
PHYSICAL REVIEW A 102, 053513 (2020)

Paraxial skyrmionic beams

Sijia Gao ,* Fiona C. Speirits, Francesco Castellucci, Sonja Franke-Arnold , and Stephen M. Barnett †

School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom

Jörg B. Götte
School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China

(Received 24 June 2020; accepted 7 October 2020; published 17 November 2020)

We show that a class of vector vortex beams possesses a topological property that derives both from the
spatially varying amplitude of the field and its varying polarization. This property arises as a consequence of the
inherent skyrmionic nature of such beams and is quantified by the associated skyrmion number. We illustrate
this idea for some of the simplest vector beams and discuss the physical significance of the skyrmion number in
this context.
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I. INTRODUCTION

Recent developments have highlighted the growing utility
of structured light, that is, optical fields in which the spa-
tial variation of the field amplitude and/or the polarization
are specifically designed for a given task [1–5]. Important
examples include the formation of optical beams carrying
orbital angular momentum [6–10], polarization or helicity pat-
terns [11–16], and the vector vortex beams and their relatives
[17–25]. We show that there is a skyrmion field associated
specifically with a class of vector vortex beams and that the
associated skyrmion number is readily identified with a simple
property of the beam. As such, the skyrmion number provides
a natural way to present the variety of possible vector beams.
It is noteworthy that this property is explicitly a feature of vec-
tor beams: A skyrmion field exists only if both the polarization
and the field amplitude are spatially varying. In this sense
skyrmion beams are related to the Poincaré beams, in which
every possible polarization is to be found at some location in
the plane perpendicular to the propagation direction [26]. A
skyrmion structure has been observed in Poincaré beams and
the relation between skyrmions and coverage of the Poincaré
sphere has been examined in Ref. [27]. We find, however,
that skyrmion beams are not equivalent to Poincaré beams; all
of the skyrmion beams we present here are indeed Poincaré
beams, but we present also an example of a Poincaré beam
with skyrmion number 0.

Skyrmions were first proposed for the study of mesons
[28,29], but the idea has since found wide application in
many areas of physics including quantum liquids [30–32],
magnetic materials [33–35], two-dimensional (2D) photonic
materials [36], and in the study of fractional statistics [37].
Recently, they have been observed in optics by the controlled
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interference of plasmon polaritons [38,39]. We show here that
a wide range of freely propagating optical beams also possess
a nontrivial skyrmion field and with it a skyrmion number, the
value of which is simply related to a topological property of
the beam.

II. CONSTRUCTING SKYRMIONIC BEAMS

We consider a paraxial beam of either light [40,41] or
electrons [42–44] and express the local polarization or spin
direction, respectively, in the form

|�(r)〉 = u0(r)|0〉 + eiθ0 u1(r)|1〉. (1)

Here, |0〉 and |1〉 represent any two orthogonal optical polar-
ization or electron spin states, while u0(r) and u1(r) are two
orthogonal spatial modes [45] and the global phase difference
between the two modes is denoted by θ0. That it is always
possible to write the spatially varying polarization or spin
in this way is a consequence of the Schmidt decomposition,
originally introduced in the theory of integral equations [46],
but perhaps more familiar from the study of entangled states
in quantum theory [47,48]. The skyrmion field and number
depend only on the spatial variation of the polarization or spin
direction and for this reason it is convenient to work with a
locally normalized state in the form

|ψ (r)〉 = |0〉 + v(r)|1〉√
1 + |v(r)|2

, (2)

where v(r) = eiθ0 u1(r)/u0(r).
The skyrmion field is most readily defined in terms of an

effective magnetization M, which is the local direction of the
Poincaré vector for light in Fig. 1 or the Bloch vector for an
electron beam. In terms of our locally normalized state it is

M = 〈ψ (r)|σ|ψ (r)〉, (3)

where σ is a vector operator with the Pauli matrices as Carte-
sian components. For a light beam, the Cartesian components
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FIG. 1. Stereographic projection of the spatially varying polar-
ization or effective magnetization M onto the Poincaré or Bloch
sphere. We encode the degree of circular polarization S3 and the z
component Mz on the same color scheme. For definiteness we choose
in our examples the polarization states |0〉 and |1〉 to correspond
to left- and right-handed circular polarization, respectively, or, for
electrons, the eigenstates of the z component of the spin.

of M correspond to the normalized local Stokes parameters
S1, S2, and S3 [49], and for the electrons to the local directions
of the electron spin. The ith component of the associated
skyrmion field is

�i = 1

2
εi jkεpqrMp

∂Mq

∂x j

∂Mr

∂xk
, (4)

where εi jk is the alternating or Levi-Civita symbol and we
employ the summation convention. The form of the skyrmion
field ensures that it is transverse (∇ · � = 0). This means that
there are no sources or sinks for the skyrmion field and the
associated field lines can only form loops or extend to infinity
[50]. It follows that the flux of the skyrmion field through any
closed surface is zero,

∮
� · dS = 0.

We consider a beam propagating in the z direction. In each
transverse plane of the beam the polarization or spin pattern
can form a skyrmion reminiscent of those familiar from the
study of magnetic skyrmions. To facilitate this comparison,
and also to characterize the variety of skyrmions, we employ
the skyrmion number

n(z) = 1

4π

∫
�z dxdy, (5)

where the integral runs over the whole of the plane perpendic-
ular to the propagation direction of the beam.

Optical vector vortex beams typically have a spatially vary-
ing polarization pattern that originates from the differential
orbital angular momentum of the contributing modes [4,18]
and exhibit intriguing topological [51–54] and focusing prop-
erties [55,56]. We consider the simplest case of such beams in
which the two orthogonal modes, with amplitudes u0(r) and
u1(r), are Laguerre-Gaussian (LG) modes

u	
p(ρ, φ, z) =

√
2p!

π (p + |	|)!
1

w(z)

(
ρ
√

2

w(z)

)|	|
exp

( −ρ2

w2(z)

)

× L|	|
p

(
2ρ2

w2(z)

)
ei	φ exp

(
− i

ρ2

w2(z)

z − z0

zR

)

× exp

[
−i(2p + |	| + 1) tan−1

(
z − z0

zR

)]
,

(6)

familiar from the study of orbital angular momentum
[6–10]. Here, we have employed cylindrical polar coordinates
(ρ, φ, z), zR = πw2

0/λ is the Rayleigh range, and w(z) =
w0

√
1 + (z − z0)2/z2

R is the beam width on propagation. We
assume that the modes have the same wavelength λ, but they
may differ in the beam parameters 	, p,w0, and the focal posi-
tion z0. These modes have a vortex of strength 	 on the z axis,
which is associated with a z component of the orbital angular
momentum of 	h̄ per photon (or electron) [6–10]. Modes with
different angular momentum numbers 	 are orthogonal and if
we choose two such modes for our two complex amplitudes
u0 and u1 in (1), then the function v(r) in (2) for the locally
normalized state |ψ (r)〉 has the general form

v(r) = f (ρ, z)eiθ (ρ,z)ei
	φeiθ0 , (7)

where 
	 = 	1 − 	0, f and θ are real functions of the co-
ordinates ρ and z, and θ incorporates all phase terms. We
see that the global phase factor introduced in our original
expression, Eq. (1), corresponds in this situation to a rotation
of the beam about the z axis. It is straightforward to calculate
the skyrmion field and from this the skyrmion number for our
vector vortex beam. We find the simple result that for such
beams the skyrmion number is

n(z) = 
	

(
1

1 + |v(0, z)|2 − 1

1 + |v(∞, z)|2
)

. (8)

The value of n is determined solely by which of the two modes
u0(r) and u1(r) dominates on the z axis, the location of the
vortex, and at large distances from the vortex. Unless 	0 =
−	1, the ratios |v(0, z)|2 and |v(∞, z)|2 will both be either 0
or ∞, giving rise to an integer skyrmion number the value of
which is determined by which mode dominates at ρ = 0 and
at ρ = ∞. We note that the expression given in Eq. (1) is valid
also when 	0 = −	1, but in this case we obtain, typically, a
noninteger skyrmion number.

The skyrmionic beams that are simplest to construct com-
prise a superposition of orthogonal polarization (or spin)
states multiplied by u	

0 LG modes with no radial nodes, the
same beam width, a common focal point, and with orbital
angular momentum differing by one. In this case (7) simplifies
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FIG. 2. Polarization structure for a superposition of LG modes
with 	1 = 1 and 	0 = 0 focused at z = 0. The beam surface sepa-
rating the regions in which the modes have the larger amplitude, u0

(blue) and u1 (red). A, B, and C are three cross sections of interest,
at z = −10, 0, and 10 respectively. (a1), (b1), and (c1) are spatially
varying polarization patterns corresponding to each plane, while (a2),
(b2), and (c2) are the corresponding effective magnetizations, with
the classic chiral and hedgehog forms, respectively.

to v(r) = A(z)ρeiφ (where A is generally complex) and one
polarization dominates at the position of the vortex, with the
orthogonal polarization appearing as ρ → ∞. We provide
examples for such polarization patterns in Figs. 2(a1) to 2(c1)
together with the corresponding effective magnetization in
Figs. 2(a2) to 2(c2). The local Bloch vector, representing the
local spin direction, is clearly reminiscent of the spiral and
hedgehog skyrmions, familiar from the study of magnetic
skyrmions [34]; the former arises when A is imaginary and
the latter when the amplitude A is real.

We note that the natural propagation of the beam will cause
the magnetization or polarization pattern to evolve continu-
ously from one of these forms into the other by virtue of the

FIG. 3. Comparison of manifestations of spiral skyrmions for
polarization and effective magnetization for two different skyrmion
numbers n = 1 and n = 2. (a) A spiraling polarization skyrmion
with n = 1. The full rotation on the Poincaré sphere results in half
a rotation for the major axis of the polarization ellipse. (b) The same
configuration for the effective magnetization M, where the vector
describes a full rotation on the Bloch sphere and in the configuration
space. (c) As in (a) for n = 2 showing now a full rotation of the
polarization. (d) As in (b) for n = 2 showing two full rotations of the
effective magnetization.

relative Gouy phase [41], which changes as the beam prop-
agates. The skyrmion number is unchanged, however, taking
the value +1 at every transverse plane.

There is, however, a subtle difference in the geometric
interpretation between the Poincaré and Bloch sphere. On
both spheres, orthogonal states are diametrically opposite.
However, for the Poincaré sphere this corresponds to a right
angle in the major axes of the polarization, whereas the Bloch
vectors of orthogonal states are antiparallel.

We can illustrate the effect of the discrepancy between
rotation on the Poincaré sphere and rotation of the polar-
ization ellipse on the geometry of the skyrmion pattern in a
comparison between spiral skyrmions formed by superposing
LG beams with orbital angular momentum numbers differing
by one and two. In Fig. 3 we compare the local polarization
ellipse and Bloch vector for a pair of modes with 
	 = 1 (as
in Fig. 2) with a pair of modes for which 
	 = 2. We see
that the polarization ellipses and the Bloch vectors rotate as
one traverses a path around the vortex. Moreover, along such
a path, the polarization ellipse completes half a rotation when

	 = 1, whereas the Bloch vector rotates fully. For 
	 = 2
the polarization ellipse completes one full rotation and the
Bloch vector winds twice for one complete circle around the
vortex.

These are examples of a more general result that for a
superposition of modes with a difference in orbital angu-
lar momentum number of 
	, the Bloch or Poincaré vector
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FIG. 4. (a) Magnetization and (b) polarization visualization of a
Poincaré beam with skyrmion number 0.

rotates 
	 times on a path enclosing the vortex. The corre-
sponding polarization ellipse rotates by only half the amount.
This behavior persists when we consider modes with radial
indices different from zero, although the polarization structure
becomes more intricate because of the additional nodal lines.
The resulting skyrmion number is nevertheless governed by
the difference in dominating behavior described in (8).

The corresponding skyrmion number is 
	 if the spin or
polarization states at the vortex position and at infinity are
orthogonal but will be zero if they are the same. This depen-
dence of the skyrmion number on both 
	 and on the position
dependence of the polarization clearly demonstrates that the
skyrmion field and number are topological properties of both
the spin and orbital angular momenta.

Each of the examples considered so far has a spatially
varying polarization or spin that covers the entire Poincaré
or Bloch sphere. It follows, therefore, that that they are also
Poincaré beams and it is natural to ask whether skyrmion
beams and Poincaré beams are equivalent. Our final example
shows that they are not. Consider a beam formed from orthog-
onally polarized 	 = 1, p = 0 and 	 = 0, p = 1 modes,

|ψ (r)〉 = u0
1(r)|0〉 + u1

0(r)|1〉√∣∣u0
1(r)

∣∣2 + ∣∣u1
0(r)

∣∣2
, (9)

with the amplitudes u defined in Eq. (6). The effective magne-
tization and corresponding optical polarization for this beam
are depicted in Fig. 4. If we start at the center of the beam
and move radially outwards, the changing polarization corre-
sponds to traveling along a great circle on the Poincaré sphere,
starting at the north pole and returning to it at infinite distance.
Each direction we may choose for our radial path corresponds
to a different line of latitude and it is clear, therefore, that we
have a Poincaré beam but, because the skyrmion number is
zero, it is not a skyrmion beam. It may be that all integer
skyrmion beams are also Poincaré beams but further work is
needed to determine this.

III. CONSERVATION OF THE SKYRMION FIELD

The fact that the skyrmion field � is divergenceless does
not mean that the skyrmion number, defined as the z compo-
nent of the flux in (5), is necessarily conserved on propagation.
Consider a circular-cylindrical surface of radius R centered
on the position of the vortex extending from −z0 to z0. For
the skyrmion field to be divergenceless the flux through all

surfaces of this cylinder has to vanish. The radial flux through
the mantle of the cylinder∫ 2π

0
dφ

∫ z0

−z0

dz �ρ

= −
	

(
1

1 + |v(R,−z0)|2 − 1

1 + |v(R, z0)|2
)

(10)

is compensated by the flux through the cylinder ends in the z
direction at z = −z0 and z = z0. The expression for these is
essentially given by (8), evaluated at z = −z0 and z = z0 and
ρ = R instead of infinity. The two terms evaluated at ρ = 0

FIG. 5. Polarization structure for the same superposition of
modes as in Fig. 2 but focused at different points: −z0 = −2 and
z0 = 2. For z > 0 the mode u0 (blue) has the larger amplitude both
in the central region of the beam and the periphery, as indicated
by two surfaces of equal amplitude. A, B, D, and E are four cross
sections of interest, at z = −10, −2, 2, and 10, respectively. (a1),
(b1) and (d1), (e1) are the spatially varying polarization structures
showing the qualitative difference for z ≶ 0 at those four planes,
respectively. (a2), (b2) and (d2), (e2) are the corresponding effective
magnetizations with skyrmion number 1 (z < 0) and 0 (z > 0).
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for z = −z0 and z = z0 cancel and the total flux through both
ends of the cylinder is given by


	

(
1

1 + |v(R,−z0)|2 − 1

1 + |v(R, z0)|2
)

, (11)

which is the negative of (10), proving that there is no total
flux through the cylinder. If we now construct a superposition
of LG beams such that the radial flux is nonvanishing, the
flux along the z direction also needs to be different from
zero, which indicates a change in the skyrmion number. The
simplest way to demonstrate this is to consider a superposition
of LG beams that are focused at different positions along the z
axis. The effect of this is that the polarization behavior at large
values of ρ changes as the beam propagates and the skyrmion
number changes from 
	 to 0 (or from 0 to 
	). This behavior
is depicted in Fig. 5, where we see that the polarization at
large distances from the central vortex changes abruptly at
one transverse plane and with it the skyrmion number. At
plane A and B the skyrmion number is +1 and at plane D
and E it is equal to zero. The boundary between these two
regimes is at plane C, where the skyrmion field lines escape to
ρ → ∞. Clearly, this will give a nonzero value for the radial
flux because |v(R,−z0)|2 �= |v(R, z0)|2 and hence a change in
the skyrmion number if we allow R to tend to infinity.

IV. CONCLUSIONS

We have shown that paraxial vector vortex beams, either of
light or electrons, possess a topological property that can be
identified with a skyrmion number. The associated skyrmion
field is transverse (or divergenceless) and this means that there

are no sinks or sources of this field. The skyrmion number
for a beam can change on free-space propagation, however, if
skyrmion field lines escape radially out of the beam towards
regions of negligible intensity. Demonstrating these properties
requires the preparation of vector vortex beams and mea-
surement of the polarization or spin in planes perpendicular
to the beam axis [57]. We shall report on such experiments
elsewhere.

We close by emphasizing that the skyrmionic property of
vector beams is distinct from the familiar spin and orbital
angular momentum of optical beams [6–10,58]. It is true
that the beams we consider here combine optical vortices
and polarization, commonly associated with orbital and spin
angular momentum, respectively, but the skyrmion number is
a topological rather than a mechanical property of the beam.
To see this we note that the skyrmion number is unchanged
if we apply a global transformation of the polarization, for
example, via reflection at a surface or a phase retardation of
the constituent beams. On the other hand, we have seen that
it is possible for the skyrmion number to change if the two
superimposed modes are focused at different propagation dis-
tances. The total spin and angular momentum passing through
each transverse plane, however, remains unchanged.
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