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Cherenkov radiation of a charge flying through the inverted conical target

Andrey V. Tyukhtin ,* Sergey N. Galyamin , Viktor V. Vorobev , and Aleksandra A. Grigoreva
Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia

(Received 16 April 2020; accepted 26 October 2020; published 18 November 2020)

Radiation generated by a charge moving through a vacuum channel in a dielectric cone is analyzed. It is
assumed that the charge moves through the cone from the apex side to the base side (the case of inverted cone).
The cone size is supposed to be much larger than the wavelengths under consideration. We calculate the wave
field outside the target using the aperture method developed in our previous papers. Contrary to the problems
considered earlier, here the wave which incidences directly on the aperture is not the main wave, while the wave
once reflected from the lateral surface is much more important. The general formulas for the radiation field
are obtained, and the particular cases of the ray-optics area and the Fraunhofer area are analyzed. Significant
physical effects including the phenomenon of “Cherenkov spotlight” are discussed. In particular it is shown that
the Cherenkov spotlight regime allows for reaching the most efficient radiation for the given target with the
largest intensity and smallest divergence in the far-field region. Moreover, owing to the inverted cone geometry,
this effect can be realized for arbitrary charge velocity, including the ultrarelativistic case, by proper selection of
the cone material and the apex angle. Typical radiation patterns in the far-field area are demonstrated.
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I. INTRODUCTION

Cherenkov radiation (CR) produced by a moving charged
particle in various complicated targets was extensively stud-
ied several decades ago in the context of development of
Cherenkov detectors and counters [1,2]. Mentioned targets
(or, more specifically, radiators) were typically dielectric
(solid or liquid) objects like rods, cones, prisms, spheres,
or their combinations. Proper manipulation with the emitted
radiation (mainly for focusing purposes) was typically per-
formed by external mirrors and lenses or, less frequently, by
specific form and coating of the radiator surfaces. For ex-
ample, a cylindrical radiator with the external conical mirror
was utilized in the first experiments by Cherenkov [3]. Later
on, conical radiators with flat or spherical end surfaces (or
rods with the conical or spherical end) were considered [4–7].
The idea to form the optical surface so that the CR may be
focused at a single stage of reflection or refraction also has
been discussed [1]. Moreover, similar conical and prismatic
targets were investigated in the context of development of
radiation sources in the microwave region based on the CR
effect [8,9].

In recent years, the renewed interest to the aforemen-
tioned objects has emerged. The main applications of interest
are development of beam-driven radiation sources (based on
high-quality beams produced by modern accelerators) and
noninvasive systems for bunch diagnostics. For example, both
prismatic target and hollow conical target with the flat out
surface (accompanied by the set of external mirrors) have been
used in a series of experiments on microwave and Terahertz
CR [10–12]. The papers [11,12] should be especially noted
in the context of the present paper since they used a similar
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radiator. A high-power Terahertz source based on the dielec-
tric cone having its apex facing the incident electron beam has
been proposed in [11] while the paper [12] has demonstrated
the first experimental results on generation of coherent CR by
such a target at Kyoto University linear accelerator. A pris-
matic radiator (similar to that used in [8]) was proposed for
CR-based bunch diagnostics in [13]. Later on, a similar pris-
matic target with one reflecting flat surface was discussed as a
prospective candidate for simultaneous monitoring of electron
and positron beams at CESR storage ring [14]. Corresponding
experimental results showing the prominent possibilities of
this scheme have been reported in the recent paper [15].

For further development of the discussed topics, an
efficient and reliable approach is needed for analytical in-
vestigation of the CR field generated by charged particle
bunches in various dielectric radiators of complex shape.
Historically, various approaches, different from paper to pa-
per, were utilized for this purpose. For example, analytical
description of CR from complicated radiators of Cherenkov
detectors was typically performed using the CR theory in
infinite medium (Tamm-Frank theory [16,17]) and simple
ray-optics laws [1,2]. In the papers [10–12] the interaction be-
tween the charge and the boundary of the target closest to the
charge trajectory was taken into account semianalytically. A
similar approach (taking into account only the internal target’s
boundary) was used in [9] for calculation of total radiated
CR energy from hollow conical radiator. In the paper [15],
an exponential decay in CR intensity with an increase in the
impact parameter was calculated using the so-called polariza-
tion current approximation [13]. However, all the mentioned
analytical approaches do not take into account all the essential
properties of radiators and the produced CR.

Starting from Ref. [18], we are developing two combined
approaches which take into account both the internal radia-
tor’s surface (which is mainly interacting with the charged
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particle bunch) and the out radiator’s surface (through which
the CR goes into free space) [18–24]. Moreover, one of these
approaches (the “aperture approach”) allows correct calcula-
tion of the CR field in the far-field (Fraunhofer) zone and
near caustics formed by convergent rays where ray optics
fails [20–24]. It should be underlined that though some dis-
tinct parts of these approaches were discussed and utilized
earlier, their proper combinations were not collected into con-
venient analytical methods. It is also equally important that
our approaches were successfully verified via wave simula-
tions in COMSOL [21,22,24]. Below we briefly explain the
main steps of the aperture method which is the main method
for this work.

At the first step, the CR field in the bulk of the target is
calculated. We suppose that this field is the same as in the
corresponding etalon problem, while the latter is the prob-
lem with the medium having only the inner boundary, i.e.,
the boundary closest to the charged particle trajectory. It is
also imposed that the etalon problem has an analytical so-
lution. For example, for radiators with the flat surface, this
is the problem with a charge moving along the plane in-
terface between two media. Known solution of this etalon
problem [25–27] was utilized in [10] and our papers [19,23].
For radiators having a cylindrical channel, this is a problem
of a charge passing through a hole in an infinite dielectric
medium with the solution given in [27–30]. This solution was
utilized in [9] and our papers [18,20–22,24]. It is worth noting
that since the etalon problem is solved rigorously, arbitrary
impact parameters or channel radii (including those of order
of wavelength λ) can be considered.

At the second step, we return the out boundary and select
the part of it illuminated by CR (we call this part an aperture
and sign it as �).

We assume that the radiator is large, i.e., (i)
√

� � λ

and (ii) the distance from the charge trajectory to � is large
compared to λ. These assumptions allow considering CR at �

in the form of asymptotic being the quasi-plane-wave (with
small cylindrical wave front curvature). This wave can be
decomposed into two orthogonal polarizations. Further the
Snell and Fresnel laws can be used for calculation of the field
at the outer side of the aperture.

At the third step, the aperture method utilizes Stratton-Chu
formulas (also frequently called the aperture integrals) [31]
to calculate the field outside the target [20–24]. Unlike the
ray-optics method, this approach can be used at arbitrary wave
parameter D ∼ λL/� (L is a distance from the object and λ

is a wavelength under consideration) including Fresnel area
(D ∼ 1) and Fraunhofer (far-field) one (D � 1). In addition,
the aperture method is applicable in neighborhoods of caustics
and focuses.

It should be noted that the aperture method does not take
into account diffraction radiation (DR) generated when the
charge enters and exits the target. From the physical point of
view, this assumption is justified by the fact that the CR is
generated over the entire path of the charge inside the target,
while the DR is generated in relatively small regions near
the points of entry and exit. Therefore the CR predominates
the DR, and we can neglect the last one. These and other
issues were discussed in more detail in our previous papers,
in particular, in Refs. [22,24].

z

b

a

0 q l0

α

FIG. 1. The cone cross section.

This paper is devoted to the study of CR produced by a
single charged particle (or a charged particle bunch) moving
along the axis of the dielectric cone with the vacuum channel
in the configuration similar to that in [4,11,12] (i.e., with the
cone apex facing the incident charge). Throughout this paper,
we will refer to this geometry as the inverted cone to clearly
distinguish between this case and the analog ordinary (direct)
conical target with its base facing the incident charge which
was analyzed in our previous papers [18,24].

In particular, we have studied the phenomenon of the
“Cherenkov spotlight” resulting in significant enhancement of
CR intensity in the far-field zone [24]. However, this valuable
effect takes place for certain strict limitations for the charge
velocity and the cone angle only. As we will show below,
in the inverted configuration considered here, corresponding
conditions are much simpler to fulfill, and therefore this effect
is more attractive for practical realization.

It should be noted that in this paper we mainly use the aper-
ture method (since it is more general), however, the ray-optics
solution is also derived as a specific case using the saddle
point approach. Note as well that one of our main goals is
to analyze the phenomenon of the Cherenkov spotlight in this
situation. Therefore, the region of relatively small angles with
respect to the direction of charge motion is of most importance
for our analysis.

The paper is organized as follows. Section II contains so-
lution of the etalon problem and calculation of the CR field
on the aperture. The form of the aperture integrals for the
problem under consideration is given in Sec. III; the particular
case of the ray-optics area is considered in Sec. IV while the
Fraunhofer area is considered in Sec. V. Section VI is devoted
to the detailed analysis of the Cherenkov spotlight regime and
Sec. VII presents the typical graphical results.

II. THE FIELD ON THE APERTURE

We analyze radiation of a charge moving along the axis
of the cylindrical channel with radius a in a conical object
(Fig. 1). The target is made of a material with permittivity ε

and permeability μ (the conductivity is assumed to be negligi-
ble). The width of the ring at the cone base is b (the radius of
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the cone base is b + a), and the cone angle is α. Accordingly,
the length of the target along its axis is l = b cot α, and the dis-
tance from the top of the cone to its base is l0 = (a + b) cot α.
The target sizes are much larger than the wavelength under
consideration: b � λ and l � λ. Other restrictions on the
problem parameters will be noted below.

The coordinate system origin is at the cone apex, and the z
axis is the symmetry axis of the target.

The charge q moves with constant velocity �V = cβ�ez along
the z axis into the cone from the apex side. For definite-
ness, we will deal with a point charge having the charge
density ρ = qδ(x)δ(y)δ(z − V t ), where δ is a Dirac delta
function. However, the results obtained below can be eas-
ily generalized for the thin bunch with finite length because
we consider Fourier transforms of the field components. For
example, in the case of a Gaussian bunch with a charge

density ρ = qδ(x)δ(y) exp [−(z − V t )2/(2σ )2]/(
√

2πσ ), all
results for the Fourier transforms of the field components are
multiplied by the factor exp [−ω2σ 2/(2V 2)], where ω is a
frequency. If ω2σ 2/(2V 2) � 1 then the results for the bunch
are close to those for the point charge.

It is assumed that the charge velocity exceeds the
Cherenkov threshold, i.e., β > 1/n, where n = √

εμ > 1 is a
refractive index of the target material. Thus, CR is generated
in the cone material. Recall that CR propagates at the angle
θp = arccos (1/(nβ )) relative to the direction of the charge
motion, coinciding with the z axis. We suppose that α < θp,
i.e., the lateral (generatrix) surface of the cone is illuminated
by CR. The corresponding reflected CR wave falls on the
cone base and undergoes refraction here. Note that we are
interested in the case when this wave does not experience
the total internal refection at the cone end surface. Naturally,
Cherenkov radiation falls onto the cone base also directly, that
is, without intermediate reflection from the lateral surface.

We write first the initial incident field, that is, the field in
the infinite medium with the channel [22,24,27]. This field
has the vertical polarization with nonzero components Hi0

ϕ ,
Ei0

r , Ei0
z (cylindrical coordinate system r, ϕ, z is used). The

Fourier transform of the magnetic component at the distance
r � λ is

Hi0
ϕ ≈ q

c
η

√
s

2πr
exp

[
i
(

s r + ω

V
z − π

4

)]
, (1)

where

η = − 2i

πa

[
κ

1−n2β2

ε(1−β2)
I1(κa)H (1)

0 (sa)

+ sI0(κa)H (1)
1 (sa)

]−1

, (2)

s(ω) = ω
V

√
n2β2 − 1, κ (ω) = |ω|

V

√
1 − β2, I0,1 are modified

Bessel functions, H (1)
0,1 are Hankel functions. Note that

Im(s(ω)) � 0 if we take into account a small dissipation. If
dissipation tends to zero then this condition results in the
rule sgn[s(ω)] = sgn(ω). The result (1) is valid for |s|r � 1.
The electric field �Ei0 can be easily found because the vec-
tors �Ei0, �Hi0 and the wave vector of CR �ki0 = s�er + �ezω/V
form the right-hand orthogonal triad in this area: �Ei0 =

−√
μ/ε[�ki0/ki0, �Hi0]. The angle between the wave vector �ki0

and the charge velocity �V is θp = arccos [1/(nβ )].
Note that the vector �E lies in the plane formed by the wave

vector �k and the normal to one or another surface (the cone
base or the cone lateral surface). The polarization of such a
wave is usually called vertical, therefore the reflection and
transmission coefficients will be supplied with the index v.

In accordance with the aperture method, we need to know
the field which falls at the target’s boundary being the aperture
for the outer vacuum region. In the case under consideration,
the aperture is the part of the cone end surface which is
illuminated by CR.

First, we need to take into account the Cherenkov wave,
which directly falls on the base of the cone (it can be called
the first wave). The aperture for this wave is the entire base
area. This wave falls on the base at the Cherenkov angle θp

and is refracted at the angle θt1 with the refraction coefficient
Tv1:

θi1 = θp,

θt1 = arcsin (n sin θp) = arcsin

(√
n2β2 − 1

β

)
, (3)

Tv1 = 2

√
μ

ε

cos θi1√
μ/ε cos θi1 + cos θt1

= 2

√
μ

ε

1√
μ/ε + n

√
1 − β2(n2 − 1)

. (4)

Note that the effect of total internal reflection for this wave
takes place under the condition β2(n2 − 1) > 1.

Using Eq. (1) it is easily to obtain the following expressions
for the field of the first wave on the external surface of the cone
base (at the point r = r′, ϕ = ϕ′, z = l0 + 0):

H (1)
ϕ′

∣∣
z′=l0+0 ≈ Q1

exp(isr′)√
kr′ = Q1

exp(ikr′ sin θt1)√
kr′ ,

E (1)
r′ ≈ H (1)

ϕ′ cos θt1, E (1)
z′ ≈ −H (1)

ϕ′ sin θt1, (5)

where

Q1 = qkη 4
√

n2β2 − 1

c
√

2πβ
Tv1 exp

(
ikl0
β

− iπ

4

)
. (6)

Note that we took into account in (5) that the field under
consideration is a quasiplane transverse wave on the almost
whole aperture.

However, the first wave (5) probably is not a main wave in
the important area where the angle θ is not large (in this area
under certain conditions one can expect radiation which is
much more intensive than at large values of angle θ ). Indeed,
for this wave, the angle of incidence θi1 = θp, as a rule, is not
small, and θt1 > θi1. Therefore, we can expect that this wave
will make a significant contribution only not for small angles
θ . To describe the radiation close to the z axis, it is necessary
to take into account the wave reflected from the lateral face
of the cone (for brevity, we will call it the second wave; it
is shown in Fig. 2). This wave can have small and even zero
angles of incidence θi2 and refraction θt2. Therefore this wave
can be the main one in the region of relatively small angles θ .
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FIG. 2. The path of the ray for the case θi2 > 0 (top) and θi2 < 0
(bottom).

The initial wave (1) falls on the lateral cone boundary
at the angle θi0 = π/2 + α − θp (Fig. 2). It is reflected at
the same angle θr0 = θi0 and refracted at the angle θt0 =
arcsin(n sin θi0) with respect to the boundary normal (Fig. 2).
The wave reflected from the lateral surface is the wave which
incidents on the cone base ( �Hi2). It is a cylindrical wave, as
the wave (1). We can write it at the point with cylindrical
coordinates r′, z′ in the following form:

Hi2
ϕ ≈ q

c
Rv0η

√
s

2πr′ exp [i�i2(r′, z′)], (7)

where

Rv0 =
√

μ/ε cos θi0 − cos θt0√
μ/ε cos θi0 + cos θt0

(8)

is the reflection coefficient from the lateral cone surface, and
�i2(r′, z′) is the phase which consists of two summands:

�i2(r′, z′) = �i0(r′, z′) + ��i(r
′, z′). (9)

Here �i0(r′, z′) is the phase of the initial incident wave (1)
on the lateral surface, and ��i(r′, z′) is the additional phase
acquired after reflection.

For the further calculation, we need to find the point of
reflection from the lateral surface. It is the solution of the
system of equation for the cone generatrix and the reflected
ray equation:

r = z tan α, r = r′ + (z − z′) tan θi2, (10)

where
θi2 = θr0 − (π/2 − α) = 2α − θp (11)

is the angle of incidence at the cone base (it can be easily
found from Fig. 2). The solution of the system (10) is

r∗ = z∗ tan α, z∗ = r′ − z′ tan θi2

tan α − tan θi2
. (12)

Therefore, in accordance with (1), the phase of the initial
incident wave is

�i0(r′, z′) = sr∗ + ω

V
z∗ − π

4

= kn cot(θp − α)[r′ cos θi2 − z′ sin θi2] − π/4.

(13)

Additional phase ��i(r′, z′) is equal to the product of the
wave number in the medium (i.e., kn) by the length of the ray:

��i(r
′, z′) = kn

z′ − z∗
cos θi2

= kn
z′ sin α − r′ cos α

sin(θp − α)
. (14)

Summing up (13) and (14), after simple transformation we
obtain

�i2(r′, z′) = kn(r′ sin θi2 + z′ cos θi2) − π/4

= kr′ sin θt2 + knz′ cos θi2 − π/4, (15)

where θt2 is the angle of refraction of the second wave on the
end surface of the cone (Fig. 2):

θt2 = arcsin(n sin θi2). (16)

Note that we are interested only in the case when the second
wave does not experience total internal reflection. It means
that θt2 is real, i.e., n| sin θi2| < 1.

Using (7) and (15) one can obtain the Fourier transform
of the field on the external surface of the aperture (in the
point with cylindrical coordinates r′, ϕ′, z′ = l0 + 0) in the
following form:

H (2)
ϕ′

∣∣
z′=l0+0

≈ Q2
exp (ikr′ sin θt2)√

kr′ ,

E (2)
r′ ≈ H (2)

ϕ′ cos θt2,

E (2)
z′ ≈ −H (2)

ϕ′ sin θt2, (17)

where

Q2 = q

c

√
ks

2π
Rv0Tv2ηeiknl0 cos θi2−iπ/4

= qk 4
√

n2β2 − 1

c
√

2πβ
Rv0Tv2ηeiknl0 cos θi2−iπ/4, (18)

and Tv2 is the coefficient of refraction:

Tv2 = 2
√

μ/ε cos θi2√
μ/ε cos θi2 + cos θt2

. (19)

Concluding this section, we should note that for θi2 < 0,
there is also another way for the second wave to reach the
output surface: it can be reflected from the far cone generatrix.
In other words, if we look at Fig. 1, the wave falls on the lower
lateral face, reflects from it, passes through the axis of the
structure and falls on the base of the cone. However, such a
path of the wave propagation is associated with diffraction of
the wave by the channel, which cannot be described by simple
ray-optics laws. We will neglect this pass of propagation. This
can be done if the negative angle of incidence is sufficiently
small: θi2 < 0 but |θi2| � α. It is easy to show that, under
this condition, the part of the base illuminated by this wave is
relatively small. This limitation is not very important for our
main goal, which is to analyze the radiation at not big angles
θ , where, under certain conditions, we hope to get radiation
much more intense than in other directions. Note that, in the
case of positive angle θi2, such a restriction does not occur.
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III. APERTURE INTEGRALS FOR THE INVERTED CONE

Now we should write the general Stratton-Chu formulas
[see Eq. (1) from Ref. [24]] in the form which is convenient
for further calculation in the case of the considered target.
Because of axial symmetry of the problem we can place the
observation point in the plane y = 0, then �er = �ex, �eϕ = �ey.
As well, we take into account that the normal to the aperture
coincides with the z axis: �n′ = �ez. We will use further the
following formulas:

R̃ = ∣∣ �R− �R′∣∣ =
√

r2+r′2−2rr′ cos ϕ′+(z − l0)2, (20)

[�n′ × �H ( �R′)] = −Hϕ′ ( �R′)(�er cos ϕ′ + �eϕ sin ϕ′), (21)

∇′G(R̃) =
(

�er′∂r′ + �eϕ′

r′ ∂ϕ′ + �ez∂z′

)
G(R̃), (22)

[�n′ × �E ( �R′)] = [�ez × �er′ ]Hϕ′ ( �R′) cos θtm

= �eϕ′Hϕ′ ( �R′) cos θtm, (23)

[[�n′ × �E ( �R′)] × ∇′]G(R̃) = Hϕ′ ( �R′) cos θtm

× [�er′∂z′ − �ez∂r′]G(R̃), (24)

where m is the number of the wave exiting the target (m =
1, 2). Here, for brevity, we introduce the notation for the
partial derivative: ∂x ≡ ∂/∂x (further, analogously, the second
derivative is written in the form ∂xy ≡ ∂2

∂x∂y ).
Using (20) and (24), after a series of cumbersome transfor-

mations, one can obtain from Stratton-Chu formulas [Eq. (1)
from Ref. [24]] the following result for the mth part of the
field generated by the wave with number m:

E (m)
ϕ = 0,{

E (m)
r

E (m)
z

}
= − i

2πk

∫ rmh

rml

dr′
∫ π

0
dϕ′r′H (m)

ϕ′ ( �R′)

×
{

k2 cos ϕ′ + cos ϕ′ · ∂r′r′ + sin ϕ′

r′2 · ∂ϕ′ − sin ϕ′
r′ · ∂r′ϕ′ + ik cos θtm cos ϕ′ · ∂z′

∂z′r′ − ik cos θtm · ∂r′

}
G(R̃), (25)

where m is a number of the considered wave, and θtm is the
corresponding angle of refraction. Note that obtaining the
result of (25), we used the properties of the evenness and
oddness of various terms in the integrands (in particular, this
leads to zeroing E (m)

ϕ ). The total radiation field is the sum of

these components: �E ≈ ∑
m

�E (m).
The integration limits rml , rmh are determined by the limits

of the aperture, that is, the cone base part which is illuminated
by the wave under consideration. For two waves under con-
sideration,

r1l = a,

r2l = max(a, a + l tan θi2),

r1h = r2h = a + b.

(26)

The formula for r2l is explained by the fact that the illuminated
part of the cone base is smaller than the entire base in the case
of θi2 > 0.

Note that we integrate over the entire illuminated part of
the cone base, from the channel boundary to the lateral surface
of the cone. Here we neglect the fact that the field is not
determined by the ray-optics laws in the vicinities of these
extreme points. This is explained by the fact that sizes of these
vicinities are of the order of the wavelength. Therefore, the
relative error in integrals (25) is of the order of (kb)−1. Such a
value can be neglected because the theory is constructed just
with such accuracy.

Further one can exactly find all derivatives in (25), but
the result will be very cumbersome. On the other hand, the
exact calculation is not very important, because, as a rule, we
are interested in the field on the distance much larger than
wavelength under consideration. Assuming that k|z − l0| � 1
and, therefore, kR̃ � 1 for all values of r′, ϕ′, we can differ-
entiate only exp (ikR̃) in the function G(R̃). As a result, the
formulas (25) are reduced to the following one:

{
E (m)

r

E (m)
z

}
= − ik

2π

∫ rmh

rml

dr′
∫ π

0
dϕ′r′H (m)

ϕ′ ( �R′)
eikR̃

R̃3

{
(z − l0)2 cos ϕ′ + rr′ sin2 ϕ′ + (z − l0)R̃ cos θtm cos ϕ′

(r′ − r cos ϕ′)(R̃ cos θtm + z − l0)

}
. (27)

Using the expressions (5) and (17) for H (m)
ϕ′ we obtain{

E (m)
r

E (m)
z

}
= − iQm

2π

∫ rmh

rml

dr′
∫ π

0
dϕ′

√
kr′ei�m (r′,ϕ′ )

R̃3

{
(z − l0)2 cos ϕ′ + rr′ sin2 ϕ′ + (z − l0)R̃ cos θtm cos ϕ′

(r′ − r cos ϕ′)(R̃ cos θtm + z − l0)

}
, (28)

where

�m(r′, ϕ′) = kr′ sin θtm + kR̃(r′, ϕ′). (29)

IV. RAY-OPTICS APPROXIMATION

Let us find the saddle point (or stationary phase point)
for the integrands in (28). This point is determined by equa-

tions [32],

∂�m(r′, ϕ′)
∂r′ = 0,

∂�m(r′, ϕ′)
∂ϕ′ = 0. (30)
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zl0

s1

z

s1 s2

FIG. 3. The ray picture outside the cone in the cases of θi2 > 0 (left) and θi2 < 0 (right).

It is easily to find that this system has the following two
solutions:

r′ = rs1
m = r − (z − l0) tan θtm, ϕ′ = ϕs1

m = 0;

r′ = rs2
m = −r − (z − l0) tan θtm, ϕ′ = ϕs2

m = π. (31)

Since θt1 > 0, then rs2
1 < 0, and this saddle point lies beyond

the integration limits. Therefore the first wave is determined
only by the saddle point s1 with r′ = rs1

1 . At the same time, the
value θt2 can be both positive and negative. Therefore both
saddle points s1, 2 can be significant for the second wave.
First of all, we consider this wave.

Simple transformations give the following expressions for R̃ and �2 in the saddle points:

R̃
(
rs1

2 , ϕs1
2

) = R̃
(
rs2

2 , ϕs2
2

) = (z − l0)/ cos θt2, �s1,2
2 = �2

(
rs1,2

2 , ϕs1,2
2

) = k[±r sin θt2 + (z − l0) cos θt2]. (32)

Further we will need as well values of the second derivatives of the phase in the saddle points:

∂2�2

∂r′2

∣∣∣∣
s1,2

= k
cos3 θt2

z − l0
,

∂2�2

∂ϕ′2

∣∣∣∣
s1,2

= ± rrs1,2
2 cos θt2

z − l0
,

∂2�2

∂ϕ′∂r′

∣∣∣∣
s1,2

= 0. (33)

We can approximately calculate the integrals (28) by the stationary phase method if the aperture contains a large number of
Fresnel zones, in other words, the function ei�2(r′,ϕ′ ) experiences a large number of oscillations within this area. This condition
means that |�2(r′, ϕ′) − �s1,2

2 | � 1 on the most part of the aperture. We can write this inequality as | ∂2�2

∂r′2 b2| � 1. If cos θt2 is

not very small, then we obtain | kb2

z−l0
| � 1, or

D ∼ λ(z − l0)

πb2
� 1. (34)

The parameter D is usually called a wave parameter [33]. The inequality (34) is the condition of applicability of the ray-optics
approximation.

Applying the known expression for asymptotic of double integral [32] one can obtain the following result:

�E (2) ≈ �Es1 + �Es2,{
Es1

r

Es1
z

}
= Q2

ei�s1
2√

kr

{
cos θt2

− sin θt2

}{
1 for r2l < r − (z − l0) tan θt2 < r2h,

0 otherwise

}
,

{
Es2

r

Es2
z

}
= Q2

ei�s2
2√

kr

{
cos θt2

sin θt2

}{
1 for −r2h < r + (z − l0) tan θt2 < −r2l ,

0 otherwise

}
, (35)

where

�s1
2 = kr sin θt2 + k(z − l0) cos θt2, �s2

2 = −kr sin θt2 + k(z − l0) cos θt2 − π/2. (36)

One can see that the contributions of stationary points exist
only in certain regions shown in Fig. 3 (their borders are
ray-optics boundaries). These limitations are explained by
the fact that only under such conditions the stationary phase
points are in the limits of integration (on the aperture), i.e.,

r2l < rs1,2
2 < r2h. If this condition is violated for one of the

stationary points, then this point is outside the aperture, and
its contribution is zero. More precisely one can say that the
ray-optics solution (35) is suitable at some distance from the
ray-optics boundaries exceeding the wavelength.
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Equation (35) describes two quasi-plane-waves (more pre-
cisely, they are cylindrical waves with small curvature of the
constant phase surface). Naturally, these waves are transverse
because the projections on the propagation direction are zero:
Es1,2

‖ = ±Es1,2
r sin θt2 + Es1,2

z cos θt2 = 0. The electric field is
orthogonal to the propagation direction:

Es1,2
⊥ = Hs1,2

ϕ = Q2 exp
(
i�s1,2

2

)
/
√

kr. (37)

The wave “s1” exists for any sign of the angles θi2, θt2 and
propagates at the angle θt2 with respect to the z axis (Fig. 3,
left and right). The wave “s2” exists only in the case θi2, θt2 <

0 and propagates at the angle |θt2| = −θt2 with respect to the
z axis (Fig. 3, right). Note that in the case θi2, θt2 < 0 (that
is, 2α < θp), the rays converge to the z axis, and there is a
certain rhomboidal area where the rays are intersected (Fig. 3,
right). In this area, the ray-optics solution (35) tends to infinity
if r → 0 on the segment r2l/ tan |θt2| < z − l0 < r2h/ tan |θt2|.
This means that the ray-optics approximation is not applicable
at distances from the z axis less than the wavelength under
consideration. However, we can expect that the real field has
a large value in this area.

Naturally, the expressions (35) can be obtained with help
of the ray-optics method [33,34]. Let us give this derivation
briefly. The wave exiting the target is a quasiplane transversal
wave having the electric and magnetic fields equal each other
and determined by the formula (17) on the aperture. Because
of axial symmetry the exiting wave is cylindrical. Consider-
ing also that the boundary of the object in its section is a
straight line, it is easy to conclude that the wave amplitude
in the point (r, z) differs from one in the point (r′, l0) only
by replacement r′ to r (similar effect is discussed in [18] for
other objects). Thus the formula (17) results in the expression
|E (2)| = |Q2|/

√
kr which corresponds to Eq. (35).

It remains to determine the phases of two waves. First we
consider the wave “s1” radiated from the upper part of the
aperture. Taking into account that the length of the ray outside
the target is (z − l0)/ cos θt2 we have for the phase at the point
(r, z),

�2(r, z) = �i2(r′, l0) + k
z − l0
cos θt2

, (38)

where �i2(r′, l0) is given by the formula (15) with r′ = r −
(z − l0) tan θt2. Substituting (15) in (38) one can obtain that

�2(r, z) = k[nl0 cos θi2 + r sin θt2 + (z − l0) cos θt2]

−π/4 = arg Q2 + �s1
2 , (39)

which corresponds to (35) and (36).
A similar way gives a corresponding result for the wave

“s2” if we take into account that for this wave θt2 < 0. How-
ever, we should take into account the following difference.
The ray “s2” passes through the z axis, which is a caustic
where the ray tube cross section tends to zero. It is known [33]
that during the passage of the caustic, the phase of the wave
changes to π/2. Taking into account this factor, we obtain
�2(r, z) = arg Q2 + �s2

2 , where �s2
2 is given by Eq. (36).

Until now in this section, we have considered only the
second wave (that is, the wave reflected from the lateral
boundary). The ray-optical analysis of the first wave is sim-
pler, since it is determined by one saddle point “s1” only. By
analogy with formulas (35), we obtain

�E (1) ≈ �Es1 + �Es2,{
Es1

r

Es1
z

}
= Q1

ei�s1
1√

kr

{
cos θt1

− sin θt1

}

×
{

1 for r1l < r − (z − l0) tan θt1 <r1h

0 otherwise

}
,

(40)

where

�s1
1 = kr sin θt1 + k(z − l0) cos θt1. (41)

V. FRAUNHOFER AREA

Now we consider the area where the wave parameter is
large: D � 1. Usually this area is named Fraunhofer, or
far-field, area. Corresponding asymptotic can be obtained
from both general approximate formulas [see Eq. (5) from
Ref. [24]] and the expressions (28) obtained for the geometry
under consideration.

Based on Eq. (28), we can use the approximation R̃ ≈
R0(1 − rr′ cos ϕ′R−2

0 ) (here R0 =
√

r2 + (z − l0)2) in the
phase �m(r′, ϕ′) and rougher approximation R ≈ R0 in other
factors in the integrand:

{
E (m)

r
E (m)

z

}
= − iQm

2π

eikR0

R3
(R cos θtm + z)

{
z
−r

}∫ rmh

rml

dr′
∫ π

0
dϕ′√kr′ cos ϕ′ exp

(
−ik

r

R0
r′ cos ϕ′ + ikr′ sin θtm

)
. (42)

Further it is convenient to use spherical coordinates R, θ (counted from the z axis), and ϕ (counted from the x axis). Using the
formulas,

ER = Er sin θ + Ez cos θ, Eθ = Er cos θ − Ez sin θ, (43)

one can obtain E (m)
R = 0 and

E (m)
θ = − iQm

2π

eikR0

R
(cos θtm + cos θ )

∫ rmh

rml

dr′√kr′I1(χ )eikr′ sin θtm , (44)

where

I1(χ ) =
∫ π

0
e−iχ cos x cos xdx,
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and χ = kr′rR−1
0 ≈ kr′ sin θ . The integral I1(χ ) is known and

expressed in terms of the Bessel function J1(χ ) [35]:

I1(χ ) = −π iJ1(χ ). (45)

Asymptote of this function for χ � 1 is

I1(χ ) ≈ −i

√
2π

χ
cos

(
χ − 3π

4

)
, (46)

and the error has the order of O(χ−3/2).
If the condition kbθ � 1 is true then kr′ sin θ � 1 on the

almost whole aperture, and using (46) we obtain from (44) the
following result:

E (m)
θ ≈ H (m)

ϕ ≈ − Qm√
2π

cos θ + cos θtm√
sin θ

Fm(θ )
dm

R
eikR0 , (47)

where

Fm(θ ) = 1

dm

∫ rmh

rml

cos

(
kr′ sin θ−3π

4

)
exp (ikr′ sin θtm)dr′

= sin(dmwm−)

dmwm−
eir̄mwm−+3iπ/4

+ sin(dmwm+)

dmwm+
eir̄mwm+−3iπ/4, (48)

wm± = k(sin θtm ± sin θ ),

dm = rmh−rml

2
, r̄m = rmh+rml

2
. (49)

d1 = b/2, r̄1 = b/2 + a,

d2 ≈
{

(b − l tan θi2)/2 for θi2>0,

b/2 for θi2<0,

r̄2 =
{

a + (b + l tan θi2)/2 for θi2>0,

a + b/2 for θi2<0.

The radiation pattern is determined primarily by the func-
tion Fm(θ ). Since θt1 > 0 then the function F1(θ ) has the main
maximum at θ = θt1 [in fact, only the first summand in (48)
has the importance for the function F1(θ )].

The behavior of the function F2(θ ) is more complex. If
θt2 > 0 then the main maximum of the function F2(θ ) is
determined by the first summand in (48): It takes place for
θ = θt2 (radiation comes mainly from the upper part of the
aperture, as it is shown in the left plot of Fig. 2). If θt2 < 0 then
the main maximum of the function F2(θ ) is determined by the
second summand in (48): It takes place for θ = −θt2 = |θt2|
(radiation comes mainly from the lower part of the aperture,
as it is shown in the right plot of Fig. 2).

Thus, the direction of maximal radiation coincides with the
direction of the refraction wave (this is natural). In any case,
the maximum values of |Fm(θ )| is approximately equal to 1,
and maxima of the fields are equal to

∣∣E (m)
θ

∣∣
max ≈ |Qm|√

2π

2 cos θtm√
sin θtm

dm

R
. (50)

The angular width δθ of the main lobes of the diagrams is
δθ ≈ 2π

kd cos θtm
.

0 5 10 15 20 25
0◦

15◦

30◦

45◦

n2

α

β = 1.0

β = 0.8

β = 0.6

β = 0.5

FIG. 4. The cone angle for the Cherenkov spotlight effect de-
pending on the refractive index square n2 = εμ for different values
of the charge velocity.

Recall that expressions for Qm are determined by Eqs. (6)
and (18). Assuming that angles θtm are not close to 0 or π/2
and β is not small, we can give the following rough estimation
for the maximal field values:∣∣E (m)

θ

∣∣
max ∼ |Qm|dm

R
∼ |qkη|

c

b

R
. (51)

Note that this estimation is true as well for other objects if
we consider b as some characteristic size of the aperture. For
example, in the case of the infinite plate, the value b is the
radius of the illuminated area of the plate surface, and in
the case of the direct cone the value b is the length of the
illuminated part of the lateral surface [24]. However, this rule
has an important exception which is discussed below.

VI. CHERENKOV SPOTLIGHT

Note that the expressions (47) and (48) are not true for
kbθ � 1. However, this angle range is very interesting in the
important case when the second wave propagates along the
symmetry axis that is θi2 = θt2 = 0 (for the first wave this
situation is impossible). According to (11), this situation takes
place when

α = θp

2
= arccos((nβ )−1)/2. (52)

Figure 4 shows dependency of the cone angle (52) on the
refractive index for different values of the charge velocity. Let
us consider this case separately, assuming, as in the previous
section, that the observation point is in the Fraunhofer region
(D � 1).

The integrand in (44) contains the Bessel function, which
can be represented in the form of the Taylor series [36]. After
that, in the case θi2 = θt2 = 0 we obtain

E (2)
θ = −Q2

2

eikR0

R

∫ r2h

r2l

U (r′)dr′, (53)

where r2l = a, r2h = a + b ≈ b,

U (r′) =
∞∑
j=0

(−1) j (sin θ )2 j+1

22 j j!( j + 1)!
(kr′)2 j+3/2. (54)

Calculating the integrals of the terms of the series and consid-
ering that a � b, we obtain the following result:

E (2)
θ = −Q2

5
(kb)3/2F0(θ )

eikR0

kR
, (55)
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FIG. 5. The angular distribution of the magnitude of the electric field Fourier transform in the Fraunhofer area (in units V s). Parameters
are as follows: a = c/ω, b = 50c/ω = 50/k, q = 1 nC, μ = 1; the cone angle α and the charge velocity β are indicated in the plots.

where

F0(θ ) =
∞∑
j=0

(−1) j (kb sin θ )2 j+1

(4 j/5 + 1)22 j j!( j + 1)!
. (56)

Taking into account that kb sin θ � 1 one can obtain the sim-
ple approximation,

F0(θ ) ≈ kbθ

[
1 − 5

72
(kbθ )2

]
. (57)

The angle of the maximum θmax and the maximal value of this
function can be estimated as

θmax ∼ 1/(kb), F0 max ∼ 1. (58)

Comparing the maximal value of the field in the case θi2 = 0
and in the case θi2 ∼ 1 one can obtain∣∣E (2)

θ

∣∣
max

∣∣
θi2=0∣∣E (2)

θ

∣∣
max

∣∣
θi2∼1

∼
√

2π

10

√
sin θt2

cos θt2
F0 max

(kb)3/2

kd2

∼
√

kb � 1.

(59)

Thus, if θi2 = 0, then the field maximum is located at the small
angle (58), and its value is much larger than that for θi2 ∼ 1.
Such an effect can be called the Cherenkov spotlight.

Note that the similar phenomenon occurs also for the case
when the charge flies into the cone from the side of its base
(the direct cone) [24]. However, there is strong difference
of conditions for reaching the effect. For the direct cone,
the spotlight effect is possible only in a certain very narrow
range of charge velocities close to the speed of light in the
medium [24]. In the case of the inverted cone, this effect
can be achieved for any charge velocity β > 1/n due to the
proper selection of the cone angle α or refractive index n in
accordance with the condition (52).

It is especially important that the Cherenkov spotlight
regime is easily reachable for the ultrarelativistic charge with
β ≈ 1 (recall that this is impossible for the direct cone). Note
as well that the essential advantage of the inverted cone is the
fact that the Cherenkov spotlight effect is not very sensitive
to the selection of the cone parameters (as can be seen from
Fig. 4, for the case β = 1, the dependence of the correspond-
ing angle α on the refractive index square is rather weak for
n2 > 5).

VII. NUMERICAL RESULTS

Figure 5 demonstrates results of computation of the field
in the far-field (Fraunhofer) area. These results have been
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FIG. 6. Distribution of the electric field in the space for the following parameters: ε = 4, μ = 1, α = 20◦, a = c/ω, b = 50c/ω, q = 1 nC;
β = 0.6 (top plot), β = 0.63 (second plot), β = 0.6527 (third plot), β = 0.7 (bottom plot). Distances are given in c/ω units. The module of
Fourier transform of the electric field is given in logarithmic scale and normalized by 10−9 V/m s (the level “0”).

obtained with use of formula (44) which allows calculating
the field everywhere in this region including the region of
small angles θ (therefore the Cherenkov spotlight effect can
be analyzed in this way).

Figure 5 shows the angle dependency of the module of the
Fourier transform of the field for different values of the cone
angle α and the cone material permittivity ε (it is assumed that
μ = 1). The vertical axis on the plots shows the value R|Eθ |
which does not depend on the distance R in the Fraunhofer
area.

Each plot contains four curves. For the bold red solid curve,
the charge velocity corresponds to the condition (52) (i.e.,
θt2 = 0) determining the Cherenkov spotlight effect. Other
curves correspond to the cases when θt2 �= 0. One can see
that the maximal field value is much larger for the spotlight
case compared to the cases when velocities differ essentially
from the spotlight velocity. It is also notable that such an effect
cannot be reached for the case where α = 35◦, ε = 4 (as one
can see from Fig. 4, if n2 = 4 then this effect can be realized
only for α < 30◦).

For all other parameters indicated in Fig. 5, the spotlight
velocity can be found and therefore the spotlight effect can be
realized.

Note as well that approximate expressions (47) (for the
case when θt is not small) and (55) and (57) (for the case of

the Cherenkov spotlight when θt = 0) give good coincidence
with the results shown in Fig. 5 (the discrepancy in the areas
of the high field values does not exceed a few percent).

Figure 6 shows two-dimensional distribution of the electric
field of CR calculated with aperture integrals (27) and (28)
which cover the ray-opics area, the Fresnel area, and the
Fraunhofer area. The plots illustrate the cases shown in the
first plot of Fig. 5. One can clearly see the Cherenkov spotlight
effect for the charge velocity β = 0.6527. In this case the
main maximum lies at minimal angle θ , and its value is max-
imal. In all other cases the radiation is dissipated essentially
stronger.

VIII. CONCLUSION

We have studied the radiation generated by a charge mov-
ing in a vacuum channel through the “inverted” dielectric cone
assuming that the cone sizes are much larger compared to
the wavelengths of interest. The wave field outside the target
was calculated using the aperture method developed in our
previous papers.

It is worth noting that contrary to the problems considered
earlier, here the wave which incidences directly on the aper-
ture is not the main wave, while the wave once reflected from
the lateral surface is much more important. We have obtained

053514-10



CHERENKOV RADIATION OF A CHARGE FLYING … PHYSICAL REVIEW A 102, 053514 (2020)

the analytical results for CR outside the target (including the
ray-optics area and the most interesting Fraunhofer area) and
analyzed significant physical effects.

The most promising effect is the Cherenkov spotlight phe-
nomenon which allows reaching essential enhancement of the
CR intensity in the far-field region at certain selection of the
problem parameters (the field in the main maximum can be
increased approximately in

√
kb times). It is important as well

that for the inverted cone geometry, this effect can be realized

for arbitrary charge velocity, including the case β ≈ 1, by
proper selection of the cone material and the apex angle. This
is one of the important advantages of the inverted cone be-
cause this phenomenon is unattainable for the ultrarelativistic
bunch in the case of the direct cone [24].
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