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Near-field spatial coherence of structured incoherent optical sources
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Spatial coherence is a fundamental property of light with many applications. However, if a light source
is spatially incoherent and structured, its near-field coherence is difficult to evaluate directly because of the
complexity of the emitted random light. In this work, we propose a general approach to calculate the near-
field mutual intensity and transverse coherence length of propagating radiation from a periodically structured
incoherent source using optical reciprocity. If the structure period is subwavelength and much smaller than the
source, the mutual intensity reduces to a Fourier transform of the angular intensity spectrum of the radiation.
Tailoring the near-field spatial coherence of incoherent sources by structuring can be used, e.g., for applications
in optical sensing and imaging.
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I. INTRODUCTION

Characterization of optical radiation sources in terms of
their temporal and spatial coherence plays an important role
for many applications [1,2]. These applications include optical
imaging, sensing and detection, holography, phase sensitive
microscopy, and other techniques to study, analyze, and use
partially coherent light [3–8]. As an example, spatial co-
herence lies in the core of many correlation-based imaging
techniques, such as full-field optical coherence tomogra-
phy [4,9], aberration-insensitive interferometric microscopy
[10,11], and ghost imaging [12,13]. Moreover, optical beams
with designed spatial coherence have been shown to exhibit
unusual propagation characteristics, such as self-healing and
shape preservation in turbulent atmosphere [14,15].

While there are already well established theoretical foun-
dations to characterize spatial coherence of light in the
far-field zone of the source [16], the near-field characteriza-
tion methods are still quite limited. Recently, some methods
have been proposed to characterize theoretically the near-
field coherence of optical sources by taking into account the
evanescent and propagating parts of the radiation [17–19].
However, these methods require prior knowledge of the radi-
ation properties of the source, which can be difficult to obtain
for nontrivial three-dimensional and structured sources.

If the light source is a distribution of independent pointlike
sources, such as fluorescent molecules and quantum dots, its
radiation is highly spatially incoherent in the vicinity of the
source surface. Since the dipole near fields of the molecules
have a very short decay length, on the order of a tenth part
of the wavelength, they are of limited practical interest. How-
ever, it has been shown that at larger distances, the near-field
coherence length of a flat spatially incoherent but uniform
source is equal to about λ/4 as long as the distance from the
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source’s surface is small compared to the transverse size of
the source [20]. If the near field of such a source is used to
illuminate an object in an interferometric imaging setup, the
resolution will be limited to λ/4. However, if the source is
structured (e.g., to enhance the directivity of radiation [21]),
the near-field coherence length can be different. In general, the
possibility to characterize and design the near-field coherence
properties of nanostructured optical sources can be of high
practical interest.

In this paper, we introduce a semi-analytical model for
characterization of near-field coherence properties of micro-
or nanostructured spatially incoherent light sources. The
model enables effective estimation of the transverse coherence
function and coherence length of an arbitrary periodically
structured source and offers the possibility to tailor the
structure to obtain the desired coherence properties. The cal-
culation method is based on the optical reciprocity theorem
[21–25] that allows us to study the radiation properties and
spatial coherence of the source in terms of coupling of exter-
nal plane waves to the structure. We describe the method in
detail in the next section and then demonstrate its application
by calculating the coherence length for radiation from several
light sources.

II. THE METHOD

Spatial coherence of light is determined by the mutual
correlation function G(d) of the light field E (r) simultane-
ously at two points separated by a vector d. This function
is also known as the mutual intensity. Here we use a scalar
approximation for the field, and later, when we deal with
numerical calculations, we will fit the calculated vector fields
to the scalar-wave theory. A normalized form of this function
is defined as

g(d) = G(d)√
I (r)

√
I (r + d)

= 〈E∗(r)E (r + d)〉√
I (r)

√
I (r + d)

, (1)
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FIG. 1. Spatial coherence of radiation of a spatially incoherent
optical source: (a) Schematic of a planar circular source of diameter
D. Points A and B are in a plane parallel to the source plane at a
distance h from the source; (b) The magnitude of the normalized
mutual intensity between points A and B separated in the transverse
plane by distance d when h = λ (lc is the coherence length); (c) The
transverse coherence length as a function of h for the source in
(a) with D = 1000λ; (d) The dependence of lc on h in the near
field of the source. In (c) and (d), the results of numerical calcu-
lations are presented by the black dots fitted by a smooth function
(blue line).

where the angle brackets denote time or ensemble averag-
ing and I (r) and I (r + d) are average intensities at r and
r + d [26]. The transverse coherence length is defined as
the distance between two points in the transverse plane at
which the function g(d) decreases in its absolute value from 1
to 1/2.

Let us consider a spatially incoherent planar light source of
a circular shape that has a diameter D, as shown in Fig. 1(a).
We assume that it consists of uniformly distributed inde-
pendent point dipoles. For a certain distance h away from
the central part of the source, one can evaluate the fields
at two points A and B and calculate g(d ) as a function of
the distance d between these points using Eq. (1). Because
Eq. (1) is written for scalar fields, the fields of the dipoles
must also be written as scalar functions. We formally assume
that this scalar dipole field is equal to the transverse com-
ponent of the electric field vector of dipole radiation [27],
that is

Ed(r1A) = U (r1)
e−ikr1A+iωt

r1A

(
1 − i

kr1A
− 1

k2r2
1A

)
, (2)

where r1 is the coordinate of the dipole, r1A is the distance
from the dipole to the observation point A, and U is an am-
plitude of the field that depends on the dipole moment and its
orientation. The second and third terms are the two near-field
terms of dipole radiation. We note that the dipole near fields
also contain the radial component of the electric field, but it
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FIG. 2. Schematic of a disk-shaped nanostructured source of
volume V consisting of homogeneously distributed statistically in-
dependent point emitters. The internal structure of the source is not
shown. The coordinate system used is centered at the central point of
the source’s surface.

has the same form as the second and the third term in Eq. (2)
and is significant only at very short distances from the dipole.
In the considered source, the dipoles are identical, distributed
uniformly, and oriented randomly. Therefore the fluctuating
amplitude U is on average the same for all the dipoles. The
unnormalized mutual correlation function is then calculated
by integrating the contributions of the dipoles to the fields at
points A and B and inserting these fields into Eq. (1). This
procedure leads to the following expression:

〈E∗
AEB〉 =

∫ 2π

0

∫ D/2

0
〈E∗

d (r1A)Ed(r1B)〉r1dr1dφ, (3)

where the integration over the source surface is done in po-
lar coordinates (r1, φ) with the origin in the center of the
source (see also Fig. 2); r1A/B is the distance between the
coordinate r1 and the point A/B. To obtain Eq. (3), we have
used the fact that the dipoles are statistically independent and
replaced 〈U ∗(r1)U (r2)〉 with 〈U ∗(r1)U (r1)〉δ(r2 − r1), where
δ(r2 − r1) is the Dirac delta function. Figure 1(b) shows the
normalized mutual correlation function calculated in this way
for z = λ. The coherence length is in this case equal to 0.25λ.
We calculated the coherence length for a number of discrete
values of z between 0 and 2000λ. The results are shown in
Figs. 1(c) and 1(d) by black dots. We noticed that the third
term in Eq. (2) influences the calculation results only if the
distance z is small compared to 0.1λ. Hence, if these short
distances are not of interest, the third term in Eq. (2) can
be neglected. In Figs. 1(c) and 1(d), both near-field terms
are taken into account. The blue line in Figs. 1(c) and 1(d)
shows fitting of our numerical results with a smooth function.
We have found that this function is inversely proportional to
the average (root-mean-square) transverse amplitude of the
total field evaluated on the z-axis. Although we do not have
rigorous derivation of this dependence, we notice that the
transverse coherence length at a fixed distance from the source
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can be calculated as

lc = K
∫ ∞

−∞
|g(xB − xA)|dxB

= K√
I (xA)

∫ ∞

−∞

∣∣∣∣ 〈E∗(xA)E (xB)〉√
I (xB)

∣∣∣∣dxB, (4)

where K is a constant, usually taken to be 1/2. If the integral
in the second expression is independent of z, we obtain lc =
K1/

√
I (xA), where K1 is a new constant that can be used as a

fitting parameter and xA can be set to 0.
As seen from Fig. 1(d), the coherence length depends

on the distance from the source. In the range of h < 0.1λ,
the coherence length sharply increases with h from 0 to
about λ/4, because the evanescent waves of the point emit-
ters vanish. In the range of h from 0.2λ to about 0.1D,
the coherence length stays approximately at the same level
of λ/4. Then, at even larger values of h, it increases with
the distance due to the well known phenomenon of gain
of spatial coherence by propagation [26]. In the far field
of the source (h � D), the coherence length is given in
accordance with the Van Cittert-Zernike (VCZ) theorem
[26,28].

For certain simple spatially incoherent sources, the radi-
ated field and coherence function can be calculated using
already developed theoretical methods [28]. However, any
practical approach to treat spatial coherence in the near-field
range, where the internal structure of the source can play a
significant role, has not yet been introduced. We note that
the random-field distribution of a spatially incoherent nanos-
tructured source is difficult if not impossible to calculate
analytically or even numerically, because the radiation of
each of the independent point emitters will be modified by
the structured environment. Therefore, in most cases, Eq. (1)
will not be possible to use directly. In the following, we
derive a set of equations that allows one to calculate the
mutual intensity in practice for such structured light sources.
The approach is based on optical reciprocity and can be
numerically implemented with the help of any Maxwell’s
equation solver like COMSOL MULTIPHYSICS used by us in this
work.

Consider a spatially incoherent light source consisting of
mutually uncorrelated point emitters of scalar waves with
the same central angular frequency ω (see Fig. 2). At some
point A above the source, the electric field of light can be
written as

EA =
∫

V
dr1

∫∫ ∞

−∞
dkxdkya(kx, ky, r1) exp(ik · rA). (5)

Because we want to apply the reciprocity principle to optical
plane waves, we have written the field through the fluc-
tuating complex amplitudes a(kx, ky, r1) of the plane-wave
components of radiation originating from a point emitter at
a coordinate r1 at the surface of the source (z = 0); dkxy

replaces dkxdky, where kx and ky are the x and y components
of the wave vector.

The mutual correlation of the electric fields at two points A
and B above the source (see Fig. 2) is described by the mutual

intensity

GAB = 〈E∗
AEB〉 =

∫
V

∫
V

dr1dr2

∫∫ ∞

−∞
dkxy

×
∫∫ ∞

−∞
dk′

xy〈a∗(kx, ky, r1)a(k′
x, k′

y, r2)〉

× exp(−ik∗ · rA) exp(ik′ · rB). (6)

Here, r2 and the primed quantities are associated with the
field calculation at point B and k∗ is the complex conju-
gate of k whose z component can be complex, as in the
case of evanescent waves. The averaged amplitude product
〈a∗(kx, ky, r1)a(k′

x, k′
y, r2)〉 can be called the mutual angular

correlation function in the source [28]. Since the point emit-
ters do not correlate, we can write〈

a∗(kx, ky, r1)a(k′
x, k′

y, r2)
〉

= δ(r2 − r1)a∗(kx, ky, r1)a(k′
x, k′

y, r1), (7)

where δ(r2 − r1) is the Dirac delta function. Using the inte-
gration property of the delta function, we obtain

GAB =
∫

V
dr1

∫∫ ∞

−∞
dkxy

∫∫ ∞

−∞
dk′

xy exp (−ik∗ · rA)

× exp (ik′ · rB)a∗(kx, ky, r1)a(k′
x, k′

y, r1). (8)

This expression takes into account both propagating and
evanescent waves. It can be used to calculate the coherence
length at any distance h from the source, if we know the
complete angular spectrum of all point emitters. As we are
interested in the near field of the source, approximately in
the range 0.2λ < h < 0.1D, we can assume that the transverse
size of the source is infinite.

Let us consider a planar source that is periodic with periods
�x and �y in the x and y directions, respectively. The source
is perpendicular to the z direction and has a thickness t . Due to
the periodicity, the amplitude product in Eq. (8) can be written
as

a∗(kx, ky, r1 + 	�mn)a(k′
x, k′

y, r1 + 	�mn)

= a∗(kx, ky, r1)a(k′
x, k′

y, r1) exp(i(k∗ − k′) · 	�mn), (9)

where 	�mn = (m�x, n�y, 0) and m and n are integers. The
volume integral in Eq. (8), i.e.,

I (kx, ky, k′
x, k′

y) =
∫

V
dr1a∗(kx, ky, r1)a(k′

x, k′
y, r1), (10)

can therefore be written as

I (kx, ky, k′
x, k′

y) =
M∑

m=−M

N∑
n=−N

exp(i(k∗ − k′) · 	�mn)

×
∫

v

dr1a∗(kx, ky, r1)a(k′
x, k′

y, r1), (11)

where v is the volume of a single unit cell and the source is
formally divided into 2M + 1 and 2N + 1 unit cells in the x
and y directions, respectively. If we assume for simplicity that
the structure is periodic only in the x direction, the sum in
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Eq. (11) becomes

M∑
m=−M

ei(kx−k′
x )m�x = sin((M + 0.5)�x(kx − k′

x ))

sin(0.5�x(kx − k′
x ))

. (12)

For a large transverse size of the structure, we can set M →
∞, which allows us to write the above equation in the form

lim
M→∞

sin ((M + 0.5)�x(kx − k′
x ))

sin (0.5�x(kx − k′
x ))

= C1

∞∑
p=−∞

δ

(
kx − k′

x − 2π p

�x

)
. (13)

Here, p is an integer associated with the diffraction orders
of the structure and C1 is a constant that is not relevant,
because the function GAB will eventually be normalized. Now,
allowing the structure to be periodic also in the y direction, we
obtain

I (kx, ky, k′
x, k′

y) =C1C2

∞∑
p=−∞

∞∑
q=−∞

δ

(
kx − k′

x − 2π p

�x

)

× δ

(
ky − k′

y − 2πq

�y

)

×
∫

v

dr1a∗(kx, ky, r1)a(k′
x, k′

y, r1), (14)

where C2 is a coefficient similar to C1. Hence, the mutual
intensity given by Eq. (8) becomes

GAB =C
∞∑

p=−∞

∞∑
q=−∞

exp

(
−i

2π p

�x
xB

)

× exp

(
−i

2πq

�y
yB

)∫∫ ∞

−∞
dkxy exp(ikx(xB − xA))

× exp(iky(yB − yA)) exp(−ik∗
z zA) exp

(
ik(pq)

z zB
)

×
∫

v

dr1a∗(kx, ky, r1)a

(
kx − 2π p

�x
, ky − 2πq

�y
, r1

)
.

(15)

Here we have C = C1C2, rA = (xA, yA, zA), rB = (xB, yB, zB),
and

k(pq)
z =

√
k2

0 −
(

kx − 2π p

�x

)2

−
(

ky − 2πq

�y

)2

. (16)

Equation (15) takes into account all the diffraction orders of
the structure including evanescent waves. To make the analy-
sis more convenient, we can use a modified Weyl identity to
write

a(kx, ky, r1) = A(kx, ky, r1)

kz
exp(−ik · r1), (17)

where A(kx, ky, r1) is the complex amplitude function that
depends on kx and ky, reflecting the fact that the structure can
modify the emitted wave profile. Then Eq. (15) can be written

as

GAB =C
∞∑

p=−∞

∞∑
q=−∞

exp

(
−i

2π p

�x
xB

)

× exp

(
−i

2πq

�y
yB

)∫∫ ∞

−∞
dkxy exp(ikx(xB − xA))

× exp (iky(yB − yA)) exp(−ik∗
z zA) exp

(
ik(pq)

z zB
)

×
∫

v

dr1

A∗(kx, ky, r1)A
(
kx − 2π p

�x
, ky − 2πq

�y
, r1

)
k∗

z k(pq)
z

× exp

(
i
2π px

�x

)
exp

(
i
2πqy

�y

)
exp

(
i
(
k∗

z − k(pq)
z

)
z
)
,

(18)

where the emitter coordinate is r1 = (x, y, z). If the order
p is larger than 2�x/λ and/or q is larger than 2�y/λ, the
associated plane wave is evanescent and can be neglected, if
the distance from the source surface is large enough. This
means that for the structure periods comparable or smaller
than the wavelength, only the few lowest orders need to be
considered.

For a structured source, the plane-wave amplitudes in the
integral of Eq. (18) depend on the propagation direction in
a nontrivial manner. In order to be able to calculate them
numerically we propose to make use of optical reciprocity.
The reciprocity principle requires that, at any point Q, the am-
plitude of the wave radiated by a point source at a coordinate P
[see Fig. 3(a)] is equal to the amplitude of the wave at point P
that would be radiated by an identical source, if it was located
at point Q. The reciprocity is valid also for each plane-wave
component of the field at Q, as a consequence of the same
two-point reciprocity, but with the second point, Q’, located
at infinity in the direction of the plane-wave propagation (Q’
is shown in Fig. 3(b) schematically) [21,22,25]. Hence, in our
numerical calculations, we can send each radiated plane-wave
component (with an amplitude EQ(kx, ky) and given kx and ky)
back to the source and evaluate the field amplitude E0(r1) at
each point P [see Fig. 3(b)]. This amplitude, when normalized
to the amplitude of the incident plane wave, will give the
contribution of the point source at P to the considered plane-
wave component at Q. Therefore the obtained normalized
amplitudes E0(r1)/EQ(kx, ky) can be used directly in Eq. (18),
replacing the unknown amplitudes A(kx, ky, r1):

A(kx, ky, r1) = E0(r1)

EQ(kx, ky)
. (19)

In our numerical calculations we set EQ(kx, ky) equal to 1.
The major advantage of this approach is that in the numerical
calculations, one can consider a single unit cell with periodic
boundary conditions. This is a very light calculation com-
pared to the calculation of the emission pattern of a point
source. Figure 3(c) shows a numerically calculated electric
field distribution of a wave radiated by a point source at a
position P inside a nanostructure. The wave is seen to be a
considerably modified spherical wave. The modification pre-
vents using analytical calculations for evaluation of the mutual
intensity GAB. Figure 3(d) illustrates coupling of a plane wave
to the structure at an incidence angle of 21◦. The amplitude
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FIG. 3. Explanation of the reciprocity principle. (a) At a point Q,
the amplitude of a wave radiated by a point source at a position P
is the same as the amplitude at a point P of a wave radiated by an
identical point source at a position Q. (b) A plane-wave component
of light radiated by a point source at P has at a position Q the same
amplitude as a plane-wave component of light at a position P radiated
by a point source at Q. (c) An example of the distribution of the real
part of the electric field for a wave radiated by a point dipole located
at a position P inside a nanostructured source made of glass on a
reflective metal surface. (d) The electric-field amplitude distribution
in the structure of (c) when a plane wave is incident on the structure
from above at an angle of 21◦. The quantities in (c) and (d) are
measured in V/m.

distribution inside the source gives the relative contribution
A(kx, ky, r1) of each point source at each point P to the consid-
ered plane wave. Calculating the amplitude distributions for a
large number of possible kx and ky, we can then evaluate GAB

using Eq. (18).
The developed theory is for scalar fields and numeri-

cal calculations using COMSOL MULTIPHYSICS are vector in
nature. Therefore, in each step, the TE- and TM-polarized
incident waves are considered separately and the functions
|A(kx, ky, r1)| are calculated by numerically averaging the
obtained two electric-field vectors at each r1 over their all
possible orientations. This fits the COMSOL vector-field cal-
culations to our scalar-wave model.

III. EXAMPLES

We apply the theory to several examples of light sources.
The first example is used to study the influence of a simple
periodic patterning of a fluorescent thin film on the near-field
intensity profile and the spatial coherence of the emission. We
assume that the patterned film consists of thin periodic stripes
of width w and period �x. Each point within the stripes con-
tains a point source whose radiation pattern is an undisturbed
spherical wave. Because in this example the fields emitted by
the point sources are known, neither numerical calculations
based on COMSOL MULTIPHYSICS nor the use of optical reci-
procity are needed. Figure 4 shows the intensity profile and
the normalized mutual intensity for a structure with w = 0.1λ

and �x = 3λ at two different distances from the source, at h =

0 2 4
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FIG. 4. The intensity profile and spatial coherence of light emit-
ted by a periodically patterned fluorescent thin film [see inset in (c)].
The source consists of narrow stripes of width w = 0.1λ and period
�x = 3λ. Plots (a) and (b) show the intensity and normalized mutual
intensity at a distance h = 0.2λ and (c) and (d) show the same for
h = 1λ. The inset in (c) shows the orientation of the stripes with
respect to the axes of the coordinate system. Blue (light gray)/red
(dark gray) curves show the variation of the quantities along the x/y
axis. The coordinate s is equivalent to x for blue (light gray) lines and
to y for red (dark gray) lines.

0.2λ and h = 1λ. The blue (light gray) line corresponds to the
change of the coordinate along the x axis and the red (dark
gray) line along the y axis. The calculations take into account
orders p ∈ {−1, 0, 1}. As expected, we observe a periodic
intensity variation above the structure along the x direction
[see Fig. 4(a) and 4(c)]. This variation, however, diminishes as
h increases, because the higher-order plane-wave components
become weaker. The calculated normalized mutual intensity
shows an obvious anisotropy in the xy plane [see Figs. 4(b)
and 4(c)] with the transverse coherence lengths along the x
and y axes being respectively equal to 0.25λ and 0.75λ at
h = 0.2λ. At h = 1λ, the anisotropy is less pronounced and
the coherence length is approximately equal to that of an
unpatterned film. It is surprising that the anisotropy essentially
disappears already at such a short distance from the film. At
this distance, the point sources in both the stripe under the
point of measurement and the neighboring stripes contribute
significantly to the field in the directions along and perpen-
dicular to the stripes, which is seen also in a considerably
flattened intensity profile in Fig. 4(c).

While in the above example, the analytical expression for
the field emitted by each point source was known, our fur-
ther examples require numerical calculations. The functions
A(kx, ky, r1) in each example have been calculated numeri-
cally using COMSOL MULTIPHYSICS by considering coupling
of optical plane waves to the structure. The plane-wave inci-
dence angles, which are the polar angle θ and the azimuthal
angle φ, were scanned in small steps from 0 to π/2 (also the
azimuthal angle was limited by π/2 due to the symmetry of
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FIG. 5. Two-dimensional plots of (a) the function |a(θ, φ)| and
(b) the function |g(d )|, where d is the length of vector d = rA − rB.
The dashed line shows the distance d at |g(d )| = 0.5. The function
|a(θ, φ)| is measured in volts.

the considered structures). Numerical averaging is done over
TE- and TM-polarized modes to obtain the effective scalar
field amplitudes.

In order to verify the reciprocity-based numerical ap-
proach, we first calculate the near-field mutual intensity
for a uniform two-dimensional incoherent source shown in
Fig. 1(a). Since the point emitters of the source produce
independent and identical spherical waves, we need to cal-
culate |a(kx, ky, r1)| = |A(kx, ky, r1)|/kz only at one point.
From the Weyl identity we know that |A(kx, ky, r1)| = |A(r1)|.
Figure 5(a) shows the obtained function |a(kx, ky, r1)| ≡
|a(θ, φ)|. It increases with θ and is independent of φ, as
expected. Equation (18) then results in the normalized mu-
tual intensity shown in Fig. 5(b). The calculation is seen to
reproduce the curve of Fig. 1(b), thereby verifying our semi-
analytical approach. The dashed line in Fig. 5(b) shows the
coherence area corresponding to lc = 0.25λ in Fig. 1(b).

Our next example is a thin-film fluorescent source designed
to enhance the directivity of radiation. Figure 6(a) shows the
structure of the source. It enhances the fluorescence (including
the enhancement in pumping) in the direction normal to the
structure by a factor of 350 [21]. The spread angle of the
radiation is θfl = 2	θ = 40◦. The fluorescent film, e.g., a
dye-doped polymer, has a thickness of 200 nm in our example.
It is sandwiched between two 30- and 50-nm-thick gold layers
and placed on a glass substrate. The gold layers act as partially
reflecting mirrors forming a Fabry-Perot resonator for the
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FIG. 6. Spatial coherence of light emitted by a multilayered
fluorescent structure. The structure is shown in (a). A fluorescent
film of thickness t = 200 nm is sandwiched between two 30- and
50-nm-thick gold layers on a glass substrate. The calculated function
I (θ ) is shown in (b), and (c) illustrates the absolute value of the near-
field coherence function g(d ). In (b), the quantity I (θ ) = |A(θ )|2 is
measured in V2/m2.

d/

|g
(d

)|
0.

5
1

5 100

0

(a)

t

0 /2/4

0
2

2010 30
(b) (c)|A|

lc1 = 0.32
lc2 = 2.5

Ag

xw

fluorescent film

substrate

h

(rad)

(r
ad

)

FIG. 7. Spatial coherence of light emitted by a nanostructured
fluorescent source. The structure is shown in (a). It consists of a
fluorescent film with t = 290 nm sandwiched between a 50 nm thick
reflecting silver film and a glass grating. The grating parameters are
h = 160 nm, �x = 480 nm, and w = 220 nm. The calculated |A| is
shown in (b), and the red (dark gray) curve in (c) shows the function
|g(d )|, which gives lc = 0.32λ. The blue (light gray) curve shows
|g(d )| in the presence of only one diffracted mode, in which case
lc = 2.5λ. In (b), |A| is measured in V/m.

emission at a wavelength of 780 nm. A detailed description of
the enhancement mechanism can be found in [21]. Figure 6(b)
shows the overall angular intensity spectrum I (θ ) = |A(θ )|2
averaged over the fluorescent film. Due to the symmetry of
the structure this function is independent of φ. The directivity
enhancement is seen in the localization of I (θ ) around θ = 0.
The mutual intensity is calculated using Eq. (18) and its nor-
malized absolute value is plotted in Fig. 6(c). The coherence
length for the structure is equal to 0.45λ that is larger than
lc obtained in the previous example (see Fig. 4). Thus, a
reduction in the width of the angular intensity spectrum of
the source has led to an increase of the near-field transverse
coherence length.

The third light source we consider contains a simple
periodic surface pattern [see Fig. 7(a)]. A 290-nm-thick flu-
orescent film (λ = 780 nm) is placed on a 50-nm-thick layer
of silver on a glass substrate. A periodic array of glass stripes
is then created on the film surface. The thickness, width, and
period of the stripes are 160, 220, and 480 nm, respectively.
This periodic diffraction grating couples the waveguide modes
appearing in the fluorescent film to free-space radiation. The
resulting out-coupled waves exhibit narrow angular spreads.
The structure supports three waveguide modes with the mode
propagation constants of 1.53, 1.267, and 1.04. At φ = 0,
these modes radiate with the peak intensity observed at θ =
5◦, 21◦, and 36◦. Figure 7(b) shows the calculated angular
amplitude spectrum |A(θ, φ)| averaged over a unit cell of the
film that exhibits three out-coupled modes at each fixed φ.
We note that in addition to these three positive out-coupled
modes (with kx > 0), there are also symmetric negative out-
coupled modes (with kx < 0). We also note that no pair of the
strong out-coupled waves (positive or negative) satisfies the
condition kx ± k′

x = 2π/�x for phase-matched propagating
waves, which means that all the higher orders in p for this
structure can be neglected. Our calculation method allows
considering the diffracted modes separately. For example, if
we consider only one diffracted mode with kx > 0 (corre-
sponding to θ = 21◦ at φ = 0◦), we obtain the blue (light
gray) curve in Fig. 7(c) for the function |g(d )|, where d is
the distance along the x axis. The corresponding transverse
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coherence length is in this case lc = 2.5λ that is much longer
than in the previous example due to the enhanced directivity
of the radiation. The full width at half maximum of this mode
is about 2◦. If we take into account also the other diffracted
modes, we obtain a rather nontrivial mutual intensity shown
by the red (dark grey) curve in Fig. 7(c). The coherence length
is now equal to 0.32λ. This example demonstrates an unex-
pected short coherence length of a highly directive multibeam
radiation from a spatially incoherent source and proves that
nanostructuring can be used to manipulate its near-field spatial
coherence.

IV. CONCLUSIONS

In this work, we have developed a method to calculate
the normalized mutual intensity of near-field radiation of an
incoherent nanostructured planar optical source. The method
is based on optical reciprocity and allows one to treat the
radiation semianalytically in terms of the plane-wave coupling

of light to the source structure. We have shown that, for
periodically patterned sources with a large number of unit
cells, the near-field mutual intensity can relatively easily be
calculated even for complex structures. This opens up a way to
control the near-field spatial coherence, e.g., by adjusting the
angular spectrum of the emitted light with the help of nanos-
tructures. We have demonstrated a pronounced anisotropy
and unexpected lengths of transverse spatial coherence in
the near-field zone of structured optical sources. The calcu-
lation method can be further developed to take into account
also evanescent waves of the point dipolelike sources [as in
Eq. (8)], which should allow for obtaining transverse coher-
ence lengths beyond the free-space diffraction limit.
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