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Light propagation in nanophotonic waveguides considering graphene’s saturable absorption
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We study saturable absorption in graphene-comprising nanophotonic waveguides taking into account the finite
relaxation time as well as the carrier diffusion due to the nonuniform, tightly confined spatial profile of the
guided modes. We discuss various details of graphene SA and comment on the necessary conditions that allow
for directly comparing our model with available experimental. The mathematical framework is based on the
nonlinear Schrödinger equation which provides a strict framework for our analysis and is developed for two
optical channels. We explore the propagation of cw, long and short pulsed signals in a silicon slot waveguide
and show the importance of our model in order to capture the ultrafast dynamics of graphene and the spatial
distribution of guided modes. Finally, we demonstrate how cross absorption modulation can be exploited in
order to imprint data from a high power optical channel to a low power channel.
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I. INTRODUCTION

Graphene has been the most systematically studied two-
dimensional (2D) material with applications expanding into
many diverse scientific fields [1]. Specifically in optics and
photonics, graphene’s linear electronic dispersion gives rise to
many unique optical properties [2], with the most prominent
being graphene’s universal (broadband) light absorption [3].
Moreover, graphene’s conductivity can be controlled through
chemical doping and more importantly through dynamic
electrostatic gating [4–6]. The exploration of these linear char-
acteristics has led to the theoretical and experimental design
of novel graphene-based devices [7–9]. Furthermore, it was
also reported that graphene exhibits very high (comparable
to silicon and silica) Kerr-like (third order) nonlinear prop-
erties [10,11]. The exact magnitude of the Kerr nonlinearity
is still investigated [12–14], mainly because early experimen-
tal works focused on extracting an effective bulk nonlinear
susceptibility for graphene, by artificially treating graphene
as a thin uniform layer. More recent studies have shifted into
identifying graphene’s nonlinear surface conductivity as the
appropriate quantity to correctly capture the nonlinear optical
properties of 2D materials [15]. Nevertheless, many works
have been published exploiting graphene’s third-order nonlin-
ear response in order to realize all optical devices [16–21].

Besides the Kerr effect, graphene is also known to exhibit
low power and ultrafast saturable absorption (SA). In fact,
the power threshold is lower than that of the Kerr effect
and also much lower than in semiconductor-based saturable
absorbers, rendering graphene SA very attractive as an alter-
nate nonlinear effect [22–24]. In early publications graphene
SA was exploited to experimentally realize passively mode-
locked fiber lasers for femtosecond pulses [25,26]. Initially
graphene was placed on the fiber ferrule but this technique
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provided weak interaction. New approaches to increase light
matter interaction include the use of multiple graphene sheets
[22], graphene sheets placed on top of microfibers [27], fiber
tapers embedded in graphene-polymer composite [28], fold-
ing graphene sheets around the fiber [29], and D-shaped fibers
[30]. The 2D planar geometry of graphene, which makes it
compatible with established integration techniques for SOI-
based photonic devices and the above need for stronger
nonlinear interaction has led to an increasing interest of ex-
ploring graphene SA in photonic waveguides [31–33], which
could lead to on-chip mode-locked lasers and novel compact
all-optical components. Last but not least, the two decisive
experimental parameters regarding the SA effect, namely the
saturation intensity (light intensity at which absorption is
halved) and response time still show appreciable variation
with reports differing by two or three orders of magnitude
[24,26,34–39]. This has sparked an intense ongoing research
into the ultrafast graphene SA dynamics and how they are
properly modeled for nanophotonic waveguides.

In this work we propose a strict framework, based on the
nonlinear Schrödinger equation (NLSE), for the macroscopic
modeling of light propagation in photonic waveguides that
have 2D materials with SA. This is achieved through a strict
NLSE procedure by including the surface conductivity of the
2D material. The surface conductivity is dependent on the
photoexcited carrier concentration, which in turn is described
by a separate rate equation. We take into account both a finite
carrier relaxation time and carrier diffusion in the 2D material,
which becomes important in high confinement, and shed light
on the conditions that allow direct comparison of our model
with experimental data. The theory is eventually specialized
for graphene and we discuss the graphene-specific details.
The developed NLSE also takes into account the scenario of
a probe and signal scenario at different frequencies which can
be used to explore the cross absorption modulation between
two such signals. Finally, we apply our theory into two distinct
cases, cw and pulsed excitation. In the cw case we compare
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our model with other other simpler models and we extract
an effective saturation intensity which takes into account the
waveguide confinement and carrier diffusion. This greatly
simplifies the propagation of long pulses where SA can be
thought to be instantaneous. Next, we explore a short pulse
excitation example where we show the asymmetric effects
of the ultrafast temporal response of graphene SA. Further-
more, we also investigate the interplay between SA, linear
dispersion, and the Kerr effect, which results into a solitonlike
behavior. Finally, we simulate the simultaneous propagation
of two different wavelengths and how SA can be used to
imprint a data stream from one channel to the other.

II. GRAPHENE-SATURABLE ABSORPTION

In this section we establish a general macroscopic physical
model for a 2D saturable absorber and then discuss how this
is applied specifically to a graphene sheet.

A. Saturable surface current

We consider a quasimonochromatic electric field with cen-
tral frequency ω0 that interacts with a 2D saturable absorber.
The notation used for the real electric field E is

E (r, t ) = 1
2 [E(r, t )e−iω0t + c.c.], (1)

where E(r, t ) is the complex slowly varying field envelope.
The induced first-order macroscopic current density envelope
J at ω0 can be written in the time domain as

J = σ̄ (1)(ω0)E, (2)

where σ̄ (1)(ω0) is the first-order (linear or low power) con-
ductivity tensor, which is assumed to be constant around ω0.
In general the current density consists of both surface and
bulk contributions, originating from 2D and bulk materials,
respectively. Without loss of generality we can ignore bulk
current densities so that we are left with just a surface current
density,

J = Jsδs(r) = σ̄ (1)
s (ω0)Eδs(r), (3)

where Js is the surface current density, σ̄ (1)
s is the surface

first-order conductivity tensor, and δs(r) is a surface Dirac
function which is nonzero only on the 2D material. Note that
σ̄ (1)

s has to be anisotropic so that there are no current compo-
nents normal to the 2D surface. For example, a layer of a 2D
material aligned in the zx plane would have a conductivity σ̄ (1)

s
given by

σ̄ (1)
s =

⎡
⎣σ1,xx 0 σ1,xz

0 0 0
σ1,zx 0 σ1,zz

⎤
⎦, (4)

where σ1,xy = σ1,yx = 0 and σ1,zy = σ1,yz = 0. In the ab-
sence of strong magnetic fields, σ1,xx = σ1,zz = σ1 and σ1,xz =
σ1,zx ≈ 0, thus we can simplify Eq. (3) as

J = σ1E||δs(r), (5)

where the scalar σ1 is the only independent value of σ̄ (1)
s (ω0)

and E|| is the electric field parallel to the 2D material [40].

Saturable absorption is introduced as the saturation of the
σ1 conductivity in Eq. (5). This conductivity is usually thought
as linear, i.e., the current density of Eq. (5) is a linear function
of E‖. Under the effects of SA though, the relation between
current density and electric field becomes nonlinear since
the conductivity now depends on the light intensity, which is
proportional to |E‖|2. Microscopically, SA can be attributed to
band filling: As the conduction band is filled by photoexcited
carriers due to direct intraband transitions, the probability
of further transitions is lowered and absorption is gradually
saturated [41]. Thus, we assume that σ1 is dependent on the
surface carrier density Nc and write σ1 as

σ1(Nc) = σnsat + σsat (Nc), (6)

where σnsat and σsat are nonsaturable and saturable surface
conductivity components, respectively. Combining Eqs. (5)
and (6), the total current density is expressed as the sum of
two distinct surface current densities,

J = (Jlin + Jsat )δs(r), (7)

with

Jlin = σnsatE‖, (8a)

Jsat = σsat (Nc)E‖, (8b)

where Jlin is the linear surface current density and Jsat is the
nonlinear current due to SA. The carrier density is also a func-
tion of time Nc = Nc(E, t ) and Eq. (8b) would formally have
to be a convolution between the conductivity and electric field,
since it is written in the time domain. In order for Eq. (8b) to
hold in its current form, the carrier lifetime has to be much
longer than the time scale of current density generation. This
means that the applied field interacts very fast (instantly) with
the conductivity of the medium and generates the current
density and photoexcited carriers, but the carriers themselves
decay at a much longer (finite) time scale. In a two-level
system configuration this is called the “rate-equation regime”
where a separate equation is used to calculate the carrier
density distribution [42]. In this work, assuming the above
conditions hold, we use the following general relation for the
carrier density,

∂Nc

∂t
=

1
2 Re{σsat (Nc)}|E‖|2

h̄ω0
− Nc

τ
+ D∇2Nc, (9)

where 1
2 Re{σsat (Nc)}|E‖|2 is the absorbed power density

(W/m2) corresponding to the saturable conductivity of the
2D material, τ is the SA relaxation time, and D the diffusion
coefficient. Carrier diffusion exclusively takes place within
the 2D material. Also, the Laplace operator is only applied
in the transverse plane and not the propagation direction, that
is, ∇2 ≡ ∇2

t . This can be justified under the slow varying
amplitude approximation (SVEA): Assuming that the carrier
density distribution follows that of the field, then under the
SVEA condition second derivatives in the propagation direc-
tion can be neglected. Finally, note that Eq. (9) assumes that
every absorbed photon has energy approximately equal to h̄ω0

and it excites a single carrier.
By using the absorbed power density as the source term in

Eq. (9) instead of the absorption coefficient and light inten-
sity we don’t make the assumption that saturation is uniform
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across the material or that E‖ has a uniform spatial distri-
bution. Consequently, Nc is calculated for each point on the
2D saturable absorber and thus can more accurately describe
the SA phenomenon in situations where the electric field is
highly nonuniform, which is especially true for nanophotonic
waveguides.

B. Saturation of graphene conductivity

Graphene’s linear surface conductivity is commonly at-
tributed to interband and intraband electronic transitions
which give rise to an interband and intraband surface current
[43], respectively. Saturation of the absorption in graphene
is directly linked to the saturation of these two currents and
consequently the saturation of the associated conductivities.
Expressions for the interband σinter and intraband σintra con-
ductivities can be found in a number of published works
[40]. Although both of these types of conductivities exhibit
saturation with increasing field strength [39], intraband tran-
sitions at the near infrared spectral region (NIR) saturate at
a much higher incident power density (GW/cm2) compared
to interband transitions (MW/cm2). Also, in the NIR ab-
sorption is dominated by interband transitions. As a result,
for applications in the NIR we can safely assume that the
intraband conductivity is nonsaturable and we can attribute
SA effects solely to interband transitions. In terms of Eq. (6)
this translates to

σ1(Nc) = σintra + σinter (Nc). (10)

Furthermore, graphene’s surface conductivity is also a
function of the chemical potential (μc) at which graphene is
biased. A plot of the real and imaginary parts of the con-
ductivities σ1, σinter, and σintra at 1550 nm, a temperature of
300 K, and for low intensities (linear regime) can be found
in Fig. 1(a). For μc > h̄ω/2 interband transitions are prohib-
ited by Pauli blocking and so we expect that any SA effects
in this region are caused by intraband saturation and in the
NIR region will be relevant only at very high incident power
densities that are beyond practical interest. On the other hand,
for μc < h̄ω/2, the interband conductivity is much larger than
the intraband one and noticeable SA effects are expected, also
at much lower power densities. Thus, we will study the SA of
graphene for μc < h̄ω/2, which for the telecom wavelength
λ0 = 1.55 μm translates to μc < 0.4 eV. Note that for lower
frequencies (e.g., the THz regime) interband transitions occur
only for very small values of μc so that in general intraband
transitions are the dominant component. Thus, in the THz
regime graphene has to be accurately electrically biased or
even self-biased very close to 0 eV [44,45] in order to exploit
the saturation of interband transitions. Additionally, the sat-
uration intensity of intraband transitions was reported in [39]
to be proportional to λ−2 which means intraband transitions in
the THz could possibly also be used for SA applications. As
a result, the THz regime is also viable for graphene SA appli-
cations but because in those frequencies graphene can guide
light by supporting surface plasmons, this regime will not be
discussed in this work. According to the above, we plot in
Fig. 1(b) the expected absorption modulation versus chemical
potential for a graphene sheet illuminated by a homogeneous
field (1550 nm) strong enough to fully saturate σinter. In this
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FIG. 1. All plots correspond to a free space wavelength of
1550 nm and a temperature of 300 K. (a) Graphene linear (at low in-
cident power) conductivity σ1 versus chemical potential. Also shown
separately are the intraband σintra and interband σinter conductivities.
Real and imaginary parts are depicted with solid and dashed lines,
respectively. (b) Ideal absorption modulation of a graphene sheet un-
der homogeneous illumination and for full saturation of σinter . Under
these conditions the modulation is given by the conductivity ratio
Re{σinter}/Re{σ1}. The gray shaded area corresponds to the strong
SA regime.

idealized scenario we observe that for 0 eV < μc < 0.4 eV
the absorption modulation is between 100% and 90%.

Finally, graphene’s surface interband conductivity is in
general complex [see Fig. 1(a)] and according to Eq. (10)
we expect that both the real and imaginary part are affected
with increasing light intensity. The real part is saturated (de-
creased), which is the SA effect, but the imaginary part in
graphene will actually increase (in magnitude) as was shown
in [46]. This is nonlinear change in graphene’s effective
refractive index can possibly be important in applications
sensitive to nonlinear phase change, such as resonators [47].
Moreover, recent publications [21,48] suggest that what was
previously observed as the Kerr effect is actually the result of
the modification of the imaginary part of the conductivity due
to SA. In this work we will primarily focus on the saturation
of absorption in straight waveguides and we choose to include
the nonlinear phase change through the Kerr effect, which is
better documented in the literature. Furthermore, we assume
that graphene is pristine, e.g., μc = 0 eV, so that σinter is
almost purely real. To simplify notation, from this point on
when referencing to σinter we will implicitly refer to Re{σinter}.

The dependence of the absorption on the carrier density
is estimated in [25] as 1/(1 + Nc/Nsat ) and more recently in
[21,33] as 1 − Nc/(2Nsat ), where Nsat is the saturation density.
We define Nsat as the steady-state carrier density at which the
conductivity drops to one-half of its unsaturated value. Both of
these approaches are phenomenological but provide a simple
saturation function. We choose to adopt the expression from
[21] which translates to

σinter (Nc) = σinter

(
1 − Nc

2Nsat

)
, (11)
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where σinter ≡ σinter (0) is thought to be the linear low-intensity
value of the interband surface conductivity. According to
Eq. (11) we can now express Eq. (8b) as

Jsat = σinter

(
1 − Nc

2Nsat

)
E‖, (12)

which is the SA nonlinear current from a 2D graphene sheet.
We can also rewrite Eq. (9) using Eq. (11) as

∂Nc

∂t
= Re{σinter}

(
1 − Nc

2Nsat

)|E‖|2
2h̄ω0

− Nc

τ
+ D∇2Nc, (13)

by using the Re{} notation here we underline the fact that even
if we took into account the change of the imaginary part of
σinter with the carrier density, Eq. (9) would still only depend
on the real part.

It is useful to examine the case where we have continuous
wave (cw) and homogeneous illumination at saturation condi-
tions. By dropping the time derivative (steady state) and the
dispersion term (homogeneous field) in Eq. (13), we can cal-
culate the saturation carrier density by substituting Nc = Nsat,

Nsat = Re{σinter}Z0Isat

2h̄ω0
τ, (14)

where Z0 is the free space impedance and Isat = |E‖,sat|2/(2Z0)
is the saturation intensity. By using Eq. (14) in Eq. (13) we can
also find the cw steady-state carrier density of a homogeneous
field,

Nc

Nsat
= 2I/Isat

1 + I/Isat
, (15)

where we defined the intensity as I = |E‖|2/(2Z0). It is now
straightforward to show that substituting Eq. (15) into Eq. (11)
leads to the well-known saturation expression,

σinter (I ) = σinter

1 + I/Isat
. (16)

From Eq. (16) it immediately follows that the nonlinear cur-
rent density is

Jsat = σinter

1 + I/Isat
E‖, (17)

which describes SA in a straightforward way without the need
for a rate equation in the case of homogeneous cw fields.

Last but not least, we discuss the values of the parameters
Nsat, Isat, and τ for graphene at 1550 nm. As the last two
parameters are the ones that can be directly experimentally
measured we focus on them and we estimate the value of
Nsat from Eq. (14). In published experimental and theoretical
results [24,26,34–39] the value of Isat ranges from 1 MW/cm2

to 1 GW/cm2. Although experimental conditions and the spe-
cific setup (for example, the type of substrate that graphene
is deposited on) will affect the measurement, it is very im-
portant to note that Isat is by definition a cw intensity and
thus measurements are accurate only for cw or long pulse
excitation so that a steady state can be approximated. For
the case of graphene, this translates into pulses in the ps-ns
regime. Furthermore, the applied probe field must also be
as homogeneous as possible. In structures with high field
confinement, such as waveguides or microfibers, the carrier

TABLE I. Values of SA parameters used.

Isat τ Nsat D

1 MW/cm2 1.67 ps 1.5 × 1015 m−2 5500 cm2/s

spatial diffusion D∇2Nc becomes important and can even be
more significant than carrier relaxation [38]. Thus, the most
accurate method of estimating Isat would be a plane wave
incident on a free standing graphene sheet. Following these
observations, we adopt the value of Isat = 1 MW/cm2 which
was reported in [25,38].

Continuing, the SA relaxation time τ in Eq. (13) for
graphene represents an effective time which depends on two
distinct time scales in graphene: The first one is the carrier-
carrier intraband scattering (thermalization), reported in the
range of 70–150 fs, and the second one is the carrier-phonon
intraband scattering or electron-hole recombination (carrier
cooling) in the range of 0.5–1.7 ps. These processes are ex-
plained in detail in [23] and were experimentally estimated in
[49,50]. Note that the value of the effective parameter τ also
depends on the specific setup as the carrier lifetime can be
altered by a number of exterior factors. Reported estimated
values of τ range from ultrafast values coinciding with the
carrier thermalization process (50–150 fs) [33,39], some av-
erage of the thermalization and carrier cooling process (0.5–1
ps) [21,24,51], or the carrier cooling itself (1.67 ps) [25,38].
In the present work we opt for choosing τ = 1.67 ps so that
the estimated Nsat by Eq. (14) is similar to that used in [33].
A complete table with all the selected values can be found in
Table I.

Finally, we would like to note that the choice of Isat or τsat

is not independent of each other, as can be seen in Eq. (14)
when keeping Nsat constant, or by a more rigorous calculation
in [39]. Qualitatively, this can be understood by the fact that
if the photoexcited carrier density depletes faster then more
power is needed to sustain the saturation effect.

III. NLSE FORMULATION

In this section we will derive the nonlinear parameters of
the nonlinear Schrödinger equation (NLSE) that describes the
wave propagation in waveguides with 2D saturable absorbers.
For the sake of completeness we will consider both third-order
and SA nonlinear phenomena. The analysis will be specialized
for the case of two fields of the same waveguide mode but
at distinct frequencies, which is often how SA experiments
are conducted. The derivation of the NLSE is a well-known
procedure [52,53] so it will not be fully expanded here but
we note the fundamental restriction that should be satisfied:
The effect of nonlinearity on the waveguide modes is thought
as a small perturbation, that is, mode profiles do not change
under nonlinear effects and propagation constants are only
perturbed. This is almost always the case for Kerr effects but
it is not obvious for SA where the conductivity of a material
can be fully saturated. Nevertheless, in this work we will focus
on SA from graphene in nanophotonic waveguides in the NIR
spectral region. These waveguide modes are predominantly
photonic in nature, which means that light is guided by the
underlying waveguide structure and not graphene. Thus, the
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presence of the graphene layers will not alter the guided
mode’s profile in any appreciable manner [54]. For such
photonic waveguides we can safely assume that the NLSE
restrictions hold.

We start by considering the real electric field E in a waveg-
uide, which consists of a sum of all quasimonochromatic
fields with distinct center frequencies ων ,

E (r, t ) = 1

2

[∑
ν

Eν (r, t )e−iων t + c.c.

]
, (18)

where E(r, t ) the complex electric field envelope, r the posi-
tion vector, t the time, and

Eν (r, t ) = Aν (z, t )
eν (x, y, ων )√

Nν

eiβ (ν)
0 z, (19)

where eν (x, y, ων ) is the transverse mode profile at ων , β
(ν)
0 =

β (ν)(ων ) the mode propagation constant, and

Nν = 1

2
Re

{∫∫
eν × h∗

ν · ẑ dS

}
(20)

a normalization constant so that |Aν |2 represents the mode’s
guided power. In Eq. (20) the integration is carried out over the
waveguide’s transverse cross section S. Note that Aν contains
the effect of both linear dispersion and nonlinear effects. In
the frequency domain Eqs. (18) and (19) are

FT{E (r, t )} = 1
2 [Ẽ(r, ω) + Ẽ∗(r,−ω)], (21a)

Ẽ(r, ω) =
∑

ν

Ãν (z, ω − ων )
eν (x, y, ων )√

Nν

eiβ (ν)
0 z, (21b)

where FT{·} is the Fourier transform and we have chosen
to distinguish frequency domain fields from time domain ones
using the tilde notation.

The Kerr effect is most commonly introduced in Maxwell’s
equations through a nonlinear polarization term P3 for bulk
materials and nonlinear surface current densities J3 for 2D
materials [11]. If we also include the SA effect from 2D
materials by using Eq. (8) we can write Maxwell’s equations
in the frequency domain as

∇ × Ẽ = iωμ0H̃, (22a)

∇ × H̃ = −iωε0ε̄rẼ + J̃lin − iωP̃3 + J̃3δs(r) + J̃satδs(r),

(22b)

where ε̄r is the bulk relative dielectric permitivity tensor, P̃3

the frequency domain envelope of the third-order polariza-
tion, and J̃3 the frequency domain envelope of the third-order
surface current density. The linear current density J̃lin encom-
passes all of the linear current densities (bulk or 2D) present.
The frequency domain envelopes are the Fourier transform of
the respective time domain envelopes defined from the real
fields as

P3(r, t ) = 1

2

[∑
ν ′

P3,ν ′ (r, t )e−iων′ t + c.c.

]
, (23a)

J3(r, t ) = 1

2

[∑
ν ′

J3,ν ′ (r, t )e−iων′ t + c.c.

]
, (23b)

Jsat (r, t ) = 1

2

[∑
ν ′

Jsat,ν ′ (r, t )e−iων′ t + c.c.

]
, (23c)

where ν ′ denotes all the possible frequency components that
can be created through frequency-mixing nonlinear processes.

Following the standard derivation of the NLSE and us-
ing Eq. (22) for each distinct propagating frequency we can
write the frequency domain equations of the slowly varying
envelopes Ãν as

∂

∂z
Ãν (z, ω − ων ) = i

∞∑
n=1

(ω − ων )n

n!
β (ν)

n Ãν (z, ω − ων )

+ iωe−iβ (ν)
0 z

4
√

Nν

∫∫
e∗
ν ·

[
P̃3,ν (r, ω − ων )

+ i

ω
J̃3,ν (r, ω − ων )δs(r)

+ i

ω
J̃sat,ν (r, ω − ων )δs(r)

]
dS, (24)

where β (ν)
n is the nth derivative of the propagation constant

with respect to ω, calculated at ων . The first term in the right-
hand side stands for the linear dispersion while the terms in
brackets account for third-order nonlinear effects and SA.

Equation (24) is now transformed back to the time domain
as

∂

∂z
Aν (z, t ) =

∞∑
n=1

in+1

n!
β (ν)

n

∂n

∂t n
Aν (z, t )

+ iων

4
√

Nν

e−iβ (ν)
0 z

∫∫
e∗
ν · P3,ν (r, t )dS

− 1

4
√

Nν

e−iβ (ν)
0 z

∫
e∗
ν · J3,ν (r, t )d�

− 1

4
√

Nν

e−iβ (ν)
0 z

∫
e∗
ν · Jsat,ν (r, t )d�,

+ αν

2
Aν, (25)

where the surface integrals regarding surface currents were
transformed to line integrals, due to δs(r), on the respective
2D material. Furthermore, we have heuristically included the
linear losses with αν = 2Im{n(ν)

eff }k0, where n(ν)
eff is the linear ef-

fective refractive index of the respective mode and k0 the free
space wave number. Note that nonsaturable losses induced by
2D materials are included in this parameter.

The next step is to find the time domain expressions for
the nonlinear terms. To somewhat simplify the analysis we
assume that there are only two fields propagating with ν =
1, 2 corresponding to frequencies ω1 and ω2, respectively.
Furthermore, the first field (pump) is assumed to be much
stronger than the second one (probe) so that all nonlinear
effects are attributed mainly to the first field. Also throughout
this analysis the material response regarding P3 and J3 is
taken to be instantaneous and we ignore any frequency mixing
effects to other harmonics.
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A. Third-order effects

The time domain expression for the third-order terms at ω1

are

P3,1 = 3
4ε0χ̄

(3)(ω1; ω1,−ω1, ω1)|E1E∗
1E1

+ 3
2ε0χ̄

(3)(ω1; ω2,−ω2, ω1)|E2E∗
2E1, (26a)

J3,1 = 3
4 σ̄ (3)

s (ω1; ω1,−ω1, ω1)|E1E∗
1E1

+ 3
2 σ̄ (3)

s (ω1; ω2,−ω2, ω1)|E2E∗
2E1, (26b)

where the symbol | denotes tensor multiplication, and the
fourth rank tensors χ (3) and σ (3)

s are the bulk third-order sus-
ceptibility and surface third-order conductivity, respectively.
For isotropic nonlinear bulk and sheet materials the tensor
elements are given by

χ
(3)
i jkl = 1

3χ3(δi jδkl + δikδ jl + δilδ jk ), (27a)

σ
(3)
s,i jkl = 1

3σ3(δi jδkl + δikδ jl + δilδ jk ). (27b)

In these expressions, {i, j, k, l} refer to Cartesian compo-
nents and δpq is the Kronecker delta. For the case of σ

(3)
s,i jkl

the indices correspond only to tangential to the 2D material
components. The constants χ3 and σ3 are the only indepen-
dent values of the respective tensors. We should note that the
first terms in Eq. (26) represent self-phase modulation (SPM)
while the second terms describe the cross-phase modulation
(XPM). Furthermore, we underline that Eq. (26) contains only
terms that are phase matched by default, irregardless of the
specific propagation constants β

(1)
0 , β

(2)
0 or frequencies ω1, ω2

chosen. By substituting Eq. (26) into Eq. (25) and removing
the field amplitudes we can evaluate the nonlinear parameters
from the respective integrals as

γb,1 = ω1ε0

16N2
1

∫∫
χ3[2|e1|4 + |e2

1|2]dS, (28a)

γs,1 = −1

16N2
1

∫
σ3[2|e1,‖|4 + |e2

1,‖|2]d�, (28b)

which are the SPM bulk and surface, respectively, nonlinear
parameters of the field at ω1 and

γb,12 = ω1ε0

8N1N2

∫∫
χ3[|e1 · e∗

2|2

+ |e1 · e2|2 + |e1|2|e2|2]dS, (29a)

γs,12 = −1

8N1N2

∫
σ3[|e1,‖ · e∗

2,‖|2

+ |e1,‖ · e2,‖|2 + |e1,‖|2|e2,‖|2]d�, (29b)

which are the XPM bulk and surface, respectively, nonlinear
parameters for the cross phase modulation experienced by the
field at ω1 due to the field at ω2. Notice that in γb,1 we did
not include the imaginary unit i in the parameter, which will
be later included in the complete NLSE equation. Regarding
the second field at ω2, the SPM contribution can be ignored
since the field is considered weak and the XPM parameters
are γb,21/ω2 = γb,12/ω1 and γs,21 = γs,12.

B. Saturable absorption

We now move on to the SA term in Eq. (25). If the SA
material is graphene then in the general case the SA nonlinear
current is given by Eq. (12) which is complemented by the
rate Eq. (13). For the case for cw fields and modes with
low confinement one can also use Eq. (17) without a rate
equation. Substituting the former, more general, expression
into Eq. (25) we derive for the field at ω1 that

− 1

4
√

N1
e−iβ (1)

0 z
∫

e∗
1 · Jsat,1(r, t )d�

= −σinter

4N1

∫ (
1 − Nc(x, y, t )

2Nsat

)
|e1,‖(x, y)|2d� A1(z, t ),

(30)

from which we can extract the saturable nonlinear loss param-
eter,

αsat,1 = −σinter

4N1

∫ (
1 − Nc(x, y, t )

2Nsat

)
|e1,‖(x, y)|2d�. (31)

The nonlinear loss parameter for the second field at ω2 is
found by changing index 1 to 2. We also underline that since
we attribute the SA effect only to the first field, then in the rate
Eq. (13) we can substitute |E‖|2 = |E‖,1|2 so that it leads to

∂Nc

∂t
= Re{σinter}

(
1 − Nc

2Nsat

)|e‖,1|2|A1|2
2N1h̄ω1

− Nc

τ
+ D∇2Nc.

(32)
Thus, the parameter αsat,1 describes self-absorption modula-
tion, that is the modulation of the absorption of field 1 by
itself, while αsat,2 describes cross absorption modulation, the
modulation of the absorption of field 2 by the presence of field
1. We should also note that for graphene the strong field in
frequency ω1 will saturate losses for the field in ω2 even if the
two frequencies are not close to each other [55].

Finally, we combine all the nonlinear parameters into two
coupled NLSE equations,

∂

∂z
A1 = (

1/vgm − 1/v(1)
g

) ∂

∂T
A1 − i

1

2
β

(1)
2

∂2

∂T 2
A1

+ (iγb,1 + γs,1)|A1|2A1 + αsat,1A1 + α1

2
A1, (33a)

∂

∂z
A2 = (

1/vgm − 1/v(2)
g

) ∂

∂T
A2 − i

1

2
β

(2)
2

∂2

∂T 2
A2

+ (iγb,21 + γs,21)|A1|2A2 + αsat,2A2 + α2

2
A2, (33b)

where we adopted a retarded time frame T = t − z/vgm, v(ν)
g

is the group velocity of the νth field, vgm = (v(1)
g + v(2)

g )/2
the average group velocity, and we retained only the first two
terms for the linear dispersion. It is also worth noting that
Eqs. (31)–(33) can also be used to describe propagation in
waveguides with few-layer graphene consisting of Ngr uncou-
pled monolayers. In this scenario both linear and nonlinear
conductivities are multiplied by Ngr [except in Eq. (32)] and
all the layers share the same saturation intensity and relaxation
time [22].

To summarize, Eq. (33a) for the field at ω1 contains the
contributions from GVD, SPM, self-SA, and nonsaturable
linear losses, while Eq. (33b) for the field at ω2 contains
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FIG. 2. Cross sections of a (a) silicon slot waveguide and
(c) buried silicon nitride waveguide. On the top face of the
waveguides a single monolayer graphene is deposited. (b) and
(d) Normalized mode profiles of the field components parallel to
the graphene sheet for the waveguide in (a) and (c), respectively. In
(b) and (d) graphene is depicted with a dashed black line.

contributions from GVD, XPM, cross-SA, and nonsaturable
linear losses. For the numerical solution of Eq. (33) we em-
ploy the Split-Step Fourier (SSF) method, where for each step
dz we evaluate Nc from Eq. (32) assuming zero initial condi-
tion and taking the value of |A1|2 from the previous step. Then
Nc is used to evaluate the nonlinear loss parameters which,
together with the nonlinear parameters from the Kerr effect, is
used to form the nonlinear operator for the SFF method.

IV. SIMULATION RESULTS

In this section we will first evaluate the SA nonlinear
parameters assuming cw excitation and subsequently study
pulsed excitation. For pulsed excitation we will also show
when the Kerr effect becomes relevant and how this combined
with linear dispersion can lead to quasisolitonic behavior. In
all cases we assume that only the dominant TE polarized
waveguide mode is excited. The waveguides that are going
to be used can be seen in Figs. 2(a) and 2(c): First, a silicon
slot waveguide on a silicon oxide substrate with dimensions
360 nm × 180 nm and a 40-nm gap. A graphene monolayer
is deposited on top of the waveguide. In Fig. 2(b) we plot
the norm of the electric field parallel to the graphene sheet,
which in this case is |E‖|2 = |Ex|2 + |Ez|2. The placement
of graphene allows it to interact with the strongly confined
field in the slot region of the waveguide. The other waveguide
that we are going to use is the silicon nitride waveguide seen
in Fig. 2(c), which was used in an experimental SA study
[33]. The dimensions of the Si3N4 are 1500 nm × 600 nm
and again a graphene monolayer is deposited on the top face
of the waveguide, as seen in the schematic. In Fig. 2(d) we
plot the norm of the field parallel to graphene. It can be seen
that the field is a lot less confined and has a much smoother
profile than the one of the slot waveguide.

A. cw excitation

In Fig. 3 we plot the SA nonlinear loss parameter (normal-
ized to the zero power value of the saturable losses) versus
the input average cw optical intensity evaluated as |A|2/Aeff ,
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This work
Demongodin et al. [33]
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FIG. 3. Normalized saturable loss parameter versus average in-
put cw intensity in the (a) silicon slot waveguide and (b) silicon
nitride waveguide. Blue (dark gray) solid curves correspond to
Eqs. (31) and (32) and red (light gray) curves to Eq. (34). The dashed
blue (dark gray) curves are the same as the blue solid curves, but
with carrier diffusion turned off (D = 0). The black curves serve as a
reference for the case of a plain wave and are evaluated from Eq. (35).
On the curves we note the effective saturation intensity predicted by
each model. Insets show the respective waveguide cross section and
the evaluated effective mode area.

where A is the complex field envelope [see Eq. (19)] of the
guided mode and Aeff is the mode’s effective field area [53].
We underline that we use the effective mode area so that
results can be presented as average optical intensities, which
is a more “native” quantity in the SA description. The actual
guided power |A|2 can be evaluated by multiplying values with
Aeff .

We compare our results with a number of different SA
models that are presented here. The solid blue (dark gray)
curves are evaluated by Eqs. (31) and (32) taking into account
the carrier diffusion term. The dashed blue (dark gray) curves
are evaluated by the same equations but without the carrier
diffusion term. This is equivalent to using Eq. (17) for the
nonlinear saturable current. The red (light gray) curves are
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evaluated through a model proposed in [33] which can be
expressed through the following expressions:

αsat = αsat,0

2
(1 − Nc/2Nsat ), (34a)

∂Nc

∂t
= αsat,0(1 − Nc/2Nsat )|A|2

h̄ω0W
− Nc

τ
, (34b)

where αsat,0 is the power loss coefficient associated with the
saturable losses in the low (zero) intensity limit and W is
the graphene length in the waveguide cross section. For the
case of the silicon slot waveguide we considered W = 760 nm
(two silicon wires plus the slot) and for the silicon nitride
waveguide W = 1500 nm (full width of the silicon nitride). In
the silicon slot waveguide, W was chosen to extend to the full
width of the waveguide (and not just the slot area) so that we
take into account the evanescent field and the Ez component
guided in the silicon wires. Choosing a smaller W leads to an
artificial enhancement of the source term in Eq. (34b). The
black curve corresponds to the simplest possible SA model,

αsat = αsat,0

2

1

1 + |A|2
Aeff Isat

, (35)

which, by definition, saturates when |A|2/Aeff is equal to Isat =
1 MW/cm2. Physically, this last model would be accurate if
the mode’s profile was uniform and all of the guided power
interacted with graphene, i.e., a plane wave illuminating an
infinite free standing graphene sheet. This model serves as a
point of reference to highlight how SA is differentiated in the
respective contemporary waveguide.

We can draw several useful conclusions from Figs. 3(a) and
3(b). First of all, according to our approach we can evaluate
the effective cw saturation intensity specific to a particular
waveguide mode, which is 5 MW/cm2 and 15.4 MW/cm2

for the silicon slot and silicon nitride waveguide, respectively.
The difference between the two values can be explained from
the fact that in the silicon slot waveguide graphene is placed
close to the maximum of the tightly confined field in the slot
area and thus its losses can be saturated at lower power. On
the other hand, in the silicon nitride waveguide graphene is
placed on the top face which is very far from the center of the
waveguide, where the field takes its maximum value.

Furthermore, the red (light gray) and blue (dark gray)
curves predict different saturation intensities, with our results
suggesting 2–5 times higher effective saturation intensities.
It can be seen in Fig. 3(a) that both solid and dashed blue
(dark gray) curves are distinct to the red (light gray) curves,
implying that the differences of our model from that of [33]
are not attributed just to the inclusion of the carrier diffusion
term but also to the fact that we take into account the spatially
dependent power density. Continuing, in Fig. 3(b) the dashed
blue (dark gray) and red (light gray) curves are very close
to each other, which means that in this case the difference
between our approach [solid blue (dark gray)] and that of [33]
[red (light gray) curve] is attributed solely to the inclusion
of the carrier diffusion term. We believe that the agreement
of the no-diffusion and [33] model is because |A|2/W , that
is used in Eq. (34b), is a much better approximation of the
real power distribution over graphene in the case of the silicon

nitride waveguide than the slot waveguide. Nevertheless, it is
interesting to note that even in low confinement waveguides
carrier diffusion is still relevant and should be included in the
SA modeling.

Finally, we discussed in Sec. II B that in experimental
results the more homogeneous the field the better the Isat

approximation. At first, this seems to contradict our results as
the silicon nitride waveguide deviates more from the nominal
1 MW/cm2 than the silicon slot waveguide. The explanation
lies with the fact that only a small portion of the guided field
interacts with graphene and thus even though the mode profile
is smooth on graphene a significant portion of the guided
power is wasted.

B. Pulsed excitation

To demonstrate how a pulse propagates through the silicon
slot waveguide with graphene we show two examples: a long
[66-ps full width at half maximum (FWHM), 10-mW peak
power] and a short (250-fs FWHM, 500-mW, or 1-W peak
power) Gaussian pulse. The propagation length, defined in the
linear (low power) regime as the length at which power drops
by 1/e, is calculated to be Lprop = 18.4 μm. For the long
pulse the group velocity dispersion and Kerr nonlinear length
are LD = 163 m and LNL = 10.4 mm, respectively, while for
the short pulse the same parameters were LD = 2.3 mm and
LNL = 208 μm or LNL = 104 μm when the peak power is 0.5
or 1 W, respectively. If the initial Gaussian pulse is of the
form Ain = √

P0 exp(−T 2/2T 2
0 ) then the above characteristic

lengths are defined as

LD = T 2
0

β2
, (36a)

LNL = 1

γsP0
, (36b)

where in our case γs = −9600 W−1m−1 is the Kerr nonlinear
parameter from graphene, since other contributions are neg-
ligible, and β2 is the GVD parameter defined in Eq. (24).
Specifically on the nonlinearity of the bulk materials, the
nonlinear contribution of the Si areas was calculated to be
+45 W−1m−1 which is above two orders of magnitude lower
than graphene’s. The third-order graphene conductivity was
taken to be σ3 = +i1.4 × 10−21 Sm2/V2 which corresponds
to defocusing behavior (γs < 0). The β2 parameter was calcu-
lated to be 9.84 ps2/m. Choosing the waveguide length equal
to L = 2Lprop ≈ 40 μm we expect SA to be the dominant
effect since for all cases L 
 LD, LNL.

The normalized output power of the long pulse is shown
in Fig. 4(a) at different propagation distances. Solid curves
represent the model developed in this work, taking into ac-
count both the finite relaxation time and carrier diffusion. On
the other hand, dashed curves were calculated by ignoring the
finite relaxation time [instant response, Eq. (16)]. Note though
that the waveguide characteristics and carrier diffusion are still
included by choosing the effective saturation intensity from
the cw analysis presented in the previous section as Isat =
5 MW/cm2. The two models are almost identical and we can
deduce that a simplified “instant” model suffices to simulated
long pulse excitation but the saturation intensity has to be
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FIG. 4. Normalized output power versus time at various prop-
agation distances of the silicon slot waveguide for a (a) long and
(b) short pulse input. Solid curves correspond to the full model while
dashed curves are evaluated as if SA was instantaneous or, equiva-
lently, cw. In the latter case, we modified the saturation intensity to
agree with the effective one calculated by the cw analysis, namely
we set Isat = 5 MW/cm2. In (a) the two models are in agreement;
there is noticeable pulse compression as the pulse propagates and
the pulse deformation is symmetric. The FWHM of the pulses is
noted with arrows on the curves. In (b) the leading edge of the pulse
suffers greater losses than the trailing edge leading to asymmetric
deformation and slight shifting of the pulse peak. These changes are
not demonstrated by the dashed curves, which retain the symmetry.

modified according to the cw analysis. Considering the effects
of SA, we can see that there is a ∼20% temporal compression
of the pulse, as the low power parts suffer much higher losses
than the peak of the pulse. We underline that we chose a low
peak power in order to demonstrate how effectively graphene
SA can be used in compact silicon devices: Even for 10-mW
peak power absorption is greatly saturated while the Kerr ef-
fect at this power level and propagation distance is negligible.
Note though that for pulse compression applications since SA
is an absorption-based effect some insertion losses should be
expected. To this end, higher peak powers will lower propa-
gation losses even further but will require higher propagation

distances to achieve the same pulse compression. Finally,
we briefly discuss the effect of an increased relaxation time.
According to Eq. (14) for the saturation carrier density Nsat

of Table I and τ = 150 fs, we evaluate Isat ≈ 11 MW/cm2.
Consequently, due to the increase of the saturation power the
pulse of this example would experience only 11% temporal
compression.

The short pulse propagation can be seen in Fig. 4(b). For
clarity we have only drawn the final output pulse for the
instant model (dashed curves). The solid curves now show
a distinct asymmetric evolution of the pulse. Carriers begin
accumulating at the leading edge of the pulse and because of
their comparable to the pulse duration lifetime lead to lower
absorption of the trailing edge. This also results into a slight
shift in the position of the pulse peak. For higher propagation
distances, this effect can become even more pronounced. On
the other hand, the instant model discussed above cannot
predict this kind of behavior. Furthermore, even though the
500-mW peak power is quite low for the duration of the pulse,
it can be seen that absorption is heavily suppressed, as at
40 μm transmission is 0.9. On a final note, the 250-fs FWHM
pulse is considered short with respect to the relaxation time
τ of 1.67 ps considered; if the latter becomes comparable or
even shorter than the pulse duration then asymmetry would
become less pronounced and results would approach those of
Fig. 4(a) but for higher peak powers and longer propagation
distances, since decreasing τ would lead to an increase of Isat.

In the previous example, for the given power level and
propagation distance the Kerr effect was negligible. But be-
cause SA lowers absorption the Kerr effect will eventually
manifest for higher propagation distances. To demonstrate this
we use the above short pulse but with 1-W peak power and
increase the propagation distance to 350 μm. The normalized
spectral power density is shown in Fig. 5(a), where we observe
that for propagation up to 170 μm the Kerr has little to no
impact. But, at 260 μm and 350 μm we can spot the onset of
the characteristic splitting of the peak at the central frequency
due to the Kerr effect. The asymmetry in the spectrum is
again the result of the finite SA relaxation time. What is more
interesting is that in the time domain, shown in Fig. 5(b),
we observe that when the Kerr effect becomes relevant the
peak power of the pulse is increased and further temporal
compression takes place. This rather unexpected increase of
the peak power can be intuitively understood by noting that
due to SA the pulse duration is decreased, which according
to Eq. (36a), lowers the dispersion length. On the other hand
the nonlinear length LNL of Eq. (36b) is also lowered by the
increase of the peak power but at a significantly lower rate.
As a result, LD approaches LNL and we have confirmed that
around 400 μm propagation distance LD ≈ LNL, which is a
known condition for the formation of a quasisoliton. Note that
this phenomenon is only possible due to the defocusing Kerr
nonlinearity of graphene (γs < 0) combined with the normal
linear dispersion (β2 > 0): By artificially reversing the sign of
the Kerr nonlinearty the peak power increase vanishes.

Finally, to further explore possible applications of
graphene SA in photonic waveguides we present in Fig. 6
the simultaneous propagation of two channels at wavelengths
λ1 = 1549.6 nm and λ2 = 1550.4 nm. Results are evaluated
by solving the coupled partial derivative system of Eq. (33). In
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FIG. 5. (a) Spectra of the initial pulse at various propagation
distances. For up to 170 μm there is little Kerr contribution and
SA is the dominant effect. At 260 μm and 350 μm the Kerr effect
becomes evident due to the formation of the two peaks. (b) Temporal
evolution of the pulse at the same propagation distances. When the
Kerr effect becomes strong we observe that the interplay between
SA, the Kerr effect, and linear dispersion leads to the increase
of the pulse peak and further temporal compression. Specifically,
the decrease of the pulse duration lowers the dispersion length LD

which slowly approaches the nonlinear length LNL and thus solitonic
regime. This phenomenon is possible due to the defocusing charac-
ter of graphene’s Kerr nonlinearity (γs < 0) and normal dispersion
regime (β2 > 0).

the first channel propagates a weak long Gaussian pulse (33-ps
FWHM, 0.1-mW peak power) and in the second channel a
high power short Gaussian pulse (250-fs FWHM, 500-mW
peak power). Note that the weak signal could also be cw
and that only the second wavelength is responsible for the
saturation of absorption. It can be seen that the high power
pulse in the second channel is gradually imprinted to the first
channel. Zooming in (inset), the asymmetric evolution of the
weak pulse due to the finite carrier life time is evident and the
resulting pulse is no longer Gaussian. The final FWHM pulse
duration for the weak pulse at λ1 is found to be around 0.61 ps
which is a considerable reduction since the initial value was
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FIG. 6. Normalized output power at different propagation dis-
tances for the scenario of simultaneous propagation of two pulses
at different wavelengths in the silicon slot waveguide. Solid curves
correspond to the weak long pulse at λ1 while dashed curves to
the high-power short pulse at λ2. As the pulses propagate, the long
pulse experiences cross absorption modulation from the short pulse
at the region where temporal overlap exists. (inset) Zoom in around
the short pulse to highlight the asymmetric temporal shaping of the
long pulse, which is a direct consequence of the finite SA relaxation
time. As a consequence of cross absorption modulation the short
pulse is imprinted onto the λ1 channel.

33 ps. This example highlights a completely passive and com-
pact way to duplicate data streams between optical channels.
The restriction is that the configuration only works between
high power and low power signals.

V. CONCLUSIONS

The main focus of this work was to present a solid the-
oretical framework to model propagation of light under the
effect of SA in waveguides with graphene, together with the
usual third-order nonlinear effects. We have discussed how
experimental data should be introduced into the model and
shown the importance of including the carrier diffusion term
for high confinement waveguides. Under these conditions we
have demonstrated that through a cw analysis we can ex-
tract an effective saturation intensity value (applicable to the
specific guided mode) which can then in turn be used for a
simplified approximation of the propagation of ps-long pulses.
For pulses in the sub-ps regime though, the full model includ-
ing the finite SA relaxation time and the carrier diffusion term,
must be used to fully capture the temporal evolution under SA.
The resulting power threshold for SA is very low compared
to other nonlinear effects, such as the Kerr effect. Neverthe-
less, the combined effect of SA, the Kerr effect, and linear
dispersion can further enhance the SA pulse compression.
Finally, we have proposed a concept scheme for duplicating
data streams between optical channels in integrated photonic
waveguides.
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