtw(t )O(t ), (40)

where w(t ) is a window function. This windowed Fourier
transform will replace the truncated Fourier transform in the
definition of signal and noise in Eqs. (28a) and (28b), re-
spectively, allowing us to define what we will call below the
nonstationary SNR. Using the windowed Fourier transform
it is possible to obtain a windowed version of the PSD in
Eq. (29), which will correspond to the classical definition of
modified periodogram PSD estimator [66].

Here w(t ) must satisfy the condition

1

Tm

∫ +∞

−∞
dt |w(t )|2 = 1, (41)

which guarantees that in the stationary regime the estimated
average power is the same as that in the signal. It is important
to emphasize that this normalization condition is already sat-
isfied by 
Tm (t ). Further, the chosen window must ensure that
the PSD estimate is asymptotically unbiased, i.e., that in the
limit of infinite measurement time (Tm → ∞) it reduces to the
stationary PSD satisfying the Wiener-Khinchin theorem (see
Appendix B).

On the other hand, the definition of truncated SNR in
Eq. (23) relies on the existence of a filter that allows us to
represent the quantum estimator as described in Eq. (19). This
assumption implies that we must explicitly consider some fil-
ter in order to calculate the SNR. A standard approach to filter
the output signal of a linear measurement is to apply an inverse
filter in time or frequency domain to the complete measure-
ment record. Unfortunately, this procedure is not suitable for
the estimation of nonstationary signals in the transient regime
(see Appendix C), ability that we identify as the nonstationary
operation of the transducer. However, it is possible to follow
a similar procedure but in complex frequency domain, such
that one is able to describe the nonstationary measurement of
impulsive forces.

Thus, for the purpose of filtering the signal in the nonsta-
tionary transient regime, we will use a one-sided decaying
exponential window function

wTm (t ) = e−t/2Tm θ (t ), (42)

so that the windowed Fourier transform may be written as a
Laplace transform:

Fw{O(t )} ≡ L{O(t )} =
∫ +∞

0
dte−stO(t ), (43)

where the complex variable s is given by

s = −iω + 1/2Tm. (44)

Further, if we take the Laplace transform of Eq. (17) and we
take into account the convolution theorem, we will have

Yout (s) = A(s) F im(s) + N (s), (45)

where Yout (s), A(s), F im(s), and N (s) are the Laplace trans-
forms of Yout (t ), A(t ), F im(t ), and N (t ), respectively. Hence,
we can use an inverse filter with transfer function

H (s) = 1

A(s)
, (46)

to obtain

Fest (s) = F S
est (s) + F N

est (s), (47)

where estimator, signal, and noise are given by

Fest (s) = Yout (s)

A(s)
, (48a)

F S
est (s) = F im(s), (48b)

F N
est (s) = N (s)

A(s)
. (48c)

Now we will use F S
est (s) and F N

est (s) to replace the truncated
Fourier transforms of F S

est (t ) and F N
est (t ) in the definitions of

signal and noise in Eqs. (28a) and (28b) and, accordingly, in
the SNR in Eq. (30). Further, we will drop the s notation, and
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we will refer to ω and Tm explicitly. Hence, we define the
nonstationary SNR as

SNR(ω, Tm ) = S (ω, Tm )

N (ω, Tm )
, (49)

where S (ω, Tm ) is the nonstationary signal while N (ω, Tm ) is
the nonstationary noise, which are given by

S (ω, Tm ) = |F im(−iω + 1/2Tm )|, (50a)

N (ω, Tm ) = √
Tm SFest (ω, Tm ) . (50b)

Here SFest (ω, Tm ) is the nonstationary force noise PSD given
by

SFest (ω, Tm )

= 1

Tm

〈
F N†

est (−iω + 1/2Tm ) F N
est (−iω + 1/2Tm )

〉
, (51)

which, as is shown in Appendix B, satisfies the Wiener-
Khinchin theorem in the stationary regime. We included the
explicit dependence on Tm in the nonstationary force noise
PSD in Eq. (51) in order to emphasize its nonstationary nature.

Therefore, explicitly, the nonstationary SNR will be given
by

SNR(ω, Tm ) = |F im(−iω + 1/2Tm )|√
Tm SFest (ω, Tm )

. (52)

This expression will allow us calculate analytically the non-
stationary SNR in a relatively simple and straightforward
manner. It is important to note that Eq. (52) is equivalent
to the expression that is presented without justification in
Refs. [56,57]. The deduction that we presented here corre-
sponds to one of the main results of this work.

In the deduction of Eq. (52), the inclusion of the exponen-
tial window function wTm (t ) may be seen as an approximation
that is made solely for analytical convenience. However, more
than an approximation it is included as part of a technique to
estimate the SNR for finite measurement times. A technique
that may be implemented in an experimental scenario as well.
In order to explore this possibility, it is useful to consider the
performance of the exponential window function wTm (t ), as
defined in Eq. (42), when calculating PSD estimates in the
presence of broadband white noise. To quantify this perfor-
mance it is standard to use the equivalent noise bandwidth
(ENBW), which is defined as the bandwidth of an ideal filter
(with rectangular frequency response) that would pass the
same average power as the window of interest when each is
driven by stationary random classical noise [66]. Thus, the
ENBW will be given by (normalized to 1/Tm)

ENBW =
1

Tm

∫ +∞
−∞ dt |w(t )|2∣∣ 1

Tm

∫ +∞
−∞ dtw(t )

∣∣2 , (53)

where the smaller the ENBW, the better the performance
of the window in the presence of broadband noise. There-
fore, it is easy to see that for a rectangular window function

Tm (t ), ENBW = 1; while for the exponential window func-
tion wTm (t ), ENBW = 1/4. This proves that the smoothing
effect of wTm (t ) on the measurement record increases its per-
formance in comparison to 
Tm (t ), which is a desirable effect
when analyzing experimental data.

IV. STATIONARY FORCE SENSING

In this section we shall focus on force measurements in
the stationary regime, where the system dynamics is time-
invariant in the rotating frame under consideration and a
description in real frequency domain is sufficient.

The proposal to use two-tone driving of an electromag-
netic cavity coupled to a mechanical oscillator in order to
perform an optimal measurement of a single quadrature of
the mechanical motion and, consequently, perform an optimal
measurement of a single quadrature of an external classical
force, was first suggested in 1980 by Braginsky et al. [1].
This early proposal relied on the idea of making a BAE
measurement of the mechanical quadrature of interest, which
implies that the back-action due to the measurement is redi-
rected to the unmeasured canonical conjugate quadrature.
Almost 30 years later, this idea was brought into the con-
text of cavity quantum optomechanics in Ref. [39], where
a fully quantum description of the steady-state BAE mea-
surement of a single quadrature of the mechanical motion
was made. This BAE scheme becomes evident in Eqs. (9)
if we consider G+ = G−, which can be achieved through
the appropriate manipulation of the powers of the input
drives.

However, despite its seeming to be the most obvious ap-
proach for the ultrasensitive sensing of weak forces in the
stationary regime, there are limits for which a BAE mea-
surement is not the best option for the enhancement of the
sensitivity of force measurements, as we will see below.
Thus, here we study a more general scenario, where in gen-
eral there is an asymmetry between the coupling constants
G+ and G−, and a BAE measurement is just a particular
case.

In Sec. III we saw that the sensitivity of a stationary force
measurement is well quantified by the stationary force noise
PSD SFest (ω) as given by Eq. (32). Therefore, considering
the measurement of the F im(ω) force quadrature through the
output electromagnetic quadrature Yout (ω), we shall determine
the quantum noise process F N

est (ω) using Eq. (39b) with the
ultimate goal of calculating the figure of merit SFest (ω). We
will do this using the frequency domain representations of
the input-output relation in Eq. (15b) and the Heisenberg-
Langevin equations (9), in such a way that we arrive at an
expression that explicitly shows the estimation of the force
quadrature F im(ω). A description of the measurement of
F re(ω) through the output electromagnetic quadrature Xout (ω)
would require following a procedure completely analogous to
the one presented here.

Thus, from the input-output relation in Eq. (15b), the out-
put signal in frequency domain Yout (ω) will be given by

Yout (ω) = √
κ Y (ω) − Yin(ω), (54)

where Y (ω) can be determined from the Fourier transform
of the Heisenberg-Langevin equations (9). This yields the
following coupled equations:

Y (ω) = χc(ω) [[G− + G+] Q(ω) + √
κ Yin(ω)], (55a)

Q(ω) = −χm(ω) [(G− − G+)Y (ω) + F im(ω)

+W im(ω)], (55b)
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where χc(ω) = (−iω + κ/2)−1 is the susceptibility of the
electromagnetic mode, and χm(ω) = (−iω + γ /2)−1 is the
mechanical susceptibility. Combining Eqs. (55a) and (55b),
we obtain

Y (ω) = − D(ω){[G− + G+] {F im(ω) + W im(ω)}
+ √

κ (iω − γ /2)Yin(ω)}, (56)

where

D(ω) = [G2
− − G2

+ + (iω − γ /2) (iω − κ/2)]−1. (57)

Therefore, substituting Eq. (56) into (54) leads to

Yout (ω) = A(ω) F im(ω) + N (ω), (58)

where the signal amplification A(ω) is given by

A(ω) = −√
κ (G− + G+)D(ω), (59)

and the measurement noise N (ω) is

N (ω) = A(ω)W im(ω) − Yin(ω)

+
√

κ

(G− + G+)
A(ω) [iω − γ /2]Yin(ω). (60)

Now, to estimate F im(ω) we apply the output signal Yout (ω)
to an inverse filter as described in Sec. III, and we use
Eq. (39b) to determine F N

est (ω). Hence, we have

F N
est (ω) = (iω − γ /2) (iω + κ/2)√

κ (G− + G+)
Yin(ω)

+ G− − G+√
κ

Yin(ω) + W im(ω). (61)

This expression shows three different contributions to F N
est (ω),

each with different scalings with respect to the effective op-
tomechanical coupling rates G±, which in turn relate to the
power of the coherent drives ℘± as discussed in Appendix A.
Thus, the first term in Eq. (61) represents the measurement
imprecision noise which is inversely proportional to

√
℘±,

the second term describes radiation pressure noise which
is proportional to

√
℘±, and the third term corresponds to

mechanical thermal and quantum fluctuations which are in-
dependent of the input powers ℘±.

Furthermore, in order to evaluate SFest (ω) using F N
est (ω)

in Eq. (61), we need the correlation functions associated
with Yin(ω) and W im(ω), which can be obtained by taking
the Fourier transform of the correlation functions involving
Yin(t ) and W im(t ) in Eqs. (14a) and (16a), respectively [see
Appendix A for details on the calculation of the frequency
correlation function involving W im(t )]. Therefore, we have

〈Yin(ω′)Yin(ω)〉 = π δ(ω′ + ω), (62a)

〈W im(ω′)W im(ω)〉 = 2πγ [n̄th + 1/2] δ(ω′ + ω), (62b)

where n̄th = (eh̄ωm/kBT − 1)−1 corresponds to the mean num-
ber of thermal phonons in the reservoir.

Finally, in the following we present the stationary force
noise PSD, which is the main result of this section. As before,
we distinguish the different contributions according to their
dependence on the powers of the input coherent drives. Thus,
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FIG. 3. Contributions to the stationary force noise PSD, as de-
scribed in Eqs. (63)–(67), scaled by the thermal noise floor. The
blue dashed line represents the added force noise PSD Sadd(ω) =
Simp(ω) + Srp + Simp−rp(ω), which is the joint contribution of impre-
cision and back-action noise; the red dot-dashed line corresponds
to the thermal noise floor Sth; and the continuous purple line is the
stationary force noise PSD SFest (ω). As mentioned in the discussion,
Sadd(0) can reach zero for appropriate sets of parameters, leaving
thermal noise as the ultimate limit for stationary force sensing. The
parameters used here are G−/κ = G+/κ = 1, γ /κ = 10−4.

we may write SFest (ω) as

SFest (ω) = Simp(ω) + Srp + Simp−rp(ω) + Sth, (63)

where the imprecision noise corresponds to

Simp(ω) = [ω2 + γ 2/4][ω2 + κ2/4]

2κ [G− + G+]2 , (64)

the radiation-pressure noise contribution is

Srp = [G− − G+]2

2κ
, (65)

the cross-correlation between imprecision and back-action
noises is given by

Simp−rp(ω) = − [ω2 + γ κ/4] [G− − G+]

κ [G− + G+]
, (66)

and

Sth = γ (n̄th + 1/2) (67)

is the thermal noise floor associated with the thermal fluctua-
tions of the oscillator.

Explicitly, putting all contributions together, we have

SFest (ω) = [ω2 + γ 2/4] [ω2 + κ2/4]

2κ [G− + G+]2
+ [G− − G+]2

2κ

− [ω2 + γ κ/4] [G− − G+]

κ [G− + G+]
+ γ (n̄th + 1/2).

(68)

This stationary force noise PSD and its fundamental compo-
nents, scaled by the thermal noise floor, are shown in Fig. 3.
Note that since F N

est (ω) is dimensionless, SFest (ω) will have
units of Hz, then, in order to describe the force sensitivity in
N2Hz−1, as is commonly done, we have to multiply the force
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FIG. 4. Stationary force noise PSD as given by Eq. (68), scaled
by the thermal noise floor, for different drive asymmetries G+/G−.
Here G+ was tuned to obtain each curve, while G−/κ = 1 and
γ /κ = 10−4. For the chosen parameters, C− = 4 × 104, where the
BAE measurement (G+/G− = 1) gives lowest added force noise in
the stationary regime.

noise spectrum by (
√

2 pzpf )2 = h̄mωm, such that S fest (ω) =
h̄mωmSFest (ω).

In Fig. 4 we represent graphically the stationary force noise
PSD, as given by Eq. (68), scaled by the thermal noise floor
[SFest (ω)/Sth] as a function of the dimensionless frequency
ω/κ for different values of the drive asymmetry G+/G−.
We found that as a consequence of the mutual cancellation
of the noise contributions due to imprecision and radiation-
pressure, the proposed two-tone driving scheme allows one
to reduce the force noise PSD to thermal noise at resonance,
i.e., SFest (0) = Sth and Sadd(0) = 0. Further, in Fig. 5 we an-
alyze the behavior of the resonant force noise PSD SFest (0)
as a function of the drive asymmetry G+/G− for different
values of the mechanical dissipation rate γ . As expected, a
lower dissipation rate will reduce the noise present in the
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FIG. 5. Resonant stationary force noise PSD SFest (0) in units of
κ , as a function of drive asymmetry G+/G− for different ratios of
the dissipation rates γ /κ . The curves were obtained making ω = 0
in Eq. (68). Here G− remained fixed at G−/κ = 1 and n̄th = 100. For
each γ , the resonant stationary force noise PSD reaches its minimum
when G+/G− = 1. As expected, the sensitivity of the measurement
on resonance increases when the mechanical dissipation decreases.
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FIG. 6. Added force noise PSD at resonance Sadd(0) in units of κ ,
as a function of the cooperativity C− and drive asymmetry G+/G− as
given in Eq. (71). The added force noise PSD is given by Sadd(ω) =
SFest (ω) − Sth. In the limit C− → ∞, the minimum added force noise
PSD corresponds to G+/G− = 1; however, for C− ∼ 1, the minimum
occurs for 0 � G+/G− < 1, corresponding to G+/G− = 0 for C− =
1. Here we considered γ /κ = 10−4.

force sensing and, therefore, will improve the sensitivity of
the measurement.

The results shown in Figs. 4 and 5 correspond to a regime
of parameters for which a BAE measurement (G+/G− = 1)
is the best approach to enhance the sensitivity of a stationary
force measurement; however, this is not always the case. To
prove this assertion, we shall use the added force noise PSD
Sadd(ω), which we define as the sum of the contributions due
to the measurement

Sadd(ω) = Simp(ω) + Srp + Simp−rp(ω), (69)

such that the stationary force noise PSD will be given by

SFest (ω) = Sadd(ω) + Sth. (70)

Thus, we shall consider the added force noise PSD at reso-
nance Sadd(0), which written in terms of the cooperativity of
the red sideband drive C− = 4G2

−/γ κ and the drive asymme-
try G+/G−, will be given by

Sadd(0) = γ

8

{
1

C− [1 + G+/G−]2
+ C− [1 − G+/G−]2

− 2 [1 − G+/G−]

[1 + G+/G−]

}
. (71)

This expression will allow us to find the optimal conditions
for the reduction of the force noise PSD to the thermal noise
floor, as is shown in Fig. 6. From Eq. (71), we can see that
given G+/G− = 1, Sadd(0) = 0 for C− → ∞; however, from
C− = 10 the optimal drive asymmetry is close enough to
G+/G− = 1. Thus, we can say that the optimal drive asym-
metry configuration for C− � 10 corresponds to G+/G− ≈
1. This result will again be relevant in the next section to
establish the optimal configuration for nonstationary force
measurements.

In Appendix D we do a more thorough analysis of the
different regimes defined by the drive asymmetry G+/G−,
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and we consider the conditions under which the stationary
force noise PSD SFest (ω) reduces to the thermal noise floor
at resonance. This conditions define the optimal configuration
for the realization of stationary force measurements in each
regime.

V. NONSTATIONARY FORCE SENSING

It is often the case in force sensing experiments that the
applied force is impulsive, and the measurement is necessarily
nonstationary. Further, since nonstationary measurements de-
pend on the initial state of the system, the careful manipulation
of the initial conditions can lead to an improvement in the
sensitivity of the force sensor. Therefore, we now consider a
nonstationary protocol that involves nonthermal state prepara-
tion followed by a finite time measurement (see Fig. 1). Thus,
first the mechanical oscillator is prepared in a dissipative
squeezed state, then, upon arrival of the impulsive force, the
measurement is performed before the rethermalization of the
mechanical oscillator takes place. This protocol allows one to
use different drive asymmetry configurations at the two stages
of the measurement process, one for state preparation and
another for force measurement. However, as we will show
below, it is not necessary to change the drive asymmetry in
order to improve sensitivity beyond what can be achieved with
a stationary force measurement.

A nonstationary strategy similar to the one discussed
here was presented in Refs. [56,57], where it was intro-
duced as a technique to improve the sensitivity of force
measurements in the presence of feedback cooling schemes.
Furthermore, in this context of feedback cooling, it was
initially shown in Ref. [69] and then experimentally demon-
strated for the nonstationary strategy in Ref. [70], that the
effect of state preparation can be reproduced through an es-
timation procedure. However, estimation methods require a
precise knowledge of the parameters of the system and the
system dynamics, and can be computationally expensive [70].

In the following, first, we consider the time-dependent
dynamics of the system in order to determine the explicit re-
lationship between classical force and output electromagnetic
field. Second, we quantify the noise present in the measure-
ment using the nonstationary force noise PSD. Next, we study
the preparation of the initial state of the mechanical oscillator
in a dissipative squeezed state. Finally, considering an impul-
sive Dirac δ force, we calculate and analyze the nonstationary
SNR and we establish its relationship with the initial squeezed
state of the mechanical oscillator. Since we are interested in
studying the sensitivity of nonstationary force measurements,
we shall use the expressions for nonstationary signal and
noise in Eqs. (50a) and (50b), respectively, together with the
nonstationary SNR defined in Eq. (52).

A. Time-dependent dynamics of the force sensor

In this subsection we solve the dynamics of the out-
put electromagnetic field, the result obtained does not differ
significantly from the well-known dynamics of the electro-
magnetic field in a canonical optomechanical system and
therefore this calculation can be skipped by the experienced
reader.

As stated before, to estimate the force signal F im(t ) we
need to evaluate the quadrature of the output electromagnetic

field Yout (t ). To this end, we recall the input-output relation in
Eq (15b), from which we get

Yout (t ) = √
κ Y (t ) − Yin(t ). (72)

Therefore, we need to determine the dynamics of Y (t ), which
can be obtained from the Heisenberg-Langevin equations (9).
Thus, decoupling Eqs. (9) we have that the equation of motion
for the Y (t ) quadrature is given by

Ÿ + 2� Ẏ + �2 Y = ξY , (73)

where

2� = γ /2 + κ/2, (74a)

�2 = G2
− − G2

+ + γ κ/4. (74b)

Further, the inhomogeneity ξY = ξY (t ) is

ξY (t ) = − (G− + G+) [Fim(t ) + W im(t )]

+ √
κ [Ẏin(t ) + (γ /2)Yin(t )]. (75)

Equation (73) corresponds to the dynamical equation of a
driven damped harmonic oscillator, and since it is a linear
differential equation, the complete solution for the dynamics
of Y (t ) may be written as

Y (t ) =Yp(t ) + Yh(t ), (76)

where Yp(t ) is the particular solution while Yh(t ) is the solution
to the corresponding homogeneous problem.

The particular solution Yp(t ) will be given by

Yp(t ) = D(t ) ∗ ξY (t ) =
∫ t

0
dt ′D(t ′) ξY (t − t ′), (77)

where D(t ) is the classical Green’s function of a driven
damped harmonic oscillator, defined as the solution to

D̈ + 2� Ḋ + �2D = δ(t ). (78)

Note that by calculating the Fourier transform of the lat-
ter equation, we can realize that D(t ) corresponds to the
inverse Fourier transform of D(ω), which was previously
defined in Eq. (57) and may be written as D(ω) = (−ω2 −
2iω � + �2)−1. To solve Eq. (78) and determine D(t ) we use
the discriminant of the associated homogeneous differential
equation, � = �2 − �2 = G2

− − G2
+ − [(γ − κ )/4]2, which

allows us to distinguish among three different responses of the
oscillator: � > 0 (under-damping), � < 0 (over-damping),
and � = 0 (critical damping). Thus, the (retarded) Green’s
function will be classified in three cases:

D(t ) = θ (t ) e−�t ×

⎧⎪⎨⎪⎩
sin [

√
� t]/

√
�, if � > 0

sinh [
√−� t]/

√−� , if � < 0

t, if � = 0.

(79)

On the other hand, the homogeneous solution to Eq. (73) is
given by

Yh(t ) = (G− + G+)D(t ) Q(0) + K(t )Y (0), (80)

where we used the relationship Ẏ (0) = (−κ/2)Y (0) +
(G− + G+) Q(0), which was obtained from the Heisenberg-
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Langevin Eqs. (9). Further, K(t ) is given by

K(t ) = θ (t ) e−�t ×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

γ−κ

4
√

�
sin [

√
� t]

+ cos [
√

� t], if � > 0
γ−κ

4
√−�

sinh [
√−� t]

+ cosh [
√−� t], if � < 0

γ−κ

4 t + 1, if � = 0,

(81)

which for t > 0 may be expressed compactly as

K(t ) = Ḋ(t ) + γ

2
D(t ), (82)

relationship that will be useful below. Combining Eqs. (72)
and (76), Yout (t ) will be given by

Yout (t ) = √
κ [Yp(t ) + Yh(t )] − Yin(t ), (83)

where Yp(t ) and Yh(t ) are given by Eqs. (77) and (80), respec-
tively. Thus, using Eqs. (75) and (77), we can rewrite Eq. (83)
in a form that makes explicit the amplification of the force
signal and the noise added due to the measurement, as per
Eq. (17),

Yout (t ) = A(t ) ∗ F im(t ) + N (t ), (84)

where the time-dependent signal amplification A(t ) is given
by

A(t ) = −√
κ (G− + G+)D(t ), (85)

and the time-dependent added noise due to the measurement
is

N (t ) = A(t ) ∗ W im(t ) + √
κ Yh(t ) − Yin(t )

−
√

κ

(G− + G+)
A(t ) ∗ [Ẏin(t ) + (γ /2)Yin(t )]. (86)

In the following, we will study the sensitivity of the non-
stationary force measurement using the nonstationary SNR
defined in Eq. (52).

B. Nonstationary force noise PSD

The nonstationary force noise PSD SFest (ω, Tm ), as de-
fined in Eq. (51), will allow us to describe the behavior
of the added noise as a function of the parameters in-
volved in the problem and, consequently, the parametric
influence on the SNR. Thus, in order to calculate SFest (ω, Tm )
we must first determine F N

est (s), which can be obtained us-
ing Eq. (48c). Therefore, taking the Laplace transform of
Eqs. (80), (82), (85), and (86); we can calculate N (s) and
A(s), which are the Laplace transforms of N (t ) and A(t ), re-
spectively. Then, replacing these quantities into Eq. (48c), we

have

F N
est (s) = (s + γ /2)(s − κ/2)√

κ (G− + G+)
Yin(s) + (G− − G+)√

κ
Yin(s)

+ W im(s) − Q(0) − (s + γ /2)

(G− + G+)
Y (0), (87)

where W im(s) and Yin(s) are the Laplace transforms of W im(t )
and Yin(t ), respectively. It is worth noting that the first three
terms on the right-hand side of Eq. (87) correspond to the
nonstationary version of the quantum noise process F N

est (ω) in
Eq. (61), which was used in Sec. IV to study the sensitivity of
stationary force measurements.

The expression for F N
est (s) in Eq. (87) shows three different

types of contributions to the added noise according to their
scalings with respect to the effective optomechanical coupling
rates G±, which in turn are related to the input powers ℘±
as described in Appendix A. Thus, as per Eq. (61), the first
three terms on the right-hand side of Eq. (87) correspond to
imprecision noise, radiation-pressure noise, and mechanical
thermal and quantum fluctuations, respectively. On the other
hand, the fifth term contains information on fluctuations in the
position of the mechanical oscillator, while the sixth is related
to imprecision noise.

Now, we can calculate the nonstationary force noise PSD in
Eq. (51) using F N

est (s) in Eq. (87) together with the correlation
functions associated with Yin(s) and W im(s), which are given
by

〈Y †
in(s)Yin(s)〉 = Tm/2, (88a)

〈W†
im(s)W im(s)〉 = γ Tm [n̄th + 1/2]

×
{

1

2
+ arctan [2ωmTm]

π

}
. (88b)

These correlation functions in complex frequency domain
were obtained taking the Laplace transform of Eqs. (14a) and
(16a), respectively. Therefore, if we substitute Eq. (87) into
Eq. (51), and we take into account the correlation functions in
Eqs. (88), we obtain that the nonstationary force noise PSD
SFest (ω, Tm ) may be expressed as

SFest (ω, Tm ) = Sss(ω, Tm ) + Str (ω, Tm ) + Sth(Tm ), (89)

where

Sss(ω, Tm )

= [G− − G+]2

2κ

+ |−iω + 1/2Tm + γ /2|2 |−iω + 1/2Tm − κ/2|2
2κ [G− + G+]2

+ Re[[−iω + 1/2Tm + γ /2]

× [−iω + 1/2Tm − κ/2]] × [G− − G+]

κ [G− + G+]
(90)

is the steady-state contribution due to input noise Yin(t )
which does not depend on the system initial conditions,
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while

Str (ω, Tm )

= 1

Tm

[
〈Q2〉0 + |−iω + 1/2Tm + γ /2|2

(G− + G+)2
〈Y 2〉0

+ Re(−iω + 1/2Tm + γ /2)

(G− + G+)
〈QY + Y Q〉0

]
(91)

is the transient contribution due to homogeneous solution
Yh(t ), which carries the information about the initial state of
the system and vanishes in the limit of an infinite measurement
time. The subscript 0 in the second moments in Eq. (91)
stands for its value just before the arrival of the force at t = 0.
Further,

Sth(Tm ) = γ (n̄th + 1/2)

{
1

2
+ arctan [2ωmTm]

π

}
(92)

is the thermal noise floor, whose explicit dependence on the
measurement time accounts for the rethermalization of the
transducer. Thus, for Tm → ∞ the thermal noise floor reduces
to its value in the steady state, while for Tm � 1/ωm it takes
half of this value.

As expected, when Tm → ∞ the nonstationary force noise
PSD SFest (ω, Tm ) reduces to the stationary force noise PSD
SFest (ω) in Eq. (68). It is important to emphasize that an op-
timal nonstationary force measurement will depend not only
on the ratio between the powers of the coherent drives but
also on how the measurement time is related to the system
parameters.

C. Initial state preparation

Since the transient component of the nonstationary force
PSD Str (ω, Tm ) in Eq. (91) depends on the initial conditions
for the second moments, we now consider the preparation
of the initial state of the system such that nonstationary sig-
nal can be sensed with an optimal SNR. We shall study the
situation in which the system is in a steady state prior to
the arrival of the force. In particular, we are interested in
the steady-state solution of the second moments associated
with the quadratures Q and Y which are the ones involved
in Str (ω, Tm ) as shown in Eq. (91).

Decoupling the Heisenberg-Langevin Eqs. (9), in the ab-
sence of external force (signal) we have

v̈ + 2� v̇ + �2
0 v = ξ

0
, (93)

where � was defined in Eq. (74a), and �2
0 = G2

−0
− G2

+0 +
γ κ/4. Furthermore, v is the vector of quadrature operators
defined in Eq. (10), while the noise vector ξ

0
= ξ

0
(t ) is given

by

ξ
0
= [ξQ0 , ξP0 , ξX0 , ξY 0 ]T, (94)

where the driving terms are

ξQ0 = −Ẇ im − (κ/2)W im − √
κ (G−0 − G+0)Yin, (95a)

ξP0 = Ẇ re + (κ/2)W re + √
κ (G−0 + G+0) Xin, (95b)

ξX0 = −(G−0 − G+0)W re + √
κ [Ẋin + (γ /2) Xin], (95c)

ξY 0 = −(G−0 + G+0)W im + √
κ [Ẏin + (γ /2)Yin]. (95d)

Here the subscript 0 notation indicates the scenario for initial
state preparation before the arrival of the force for those quan-
tities that can easily take different values for different instants
of time.

Since the dynamics of the quadratures is given by the
driven damped harmonic oscillator equation (93), the evolu-
tion of v(t ) will be given by

v(t ) = D0 (t ) ∗ ξ
0
(t ) + vh(t ), (96)

where convolution is defined element-wise and D0 (t ) is the
classical Green’s function described in Eq. (79) depending
now on the initial state parameter �0. Further, vh(t ) is the
vector of homogeneous solutions to Eq. (93). In the steady
state the evolution v(t ) reduces to

vss(t ) = D0 (t ) ∗ ξ
0
(t ) = F−1{D0 (ω) ξ

0
(ω)}, (97)

where ξ
0
(ω) and D0 (ω) are the Fourier transforms of ξ

0
(t ) and

D0 (t ), respectively, with D0 (ω) given by D0 (ω) = (−ω2 −
2iω � + �2

0)−1.
Therefore, the initial state nonsymmetrically ordered co-

variance matrix

� ≡ 〈
vss vT

ss

〉
0 =

⎡⎢⎢⎣
〈Q2〉0 〈QP〉0 〈QX 〉0 〈QY 〉0

〈PQ〉0 〈P2〉0 〈PX 2〉0 〈PY 〉0

〈XQ〉0 〈XP〉0 〈X 2〉0 〈XY 〉0

〈Y Q〉0 〈Y P〉0 〈Y X 〉0 〈Y 2〉0

⎤⎥⎥⎦
(98)

will be given by

� =
∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
e−i(ω+ω′ )tD0 (ω)D0 (ω′)

× 〈
ξ

0
(ω) ξT

0
(ω′)

〉
. (99)

The elements of 〈ξ
0
(ω)ξT

0
(ω′)〉 will depend on the correla-

tion functions involving W re(ω), W im(ω), Xin(ω), and Yin(ω),
which can be found from the time-dependent correlation func-
tions in Eqs. (14) and (16) [see Appendix A for details on
the calculation of the frequency correlation functions of the
Langevin force quadratures W re(ω) and W im(ω)]. The re-
quired correlation functions are given by

〈Xin(ω)Yin(ω′)〉 = 〈Yin(ω)Yin(ω′)〉 = π δ(ω + ω′), (100a)

〈Xin(ω)Yin(ω′)〉 = 〈Yin(ω)Xin(ω′)〉∗ = iπ δ(ω + ω′),

(100b)

〈W re(ω)W re(ω′)〉 = 〈W im(ω)W im(ω′)〉
= 2πγ [n̄th + 1/2] δ(ω + ω′), (100c)

〈W re(ω)W im(ω′)〉 = 〈W im(ω)W re(ω′)〉∗
= iπγ δ(ω + ω′). (100d)

Hence, 〈ξ
0
(ω)ξT

0
(ω′)〉 will be proportional to δ(ω + ω′), and,

accordingly, � reduces to

� =
∫ +∞

−∞

dω

2π
|D0 (ω)|2

∫ +∞

−∞

dω′

2π

〈
ξ

0
(ω)ξT

0
(ω′)

〉
. (101)

Finally, taking the Fourier transform of the driving terms in
Eqs. (95) to get ξ

0
(ω) and then using the correlation functions

in Eqs. (100) to obtain 〈ξ
0
(ω)ξT

0
(ω′)〉, we can use Eq. (101) to
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find the second moments in � as functions of the system pa-
rameters. Among these, we want to emphasize the following:

〈Q2〉0 = γ (n̄th + 1/2) [(κ2/4) I0 + I2]

+ (κ/2) (G−0 − G+0)2 I0, (102a)

〈P2〉0 = γ (n̄th + 1/2) [(κ2/4) I0 + I2]

+ (κ/2) (G−0 + G+0)2 I0, (102b)

〈X 2〉0 = γ (n̄th + 1/2) (G−0 − G+0)2 I0

+ (κ/2) [(γ 2/4) I0 + I2], (102c)

〈Y 2〉0 = γ (n̄th + 1/2) (G−0 + G+0)2 I0

+ (κ/2) [(γ 2/4) I0 + I2], (102d)

〈QY 〉0 = 〈Y Q〉0

= (γ κ/2) [ n̄th (G−0 + G+0) + G+0] I0. (102e)

To calculate the elements of � it was necessary to take into
account the solution to the following integrals:

I0 =
∫ +∞

−∞

dω

2π
|D0 (ω)|2, (103a)

I1 =
∫ +∞

−∞

dω

2π
|D0 (ω)|2 ω, (103b)

I2 =
∫ +∞

−∞

dω

2π
|D0 (ω)|2 ω2, (103c)

where I1 = 0, while the solutions to I0 and I2 are too lengthy
to be reported here.

From Eqs. (102a) and (102b), we can see that for G+ �=
G− the two-tone driving scheme under consideration lead to
dissipative mechanical squeezing of the Q quadrature and
antisqueezing of the P quadrature [44]. At the same time,
Eqs. (102c) and (102d) make evident that this scheme is
also producing dissipative squeezing of the electromagnetic
quadrature X and antisqueezing of the quadrature Y , as re-
ported in Ref. [45]. Furthermore, from Eq. (102e) it is clear
that this scheme also allows us to obtain entangled steady
states between light and matter. However, in accordance with
Eq. (91), a higher cross-correlation between electromagnetic
and mechanical operators will increase the added noise due
to the measurement and, accordingly, reduce the sensitivity of
the force measurement.

Since all three 〈Q2〉0, 〈Y 2〉0, and 〈QY + Y Q〉0 appear in
the transient contribution to the nonstationary force noise
PSD Str (ω, Tm ) defined in Eq. (91), it will be necessary to
consider a parameter regime for which the antisqueezing of
〈Y 2〉0 and the cross-correlation 〈QY + Y Q〉0 do not counteract
the noise reduction due to the squeezing of 〈Q2〉0. Thus, we
may note from Eq. (91) that at resonance the coefficients asso-
ciated with 〈Y 2〉0 and 〈QY + Y Q〉0 depend on the relationship
among the effective coupling constants G±, the mechanical
dissipation rate γ , and the measurement time Tm. However,
since in general G± � γ , the aforementioned coefficients will
depend only on the relationship between G± and Tm, such
that within the nonstationary transient regime if Tm � 1/G±,
the only non-negligible contribution to Str (0, Tm ) will be the
term associated with 〈Q2〉0. Therefore, regardless of the values
of 〈Y 2〉0 and 〈QY + Y Q〉0, it is to be expected that the mere
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FIG. 7. SNR for an impulsive Dirac δ force under a nonstationary
BAE measurement (G+/G− = 1, G+0/G−0 �= 1) as a function of
frequency for different measurement times. Here the maximum SNR
at resonance occurs for Tm = 5/κ (blue dotted line). The parame-
ters used are ωm/κ = 10, γ /κ = 10−4, n̄th = 10, G+/κ = G−/κ =
G−0/κ = 1. The initial state corresponds to G−0/G+0 = 0.97, which
for the considered parameters maximizes the mechanical squeezing
before the arrival of the force. For the signal, f0 = 1 and t0 = 0+ are
used.

preparation of the system in a dissipative mechanical squeezed
state will allow us to significantly reduce the added noise due
to the measurement and increase the sensitivity of the force
measurement.

D. Signal-to-noise ratio for impulsive forces

The results of the previous subsections give us the ingredi-
ents to analyze the sensitivity of nonstationary measurements
under the proposed dissipative mechanical squeezing state
preparation. Here we shall consider a Dirac δ force in order
to analyze the SNR in the nonstationary measurement of im-
pulsive forces. It is important to note that although a Gaussian
force would correspond more exactly to an experimental sce-
nario, in the impulsive limit for a Gaussian envelope (σ � Tm,
with σ the standard deviation) the SNR results are not signifi-
cantly different from those obtained for a Dirac δ force.

Thus, we consider an impulsive Dirac δ force given by

F im(t ) = f0 δ(t − t0), (104)

with f0 the amplitude of the force and t0 > 0 the arrival time.
Taking the Laplace transform of F im(t ), we get

F im(−iω + 1/2Tm ) = f0 e−(−iω+1/2Tm ) t0 , (105)

and, therefore, from Eq. (50a) we have that the signal will be
given by

S (ω, Tm ) = |F im(−iω + 1/2Tm )| = f0 e−t0/2Tm . (106)

Finally, we may replace the signal |F im(−iω + 1/2Tm )|
defined in Eq. (106) and the nonstationary force noise PSD
SFest (ω, Tm ) given by Eqs. (89)–(92), into Eq. (52) to obtain the
nonstationary SNR, SNR(ω, Tm ), for the force measurement
under consideration. The explicit form of SNR(ω, Tm ) is too
cumbersome to be shown here, however, in Figs. 7–10 we use
the resulting expression to study the nonstationary SNR as a
function of the parameters involved in the problem.
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FIG. 8. SNR at resonance SNR(0, Tm ) for an impulsive Dirac
δ force under a nonstationary BAE measurement (G+/G− = 1,
G+0/G−0 �= 1) as a function of the measurement time for dif-
ferent state preparation drive asymmetries. For each curve where
G+0/G−0 < 1, the maximum SNR occurs when Tm ∼ 1/κ; while
for G+0/G−0 = 1, a finite measurement time does not improve the
sensitivity of the force measurement. Here the optimal SNR takes
place for G+0/G−0 = 0.97 (red full line), which for the parameters
under consideration corresponds to a system prepared in an opti-
mal mechanical squeezed initial state. The parameters used were:
G+/κ = G−/κ = G−0/κ = 1, ωm/κ = 10, γ /κ = 10−4, and n̄th =
10. For the signal, f0 = 1 and t0 = 0+ were used.

Now, it is important to emphasize that the drive asymmetry
used for the preparation of the initial state in general can be
different from that used for the nonstationary force measure-
ment. Thus, as mentioned before, for the preparation of the
initial state we will consider a drive asymmetry that optimizes
the squeezing of 〈Q2〉0 as per Eq. (102a), while for the force
measurement we will use a configuration that reduces the
added noise in accordance with the nonstationary force noise
PSD SFest (ω, Tm ) in Eqs. (89)–(92). Therefore, in the follow-
ing we shall consider two different schemes for the drive
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FIG. 9. Initial state mechanical squeezing (a) and maximum SNR for an impulsive Dirac δ force under a nonstationary BAE measurement
(G+/G− = 1, G+0/G−0 �= 1) (b) as a function of the state preparation drive asymmetry (G+0/G−0) for different cooperativities of the red
sideband drive (C− = 4G2

−0/γ κ). (a) 〈Q2〉0 steady-state squeezing [−10 log10 (〈Q2〉0/〈Q2〉zpf ) dB], here 〈Q2〉0 was calculated using Eq. (102a)
and 〈Q2〉zpf = 1/2. (b) Maximum SNR at resonance calculated using Eq. (52), with F im(−iω + 1/2Tm ) as given by Eq. (105) and SFest (ω, Tm )
as described in Eqs. (89)–(92). The dot in each curve marks its maximum value, which in both plots corresponds almost exactly to the same
value of G+0/G−0. The parameters used are ωm/κ = 10, γ /κ = 10−4, and n̄th = 10. For the signal, f0 = 1 and t0 = 0+ are used. Further, for
the measurement configuration it was considered G− = G−0 and G+/G− = 1.
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FIG. 10. Difference between the maximum SNR at resonance
achieved by leaving the drive asymmetry configuration unchanged
upon arrival of the force (G+ = G+0, G− = G−0) and the non-
stationary BAE measurement (G+/G− = 1, G+0/G−0 �= 1, G− =
G−0) described in Fig. 9 [�SNRmax = max { SNRSMS(0, Tm ) } −
max { SNRBAE(0, Tm )}], as a function of G+0/G−0 for different co-
operativities C−. The dot in each curve marks the value of G+0/G−0

for which SNRBAE(0, Tm ) reaches its maximum (see Fig. 9). The pa-
rameters here, except for the coupling G+ that was used to calculate
SNRSMS(0, Tm ), are the same as those that were used to obtain Fig. 9.
Since the difference �SNRmax is in general very small (cf. Fig. 8),
the SNR achieved by leaving the drive asymmetry configuration
unchanged is still much better than what can be obtained by means
of stationary force measurements. This result yields the considerable
advantage that we do not need to know the arrival time of the force
in order to improve the sensitivity of force measurements using the
proposed nonstationary protocol.

asymmetry configuration to be used during the nonstationary
measurement. The first is a nonstationary BAE measurement
(G+/G− = 1, G+0/G−0 �= 1), while the second assumes that
the drive asymmetry is left unchanged upon arrival of the
impulsive force (G+ = G+0, G− = G−0).
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E. Nonstationary back-action-evading measurement
(G+/G− = 1, G+0/G−0 �= 1)

Since the thermal noise floor Sth(Tm ) in Eq. (92) does not
depend on the drive asymmetry G+/G−, and the transient
contribution to the nonstationary force noise PSD Str (ω, Tm )
in Eq. (91) fundamentally depends on the preparation of the
initial state only, then we can choose the configuration for
the nonstationary measurement according to the steady-state
contribution to the nonstationary PSD Sss(ω, Tm ) given by
Eq. (90). It is worth noting that Sss(ω, Tm ) is the nonstationary
version of the stationary added force noise PSD Sadd(ω) de-
fined in Eq. (69), and, therefore, the analysis made in Sec. IV
for the reduction of Sadd(ω) at resonance can be used here
in order to minimize Sss(ω, Tm ). Thus, in accordance with
Eq. (71) and Fig. 6, first we shall consider G+/G− = 1 (BAE
measurement), since it corresponds to the optimal configura-
tion for the reduction of the stationary force noise PSD for
a red sideband cooperativity C− � 10. We are going to refer
to the nonstationary SNR associated with a finite time BAE
measurement as SNRBAE(ω, Tm ).

Then in Fig. 7 we plot the SNR as a function of frequency
for different measurement times, finding that the SNR is in-
creased beyond the steady-state limit when the measurement
time belongs to the nonstationary transient regime. It is worth
noting that enhancement of the SNR occurs even far from
resonance. Further, in Fig. 8 we plot the SNR at resonance as
a function of the measurement time for different initial states
of the transducer. The initial state is characterized by the drive
asymmetry G+0/G−0 used before the arrival of the force to
prepare the system in a given steady state. From Figs. 7 and
8 we can see that the SNR at resonance for G+0/G−0 �= 1
reaches its maximum for Tm ∼ 1/κ; while from Fig. 8 we
may note that for Tm � 1/κ (Tm ∼ 1/γ ) the SNR is gradually
reduced until it reaches a point were the effect of the initial
conditions is not noticeable.

On the other hand, in Fig. 9 we show the relationship
between the initial state mechanical squeezing and the max-
imum nonstationary SNR at resonance as a function of state
preparation drive asymmetry for different red sideband coop-
erativities. Thus, it was confirmed that there is a correlation
between the dissipative mechanical squeezing before the ar-
rival of the force and the enhancement of the SNR for the
measurement of impulsive forces, such that the drive asymme-
try G+0/G−0 required to maximize the dissipative mechanical
squeezing corresponds almost exactly with the drive asymme-
try necessary to maximize the nonstationary SNR.

F. Unchanged drive asymmetry upon arrival of the force
(G+ = G+0, G− = G−0 )

Next, we shall consider the effect on the SNR of not
changing the drive asymmetry configuration upon arrival of
the impulsive force. This scenario is of special relevance when
thinking of implementations of the nonstationary strategy we
propose here, since in many of the possible applications the
arrival time of the force is unknown. Thus, as described be-
fore, we prepare the system in an optimal dissipative squeezed
initial state such that when the force kicks the mechanical
oscillator the fluctuations in the position quadrature had been
reduced, then, without changing the drive asymmetry config-

uration, the nonstationary measurement is performed. Since
the drive asymmetry configuration used during the nonsta-
tionary measurement corresponds to the one used for the
preparation of the mechanical squeezed initial state, we will
refer to the nonstationary SNR obtained using this scheme as
SNRSMS(ω, Tm ), where SMS stands for steady-state mechan-
ical squeezing.

In Fig. 10 we consider the difference between the max-
imum SNR achievable at resonance if we leave the drive
asymmetry configuration unchanged [SNRSMS(0, Tm )] and
the maximum SNR that can be obtained by performing a non-
stationary BAE measurement [SNRBAE(0, Tm )]. Thus, we plot

�SNRmax = max{SNRSMS(0, Tm )}
− max{SNRBAE(0, Tm )}. (107)

It is very interesting to note that there are regions of the space
of parameters where leaving the drive asymmetry configura-
tion unchanged allows one to obtain a maximum SNR greater
than that achievable with a nonstationary BAE measurement.
This behavior is possible because in the nonstationary tran-
sient regime the noise reduction due to the initial conditions
is greater than that due to the drive asymmetry used during
the measurement. Moreover, even in those regions where a
nonstationary BAE measurement provides a better sensitivity,
the difference �SNRmax is still very small (cf. Fig. 8), and,
therefore, the SNR achieved by leaving the drive asymmetry
configuration unchanged is still much better than what can
be obtained by means of stationary force measurements. This
result makes the proposed “squeeze and measure” strategy
highly relevant to improve the sensitivity in classical force
measurements where the arrival time of the force is unknown.

VI. CONCLUSIONS

In this paper, we have analyzed the measurement of a
classical force driving a mechanical oscillator coupled to an
electromagnetic cavity under two-tone driving. The applied
force shifts the position of the mechanical oscillator, whose
change can be monitored through the output electromagnetic
field. Thus, we studied stationary and nonstationary protocols
for the sensing of a classical force through the output elec-
tromagnetic field, and determined the conditions for optimal
sensitivity in the force measurement.

For the purpose of analyzing the force sensitivity quan-
titatively, first, we developed a theoretical framework based
on the SNR of linear spectral measurements, stationary or
nonstationary. Further, for the case of nonstationary force
sensing, we used a one-sided decaying exponential window
function to construct an inverse filter in complex frequency
domain that allow us to describe the nonstationary measure-
ment of impulsive forces preserving information on the initial
conditions of the transducer upon arrival of the force.

Then we considered force sensing in the steady state under
dissipative state preparation, for which we used the stationary
force noise PSD as a figure of merit to quantify the sensitivity
of the force measurement. We found that as a consequence
of the mutual cancellation of the noise contributions due to
imprecision and radiation pressure, the proposed two-tone
driving scheme allows one to reduce the stationary force
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noise PSD to the thermal noise floor at resonance. Further-
more, we found that a BAE measurement is not always the
best approach to enhance the sensitivity of a stationary force
measurement, but there are regimes of parameters for which
the dissipative preparation of the mechanical oscillator in a
squeezed state is optimal.

Finally, we considered a nonstationary protocol that in-
volves nonthermal state preparation followed by a finite time
measurement. This protocol allows one to use different drive
asymmetry configurations at the two stages of the measure-
ment process, one for state preparation and another for force
measurement. Thus, first the fluctuations are reduced dissipa-
tively and, then, sensing is conducted in a finite measurement
time. We analyzed this scenario quantitatively using a nonsta-
tionary SNR and identified regimes where such an approach
is beneficial. Hence, it was confirmed that there exists a cor-
relation between the dissipative mechanical squeezing before
the arrival of the force and the enhancement of the SNR
for the measurement of impulsive forces, such that the state
preparation drive asymmetry required to maximize the dissi-
pative mechanical squeezing corresponds almost exactly to
that necessary to maximize the SNR when a nonstationary
BAE measurement is performed. Furthermore, we found that
leaving the drive asymmetry configuration unchanged upon
arrival of the force is not particularly detrimental to the sen-
sitivity of the force measurement, but on the contrary, in
certain regions of the parameter space it allows us to obtain
a SNR greater than that achievable with a nonstationary BAE
measurement. This result is of particular relevance in appli-
cations where the arrival time of the force is unknown, since
it is no longer necessary to resort to cyclic repetitions of the
squeezing and measurement steps.
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APPENDIX A: DERIVATION OF HAMILTONIAN

The total Hamiltonian describing the dynamics of this sys-
tem is given by

Htot = Hc + Hm + Hcm + Hd + Hf , (A1)

where Hc represents the cavity mode, Hm describes the
mechanical oscillator, Hcm accounts for the optomechanical
(electromechanical) coupling, Hd describes the coherent driv-
ing, and Hf describes the contribution to the dynamics due to
the external classical force. The terms in Eq. (A1) are given
by

Hc = h̄ ωc a†a, (A2a)

Hm = h̄ ωm

2
[Q2 + P2], (A2b)

Hcm = −h̄ g
√

2Qa†a, (A2c)

Hd = ih̄ [E+e−iω+t + E−e−iω−t ] a† + H.c., (A2d)

Hf = −h̄ F (t ) Q, (A2e)

where a† and a are the electromagnetic creation and annihila-
tion operators, respectively, obeying the bosonic commutation
relation [a, a†] = 1. Q and P are the dimensionless me-
chanical position and momentum defined as q = √

2 qzpf Q
and p = √

2 pzpf P, where qzpf = √
h̄/2mωm and pzpf =√

h̄mωm/2 are the zero-point fluctuations of the oscillator
position and momentum operators, respectively, such that
[Q, P] = i. Further, g = −qzpf [∂ωcav(q)/∂q]q=0 is the single-
photon optomechanical coupling strength, where ωcav(q) is
the position-dependent frequency of the cavity mode with
ωcav(0) = ωc; while f (t ) = √

2 pzpf F (t ) is the classical force
to be measured, which is defined such that the force F (t ) has
units of Hz. Moreover, E± are the coherent driving strengths,
which are in general complex numbers such that

E± = E±eiθ± , (A3)

where E± are real constants related to the input powers ℘± by

E± =
√

κ℘±
h̄ ω±

, (A4)

with κ the decay rate of the cavity mode, and the phases θ±
can be chosen at convenience as discussed below. Since we
are considering two-tone driving, the driving Hamiltonian in
Eq. (A2d) is different from that considered in a canonical op-
tomechanical scenario in which force sensing has previously
been carefully considered.

We shall describe the dynamics of the mechanical oscil-
lator by a set of generalized quantum Langevin equations
[58–60], while the electromagnetic field dynamics will be
described by the input-output theory of quantum optics
[71–73]. The input-output formalism corresponds to a gen-
eralized quantum Langevin equation under a RWA on the
system-reservoir interaction Hamiltonian. This approximation
is generally valid when the frequency of the subsystem is typi-
cally much greater than the system-reservoir coupling strength
and any other relevant rate in the system. Therefore, is suitable
for the description of the electromagnetic field, but not always
for the mechanical oscillator. In fact, the RWA turns out to be
a good approximation for the mechanical oscillator dynamics
only when the mechanical quality factor Qm = ωm/γ is such
that Qm � 1, and ω−1

m is faster than the timescales associated
with the phenomena of interest [60], restrictions that in prin-
ciple we are not considering.
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Thus, the Heisenberg-Langevin equations representing the
system dynamics read

Q̇ = ωmP, (A5a)

Ṗ = −ωmQ − γ P + g
√

2 a†a + F + W, (A5b)

ȧ = −
[
iωc + κ

2

]
a + ig

√
2 Q a

+ [E+e−iω+t + E−e−iω−t ] + √
κ ain, (A5c)

where W = W (t ) is the stochastic Langevin force due to the
thermal mechanical reservoir, with the correlation function

〈W (t )W (t ′)〉 = γ

πωm
{Fr (t − t ′) + iFi(t − t ′)}, (A6)

where

Fr (t ) =
∫ 	

0
dω ω cos (ωt ) coth (h̄ω/2kBT ), (A7a)

Fi(t ) = −
∫ 	

0
dω ω sin (ωt ), (A7b)

such that the reservoir is assumed to be in thermal equilibrium
at temperature T and 	 is a cutoff frequency for the con-
tinuous spectrum of reservoir quantum harmonic oscillators
[59,60]. In the high-temperature limit (kBT � h̄ω, 	 → ∞),
coth (h̄ω/2kBT ) ≈ 2kBT/h̄ω, and the symmetric part of the
correlation function Fr becomes proportional to a Dirac δ

function, Fr (t ) = (2πkBT/h̄) δ(t ), while the antisymmetric
part Fi reduces to Fi(t ) = πδ̇(t ).

On the other hand, ain = ain(t ) is the input white noise
of the electromagnetic quantum vacuum, which satisfies the
correlation functions

〈ain(t ) a†
in(t ′)〉 = δ(t − t ′),

〈ain(t ) ain(t ′)〉 = 〈a†
in(t ) a†

in(t ′)〉 = 〈a†
in(t ) ain(t ′)〉 = 0, (A8)

where we assumed zero thermal photons in the electromag-
netic field reservoir. Further, the electromagnetic operators
satisfy the input-output relation

aout (t ) + ain(t ) = √
κ a(t ), (A9)

where aout (t ) is associated with the output electromagnetic
field [71,73].

1. Linearization of the Heisenberg-Langevin equations

In the regime where the coherent drive is strong enough to
efficiently extract information about the mechanical oscillator
motion, the dynamics of the physical system is well described
by linearizing the Heisenberg-Langevin equations around the
semiclassical steady state, such that the operators correspond
to semiclassical evolution plus quantum noise fluctuations.
The semiclassical steady-state solutions to Eqs. (A5) are ob-
tained from the expectation value of the Heisenberg-Langevin
equations in the absence of external force and under a mean-
field approximation,

˙〈Q〉 = ωm〈P〉, (A10a)

˙〈P〉 = −ωm〈Q〉 − γ 〈P〉 + g
√

2 |α|2, (A10b)

α̇ = −
[
iωc + κ

2

]
α + ig

√
2〈Q〉α

+ [E+e−iω+t + E−e−iω−t ], (A10c)

where 〈Q〉, 〈P〉, and α = 〈a〉 are all time-dependent. Due
to the coherent driving, 〈Q〉 and 〈P〉 will oscillate around
constant values, and, therefore, they can be written as 〈Q〉 =
Q + Q̃(t ), 〈P〉 = P + P̃(t ), where Q and P are constant time
averages while Q̃(t ) and P̃(t ) are oscillations around these
averages. Taking the time averages of Eqs. (A10a) and (A10b)
over a very long period of time after the system reached the
steady state, we have

Q = 1

t1 − t0

∫ t1

t0

dt〈Q〉 = g
√

2

ωm
[ā2

+ + ā2
−], (A11a)

P = 1

t1 − t0

∫ t1

t0

dt〈P〉 = 0, (A11b)

with t0 a time in the steady state and t1 > t0 much greater
that all the timescales involved in the problem. Besides, if
|Q̃(t )| � κ/(2

√
2 g), which is the case for stable optomechan-

ical systems [60], then the contribution of Q̃(t ) to Eq. (A10c)
is negligible and the cavity field will be in a time-dependent
coherent state |α〉, having amplitude

α = ā+e−iω+t + ā−e−iω−t , (A12)

where

ā± = E±
κ/2 − i[g

√
2 Q ± ωm]

. (A13)

To simplify calculations, and without loss of generality,
we may assume the steady-state amplitudes ā± to be
real. This corresponds to adjusting the phase reference for
the input coherent drives, such that in Eq. (A3), θ± =
− arctan [2 (g

√
2 Q ± ωm )/κ]. Thus, the steady-state electro-

magnetic amplitudes will be given by

ā± = E±√
(κ/2)2 + [g

√
2 Q ± ωm]2

, (A14)

which is a nonlinear equation for the amplitudes ā±, given the
definition of Q in Eq. (A11a). To linearize the Heisenberg-
Langevin equations we make the replacements Q → 〈Q〉 + Q,
P → 〈P〉 + P, and a → 〈a〉 + a. Since the coherent drive is
assumed to be strong, then ā± will be large in comparison
to the other parameters involved in the problem, and, in con-
sequence, any interaction term (proportional to g) that is not
enhanced by α will be neglected in the resulting linearized
equations. Thus, the linearized Heisenberg-Langevin equa-
tions take the form

Q̇ = ωmP, (A15a)

Ṗ = −ωmQ − γ P + g
√

2 (α a† + α∗ a) + F + W,

(A15b)

ȧ = −
[
iωc + κ

2

]
a + i g

√
2 α Q + √

κ ain, (A15c)

which can be obtained from the linearized Hamiltonian

H = h̄ωm

2
(Q2 + P2) + h̄ωca†a − h̄

√
2 g (α a† + α∗a) Q

− h̄F Q. (A16)

It is useful to write the Heisenberg-Langevin equations
corresponding to the Hamiltonian in Eq. (A16) in terms of
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creation and annihilation operators only, where b = (Q +
iP)/

√
2 and b† = (Q − iP)/

√
2 are introduced as the mechan-

ical annihilation and creation operators, respectively. Thus,

ȧ = −
[
iωc + κ

2

]
a + i gα [b† + b] + √

κ ain, (A17a)

ḃ = −iωmb + γ

2
[b† − b] + i g

√
2 [α a† + α∗ a]

+ i√
2

[F + W], (A17b)

and the linearized Hamiltonian takes the form

H = h̄ωca†a + h̄ωmb†b − h̄g (α a† + α∗a) [b† + b]

− h̄F√
2

[b† + b]. (A18)

This Hamiltonian is the starting point in the main text.

2. Langevin force in the interaction picture

Moving to the interaction picture (rotating frame), as ex-
plicitly shown in the main text, modifies not only the system
Hamiltonian but also the interaction between system and
reservoir contained in the open quantum system model used
to describe the system dynamics. Hence, to avoid unwanted
time dependencies in the Heisenberg-Langevin equations, we
consider a relatively narrow band around the frequency of the
mechanical oscillator, such that we may write the stochastic
Langevin force W (t ) as

W (t ) = W (t )e−iωmt + W∗
(t )eiωmt , (A19)

where W (t ) is a slowly varying stochastic amplitude which
preserves the statistical properties of W (t ). Thus, if ωm �
γ , |W|, with |W| the magnitude of W (t ), then we will be
able to perform a further RWA, but now in the interaction
of the mechanical oscillator with its reservoir. It is important
to note that the fulfillment of these conditions will require a
weak coupling between system and reservoir. The correlation
functions involving W (t ) and W∗

(t ) are the following:

〈W (t )W (t ′)〉 = 〈W∗
(t )W∗

(t ′)〉 = 0, (A20a)

〈W (t )W∗
(t ′)〉 = γ

2πωm

{∫ 	

0
dω ω

{
coth

[
h̄ω

2kBT

]
+ 1

}

× e−i(ω−ωm )(t−t ′ )

}
, (A20b)

〈W∗
(t )W (t ′)〉 = γ

2πωm

{∫ 	

0
dω ω

{
coth

[
h̄ω

2kBT

]
− 1

}

× ei(ω−ωm )(t−t ′ )

}
. (A20c)

From these expressions the correlation functions in Eqs. (16)
may be calculated.

3. Frequency correlation functions of the Langevin
force quadratures

In Sec. II we showed that the Heisenberg-Langevin
equations describing the dynamics of the mechanical and
electromagnetic quadratures depend on the real and imag-
inary parts of W (t ), i.e., W re(t ) and W im(t ), respectively.
Moreover, in order to evaluate the stationary force noise PSD
SFest (ω) in Sec. IV and the initial conditions for the nonstation-
ary measurement in Sec. V, we need the Fourier transform
of the correlation functions involving W re(t ) and W im(t ) in
Eqs. (16). Thus, considering 	 → ∞, for |ω| < ωm we have

〈W re(ω)W re(ω′)〉
= 〈W im(ω)W im(ω′)〉

= πγ

2ωm

(
(ω + ωm )

{
coth

[
h̄ (ω + ωm )

2kBT

]
+ 1

}
+ (ω − ωm )

{
coth

[
h̄ (ω − ωm )

2kBT

]
+ 1

})
δ(ω + ω′),

(A21a)

〈W re(ω)W im(ω′)〉
= 〈W im(ω)W re(ω′)〉∗

= iπγ

2ωm

(
(ω + ωm )

{
coth

[
h̄ (ω + ωm )

2kBT

]
+ 1

}
− (ω − ωm )

{
coth

[
h̄ (ω − ωm )

2kBT

]
+ 1

})
δ(ω + ω′).

(A21b)

Here it is important to take into account that
coth (h̄ω/2kBT ) = 2 n̄th(ω) + 1, where n̄th(ω) is the
Bose-Einstein occupation factor given by n̄th(ω) =
(eh̄ω/kBT − 1)−1. Now, for simplicity, we shall consider the
high-temperature limit (kBT � h̄ω), where the approximation
coth (h̄ω/2kBT ) ≈ 2kBT/h̄ω holds, and the correlation
functions in Eqs. (A21) reduce to

〈W re(ω)W re(ω′)〉 = 〈W im(ω)W im(ω′)〉
= 2πγ (n̄th + 1/2) δ(ω + ω′), (A22a)

〈W re(ω)W im(ω′)〉 = 〈W im(ω)W re(ω′)〉∗
= iπγ δ(ω + ω′), (A22b)

where n̄th = n̄th(ωm ) corresponds to the mean number of ther-
mal phonons in the reservoir.

APPENDIX B: POWER SPECTRAL DENSITY AND THE
WIENER-KHINCHIN THEOREM

In this Appendix our goal is to define the PSD for a generic
quantum noise process and to prove the stationary Wiener-
Khinchin theorem, which relates the first-order correlation
function of a given noise process to its stationary PSD as
Fourier transform pairs. For this purpose, it is necessary to
apply a window function to the operator that represents the
quantum noise process in order to guarantee the convergence
of the integrals involved in the calculations. Thus, we will first
consider a rectangular window as is commonly done, and then
we will consider an exponential window which we use in this
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work for convenience in the analytical calculation of the PSD
in the nonstationary regime.

1. Power spectral density

First, we consider the PSD of a quantum noise process
represented by a generic operator O(t ), which is defined as

SO(ω, Tm ) = 1

Tm
〈O†(ω, Tm )O(ω, Tm ) 〉, (B1)

where

O(ω, Tm ) =
∫ +∞

−∞
dteiωt
Tm (t )O(t ) (B2)

is the truncated Fourier transform of O(t ) [23,74]. Here Tm is
the measurement time, while 
Tm (t ) is a rectangular window
function equal to one in the interval (0, Tm ) and zero else-
where. Therefore, from Eqs. (B1) and (B2), it follows that the
PSD takes the form

SO(ω, Tm ) = 1

Tm

∫ Tm

0
dt

∫ Tm

0
dt ′

× e−iω (t−t ′ )〈O†(t )O(t ′) 〉. (B3)

The definition of PSD given in Eq. (B1) mimics the classical
definition of the periodogram PSD estimator [65,66], where
the quantity O†(ω, Tm )O(ω, Tm )/Tm will correspond here to
the periodogram of the quantum signal O(t ).

Now we shall prove the nonstationary Wiener-Khinchin
theorem, which is finite measurement time generalisation of
the stationary result we will see below. For this purpose,
we will follow an idea analogous to the classical result pre-
sented in Ref. [75]. Here it is important to note that we call
nonstationary Wiener-Khinchin theorem to a rule valid for
nonstationary quantum noise processes that relates the two-
time correlation function to the PSD. Therefore, reorganising
the integration domain in the Eq. (B3), we have

SO(ω, Tm ) = 1

Tm

{∫ Tm

0
dt

∫ t

0
dt ′ +

∫ Tm

0
dt ′

∫ t ′

0
dt

}
× e−iω(t−t ′ )〈O†(t )O(t ′) 〉, (B4)

and making a change of variable in each pair of integrals,

SO(ω, Tm ) = 1

Tm

∫ Tm

0
dt

∫ t

0
dτe−iωτ 〈O†(t )O(t − τ ) 〉

+ 1

Tm

∫ Tm

0
dt ′

∫ t ′

0
dτeiωτ 〈O†(t ′ − τ )O(t ′) 〉,

(B5)

where in each term τ was chosen in such a way that it is al-
ways positive, τ = t − t ′ in the first term and τ = t ′ − t in the
second term. Since t ′ is a dummy variable in the second term
on the right-hand side of Eq. (B5), and 〈O†(t − τ )O(t ) 〉∗ =
〈O†(t )O(t − τ ) 〉, hence,

SO(ω, Tm ) = 2� 1

Tm

∫ Tm

0
dt

∫ t

0
dτ eiωτ C(τ, t ), (B6)

where C(τ, t ) = 〈O†(t − τ )O(t ) 〉 is the first-order correla-
tion function. Furthermore, from Eq. (B3) it is easy to prove

that

C(τ, Tm ) =
{

1 + Tm
∂

∂Tm

}∫ +∞

−∞

dω

2π
e−iωτ SO(ω, Tm ), (B7)

which is valid for |τ | < Tm. Equations (B6) and (B7) con-
stitute the nonstationary Wiener-Khinchin theorem, which is
valid for both stationary and nonstationary signals.

Next, from Eq. (B6) we shall prove the stationary Wiener-
Khinchin theorem. However, in order to do so, the quantum
noise process represented by O(t ) needs to be wide-sense sta-
tionary, i.e., the correlation function C(τ, t ) must depend only
on the time difference τ . This time-homogeneity condition is
satisfied when a physical system described by O(t ) is in a
stationary steady state, which is the situation that we will now
consider. Thus, we define the stationary first-order correlation
function as

C(τ ) = lim
t→∞C(τ, t ), (B8)

where the limit was included to reiterate that we are consid-
ering a system in its steady state. Hence, in the stationary
regime, we may write Eq. (B6) as

SO(ω, Tm ) = 2Re
1

Tm

∫ Tm

0
dt

∫ t

0
dτeiωτC(τ ). (B9)

Here we can use the the integral identity∫ Tm

0
dt

∫ t

0
dτg(τ ) =

∫ Tm

0
dτ g(τ ) (Tm − τ ), (B10)

which can be easily demonstrated making g(τ ) = d f (τ )/dτ

(see Appendix C of Ref. [76] for details). Thus, Eq. (B9) takes
the form

SO(ω, T ) = 2Re
1

Tm

∫ Tm

0
dτeiωτC(τ ) (Tm − τ ). (B11)

Now, we consider the limit of infinite measurement time
(Tm → ∞), where the truncated PSD SO(ω, Tm ) reduces to
the the stationary PSD SO(ω),

SO(ω) ≡ lim
Tm→∞

SO(ω, Tm ). (B12)

Therefore, from Eq. (B11), we have

SO(ω) = 2Re
∫ ∞

0
dτeiωτC(τ )

=
∫ ∞

0
dτe−iωτC∗(τ ) +

∫ ∞

0
dτeiωτC(τ ). (B13)

Since the signal is wide-sense stationary, it is satisfied
C∗(−τ ) = C(τ ) and, then,

SO(ω) =
∫ 0

−∞
dτeiωτC(τ ) +

∫ ∞

0
dτeiωτC(τ )

=
∫ +∞

−∞
dτeiωτC(τ ). (B14)

Finally, we got the stationary Wiener-Khinchin theo-
rem, which relates the stationary PSD SO(ω) and the
first-order correlation function C(τ ) as Fourier transform
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pairs,

SO(ω) = F{C(τ )} =
∫ ∞

−∞
dτeiωτC(τ ), (B15a)

C(τ ) = F−1{SO(ω)} =
∫ ∞

−∞

dω

2π
e−iωτ SO(ω), (B15b)

where F{·} is the Fourier transform with respect to τ , and
F−1{·} is its inverse transform.

From Eqs. (B8) and (B15a), we may write the stationary
PSD SO(ω) explicitly as

SO(ω) = lim
t→∞

∫ +∞

−∞
dτeiω τ 〈O†(t )O(t + τ ) 〉. (B16)

Furthermore, if O(t ) is Hermitian, writing O(t ) as the inverse
Fourier transform of O(ω) in Eq. (B16) yields to

SO(ω) =
∫ +∞

−∞

dω′

2π
〈O(ω′)O(ω) 〉, (B17)

where we assumed the noise correlators 〈O(ω′)O(ω)〉 to be
proportional to a Dirac δ function of the form δ(ω′ + ω),
which is true in many applications including those examined
in this work.

2. Power spectral density: Exponential window

Now we shall consider an alternative definition of PSD
which relies on the use of an exponential window in the calcu-
lation of the involved Fourier transforms, which facilitates the
analytical calculation of the PSD in the nonstationary regime.
Here we will show that although this definition is not standard,
it also leads to the stationary Wiener-Khinchin theorem in the
long measurement time limit.

Thus, we define the nonstationary PSD as

SO(ω, Tm ) = 1

Tm
〈O†(−iω + 1/2Tm )O(−iω + 1/2Tm ) 〉,

(B18)

where

O(−iω + 1/2Tm ) =
∫ +∞

0
dt e−(−iω+1/2Tm ) tO(t ). (B19)

It is worth noting that Eqs. (B18) and (B19) correspond to the
classical definition of modified periodogram PSD estimator
[66].

Now, following a procedure completely analogous to the
one shown before, we arrive to the following expression:

SO(ω, Tm ) = 2Re
1

Tm

∫ +∞

0
dte−t/Tm

∫ t

0
dτ

× e(iω+1/2Tm ) τ C(τ ). (B20)

Here we can use the the integral identity∫ +∞

0
dte−t/Tm

∫ t

0
dτg(τ ) = Tm

∫ +∞

0
dτ e−τ/Tm g(τ ),

(B21)

which, as before, can be proved making g(τ ) = d f (τ )/dτ .
Therefore, we will have

SO(ω, Tm ) = 2Re
∫ +∞

0
dτe−τ/Tm e(iω+1/2Tm )τC(τ ), (B22)

which in the infinite measurement time limit yields to

lim
Tm→∞

SO(ω, Tm ) = 2Re
∫ +∞

0
dτeiωτC(τ ). (B23)

Finally, since the right-hand side of Eq. (B23) correspond
to the right-hand side of the first part of Eq. (B13), we arrive
to the desired result

SO(ω) = lim
Tm→∞

SO(ω, Tm ), (B24)

from which follows the stationary Wiener-Khinchin theorem
described in Eqs. (B15a) and (B15b).

APPENDIX C: INVERSE FILTER

To filter the output signal of a linear measurement such as
the one described in Eq. (17), Yout (t ) = D(t ) ∗ F im(t ) + N (t ),
it is standard to apply an inverse filter to the complete mea-
surement record in such a way that it is possible to recover
the original signal. In principle, the inverse filter provides
an exact solution to the problem of recovering the signal of
interest from a given measured output signal, however, when
it is required to filter a signal in the transient nonstationary
regime this solution is fraught with difficulties. To see this, we
shall consider the particular measurement under study, which
is well described in Sec. V; nonetheless, the results shown
here are valid for any linear measurement.

1. Inverse filtering in time domain

In time domain, the inverse filter approach corresponds to
deconvolve the measurement record Yout (t ) using a linear filter
with impulse response

h(t ) = A−1(t ), (C1)

where A−1(t ) is the convolution inverse of A(t ) satisfying

A−1(t ) ∗ A(t ) = δ(t ). (C2)

Taking the Fourier transform of Eq. (C2), we can find that
A−1(t ) is given by

A−1(t ) = F−1{1/A(ω)}, (C3)

where A(ω) = F{A(t )}, being F{·} the Fourier transform and
F−1{·} its inverse. Thus, the quantum estimator Fest (t ) =
h(t ) ∗ Yout (t ) described in Eq. (18), will take the form

Fest (t ) = A−1(t ) ∗ Yout (t ) = F im(t ) + Fnoise(t ), (C4)

where

Fnoise(t ) = A−1(t ) ∗ N (t ). (C5)

From Eq. (85), we can calculate A−1(t ), which will be given
by

A−1(t ) = − 1√
κ (G− + G+)

D−1(t ), (C6)
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where D−1(t ) is the convolution inverse of the Green’s func-
tion D(t ), which is given by

D−1(t ) = δ̈(t ) + 2� δ̇(t ) + �2 δ(t ). (C7)

Thus, we may convolve Yout (t ) with h(t ) = A−1(t ) to obtain
the quantum estimator,

Fest (t ) = − 1√
κ (G− + G+)

D−1(t ) ∗ Yout (t ). (C8)

Now considering the output signal as given by Eq. (83),
Yout (t ) = √

κ [Yp(t ) + Yh(t )] − Yin(t ), it is important to notice
that

D−1(t ) ∗ Yh(t ) = Ÿh(t ) + 2� Ẏh(t ) + �2Yh(t ), (C9)

where the right-hand side is clearly zero since it corresponds
to the definition of the homogeneous solution and, thus,
D−1(t ) ∗ Yh(t ) = 0. Hence,

Fest (t ) = − 1√
κ (G− + G+)

D−1(t ) ∗ [
√

κ Yp(t ) − Yin(t )],

(C10)

and, therefore, all information about the initial conditions is
lost, remaining in Fest (t ) only the terms with information on
the steady state of the system.

2. Inverse filtering in frequency domain

In frequency domain the inverse filtering is completely
equivalent to what was done in time domain. Therefore, the
outlook is not very encouraging either for the filtering of the
signal in the nonstationary transient regime. However, as a
matter of completeness we shall describe the procedure.

From Eqs. (35) and (38) we have that

Fest (ω) = Yout (ω)

A(ω)
, (C11)

where Yout (ω) may be calculated taking the Fourier transform
of Eq. (83), such that

Yout (ω) = √
κ [Yp(ω) + Yh(ω)] − Yin(ω), (C12)

with Yp(ω), Yh(ω), and Yin(ω), the Fourier transforms of Yp(t ),
Yh(t ), and Yin(t ), respectively. Here Yh(ω) = 0, and using the
explicit form of A(ω) in Eq. (59), we obtain that the frequency
component of the estimated force quadrature takes the form

Fest (ω) = −
√

κ Yp(ω) − Yin(ω)√
κ (G− + G+)D(ω)

. (C13)

Therefore, the information on the initial conditions contained
in Yh(t ) is as before eliminated.

APPENDIX D: STATIONARY FORCE NOISE POWER
SPECTRAL DENSITY

In this Appendix, we study the different regimes defined by
the drive asymmetry G+/G−, and we consider the conditions
under which the stationary force noise PSD SFest (ω) in Eq. (68)
reduces to the thermal noise floor at resonance. This condi-
tions define the optimal configuration for the enhancement
of the sensitivity of stationary force measurements in each
regime. For convenience in the analysis and presentation of

the results, we shall use the added force noise PSD Sadd(ω)
given by Eq. (69).

1. Cavity-assisted mechanical sideband cooling
(G+ = 0, G− > 0)

A relevant limit to consider first is G+ = 0, which
corresponds to cavity-assisted sideband cooling (SBC) of me-
chanical motion [77,78]. The added noise PSD in this case is

SSBC
add (ω) = 1

2κ

{
1

G2−

{[
ω2 + γ κ

4

]2
+
[ω

2

]2
(γ − κ )2

}
+ G2

− − 2
[
ω2 + γ κ

4

]}
, (D1)

which at resonance becomes

SSBC
add (0) = γ

8

[
1

C−
+ C− − 2

]
, (D2)

with

C− = 4G2
−

γ κ
(D3)

being the cooperativity associated with a red sideband drive.
At first glance one could think that the cooling of the

harmonic oscillator to its ground state could help improve the
sensitivity of the force sensor, since it eliminates the noise due
to thermal fluctuations. However, since the cooling is achieved
by adding damping to the mechanical oscillator, not only the
added noise is reduced but also the sensitivity to any external
force [79]. Therefore, the sensitivity of the force measurement
is not enhanced by the SBC protocol (cf. Figs. 4, 5, and 6),
nevertheless, it will be used as a reference to compare other
protocols. Thus, minimizing Eq. (D1) with respect to G2

−, we
get

(G2
−)SBC

min =
{[

ω2 + γ κ

4

]2
+
[ω

2

]2
(γ − κ )2

}1/2

, (D4a)

[
SSBC

add (ω)
]

min = 1

κ

{{[
ω2 + γ κ

4

]2
+
[ω

2

]2
(γ − κ )2

}1/2

−
[
ω2 + γ κ

4

]}
. (D4b)

At resonance, Eq. (D4b) reduces to [SSBC
add (0)]min = 0, which

is achieved at coupling C− such that (C−)SBC
min = 1, as can be

seen from Eq. (D2).

2. Back-action-evading measurement (G− = G+, G− > 0)

Early proposals for the enhancement of the sensitivity of
single-quadrature force measurements relied on the idea of
performing a BAE measurement of the mechanical quadrature
carrying information on the force component of interest, such
that the back-action due to the measurement is redirected to
the unmeasured canonical conjugate quadrature [1]. Using the
two-tone driving scheme under consideration, we can tune
the coherent drives such that G+ = G− and make a BAE
measurement of Q in order to sense F im, as can be followed
from Eqs. (9). This two-tone BAE measurement was orig-
inally due to Braginsky et al. [1,4], but was brought into
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the context of cavity quantum optomechanics and electrome-
chanics in Refs. [39,40] and demonstrated experimentally in
Refs. [41–43]. Nevertheless, despite its seeming to be the
most obvious approach for the ultrasensitive sensing of weak
forces, there are limits for which a BAE measurement is not
the best option for the enhancement of sensitivity in stationary
force measurements, as we will see below.

Thus, setting G− = G+ in Eq. (68), the added force noise
PSD reduces to

SBAE
add (ω) = 1

2κ

[ω2 + γ 2/4][ω2 + κ2/4]

4 G2−
, (D5)

where there is no contribution associated with quantum back-
action noise due to radiation-pressure and the force noise PSD
corresponds to imprecision noise only. On resonance, we have

SBAE
add (0) = γ

32C−
, (D6)

with C− as defined in Eq. (D3). We can make the noise
contribution in Eq. (D5) arbitrarily small by simply increasing
the driving strength. Therefore,

(G2
−)BAE

min → ∞ , (D7a)[
SBAE

add (ω)
]

min = 0, (D7b)

which clearly surpasses the sensitivity achieved using the SBC
protocol given by Eq. (D4b). In particular, from Eq. (D6) we
have that the stationary force noise PSD at resonance may be
written as

SBAE
Fest

(0) = γ

{
1

32C−
+ (n̄th + 1/2)

}
, (D8)

and, therefore,

(C−)BAE
min � 1

32 (n̄th + 1/2)
(D9)

is a sufficient condition for neglecting the added force noise
PSD at resonance under a BAE measurement protocol. In
fact, (C−)BAE

min � 1/16 is a valid condition for any thermal
occupation n̄th.

3. Steady-state mechanical squeezing
(G− �= G+, 0 < G+/G− < 1)

A final approach to consider is the dissipative quan-
tum squeezing of the variance of the mechanical position
quadrature, which was initially proposed in Ref. [44] and
demonstrated recently in various experiments reported in
Refs. [46–49]. The squeezing procedure relies on the asym-
metry between the input coherent drives (G+ �= G−) adding
back-action that allows cooling the mechanical oscillator to a
squeezed ground state. This procedure, as in the SBC proto-
col, adds additional damping to the system which reduces the
sensitivity of the force sensor. Nevertheless, the combination
of both effects allows us to have in certain limits a sensitivity
comparable to the BAE measurement and even better. Thus,
if G− �= G+ and 0 < G+/G− < 1, we can have steady-state
mechanical squeezing (SMS) and the stationary force noise

PSD in Eq. (68) may be rewritten in terms of G and r, which
are given by

G2 = G2
− − G2

+, (D10a)

tanh r = G+
G−

. (D10b)

Further, the condition G− > G+ guarantees the stability of the
system [44]. Therefore, the added force noise PSD under SMS
is

SSMS
add (ω) = e−2r

2κ

[
[ω2 + γ 2/4][ω2 + κ2/4]

G2
+ G2

− 2 [ω2 + γ κ/4]

]
. (D11)

At resonance (ω = 0), the added force noise PSD may be
written in terms of the cooperativity

C = 4G2

γ κ
, (D12)

as

SSMS
add (0) = γ e−2r

8

[
1

C
+ C − 2

]
. (D13)

We minimize the expression in Eq. (D11) with respect to G2

for a fixed ω, and we find

(G2)min = [[ω2 + γ 2/4][ω2 + κ2/4]]1/2, (D14a)[
SSMS

add (ω)
]

min = e−2r

κ
{[[ω2 + γ 2/4][ω2 + κ2/4]]1/2

− [ω2 + γ κ/4]} � 0. (D14b)

Similarly, minimizing the expression on Eq. (D13), we have
[SSMS

add (0)]min = 0 with (C)SMS
min = 1.

4. Summary of stationary force sensing under two-tone driving

We have considered three different operating conditions for
the stationary sensing of a weak classical force, which were
classified according to the values that the drive asymmetry
G+/G− can take. First, we considered cavity-assisted SBC,
where G+/G− = 0 and the system is dissipative cooled to
its ground state due to an extra damping that also reduces
the sensitivity of the system to an external force. Second,
we considered a BAE of the mechanical position quadra-
ture, which can be achieved if G+/G− = 0. We found that
BAE measurement correspond in most of the cases to the
optimal configuration for the measurement of classical forces
in the steady state. Finally, we considered the regime where
0 < G+/G− < 1, which can lead to dissipative cooling to
a squeezed mechanical state through extra damping. Thus,
although more damping is added to the system, the quantum
fluctuations associated with one of the mechanical quadra-
tures are also being reduced, and, therefore, a trade-off of
these two effects can lead to a sensitivity comparable or even
better than that due to a BAE measurement.
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The three studied cases are represented graphically in
Fig. 4, where we show the stationary force noise PSD scaled
by the thermal noise floor [SFest (ω)/Sth] as a function of the
dimensionless frequency ω/κ for different values of the drive
asymmetry G+/G−. We found that as a consequence of the
mutual cancellation of the noise contributions due to impre-
cision and radiation pressure, the proposed two-tone driving
scheme allows one to reduce the stationary force noise PSD
to the thermal noise floor at resonance, i.e., SFest (0) = Sth and
Sadd(0) = 0. The conditions under which this is possible are
summarized in Table I.

TABLE I. Summary of the conditions for which the added force
noise power spectral density reduces to the thermal noise floor.
SMS stands for steady-state mechanical squeezing, BAE for back-
action-evading measurement, and SBC for cavity-assisted side-band
cooling. The cooperativities C− and C are defined in Eqs. (D3) and
(D12), respectively.

SBC BAE SMS
G+
G− = 0 G+

G− = 1 0 <
G+
G− < 1

SFest (0) = Sth C− = 1 C− � 1
16 C = 1
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