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Geometrical-optics analysis of whispering-gallery modes in the layer of a coated spherical resonator
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The resonance properties of a layer on the surface of a spherical microresonator are investigated using
geometrical optics. The resonance condition for these shell-guided modes is formulated. Shell-guided modes
are located in the layer and are bounded by the inner and outer surfaces of the layer. It is shown that the
resonance condition depends—similarly to the case of a homogeneous resonator—on the difference of the
phase propagation of a ray crossing the layer and the corresponding phase propagation along the associated
caustic. It is shown that the layer can support resonances only in a certain thickness range that depends,
among other factors, on the resonance order and the wave number. A straightforward explanation is given for
these limitations. Comparison with solutions from wave theory shows excellent agreement. A simple analytical
solution is presented to calculate the sensitivity of the resonator to the refractive index and the thickness of the
layer as well as to the refractive index of the environment.
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I. INTRODUCTION

Some interesting types among the numerous variants of
optical microresonators are the coated microsphere and its
near relative the hollow sphere. These types are especially
important in sensing applications [1–10]. In most cases, wave
theory is used for the theoretical description [2,7,8,11–19].
Sometimes perturbation theory is used to calculate the shift of
the resonance wavelength as function of changes in the layer
properties [1,2,20]. In biological applications, the resonator is
often functionalized with a thin layer containing substances
that bind selectively to molecules of the analyte [5,9,21]. De-
tailed descriptions of the state of the art and a comprehensive
list of the corresponding literature can be found in recent
reviews [22,23].

The layer serves various purposes. In biological appli-
cations and some chemical sensing applications, the layer
should guarantee that the sensor interacts only with one partic-
ular biological or chemical agent. In other applications, e.g.,
for refractive index measurements, it was shown that the layer
increases the sensitivity of the microresonators [3,13,15,24].
The possibility of compensating for thermal drift by coating
a microsphere with a layer was also investigated [4,7]. The
applicability of spherical resonators with a layer as chem-
ical sensors was investigated [6,10,11]. Microscale hollow
spheres have been used for force and pressure measurements
[25,26].

In many reviews and research articles, dealing with res-
onances in microspheres, microrings, and other geometrical
realizations of optical microresonators, the essence of a reso-
nance is illustrated by geometrical optics. The reason is that
the visual representation is clear, simple, and close to our
imagination. In addition, the mathematical treatment is much
simpler in geometrical optics than in wave theory. Wave the-
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ory provides mathematical expressions for the resonator prop-
erties, while geometrical optics provides the explanations of
the resonator’s properties. This was the motivation to use ge-
ometrical optics for the work presented below. The drawback
is that the geometrical-optics solutions are only approximate.

The standard picture is that a representative ray of the
resonance circulates in a closed loop in the resonator, where
the length of the loop is an integer multiple of the wavelength.
However, quantitative theoretical treatments of resonances in
optical microresonators by geometrical optics are scarce. This
concept was used to calculate the effect of Goos-Hänchen
shift on the mode spacing in a spherical cavity [18]. Formulas
to calculate the resonance frequencies at grazing incidence
were derived [27,28]. A less strict resonance condition for
homogeneous spheres or cylinders was proposed [29]. It was
shown that the resonant rays must not form closed loops,
where the ray hits its tail after each round trip in phase. It
is sufficient that the ray crosses its tail after each round trip in
phase and the associated caustic is an integer multiple of the
wavelength (plus 1

2 in the case of a sphere) [29–31]. In this
model, a resonant ray fills the mode volume by its repeated
round trips completely with radiation. There is no localized
beam and therefore no Goos-Hänchen shift. In this picture,
modes are confined by a reflecting surface, the outer boundary,
and the caustic, the inner boundary. The caustic serves as
a quasi-totally-reflecting surface with grazing incidence of
the mode rays. Shell-guided modes are different. They are
confined by two reflecting surfaces and the caustic is located
beyond the mode. The mode volume is compressed into the
layer and is narrower than an ordinary mode with the same
mode number.

II. RESONANCE CONDITION

The following considerations will be restricted to the
so-called whispering-gallery modes (WGMs). These are reso-
nances where the angle of incidence exceeds the critical angle
for total reflection. In addition, we consider only shell-guided
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FIG. 1. Prominent rays of a homogeneous spherical resonator on
the left, and a core-shell resonator on the right, with radius R, shell
thickness t , and caustic radius rc. The wavelength is symbolized by
one black and white sequence, and mi are the refractive indices of the
core, shell, and surroundings.

modes: modes that are confined by the inner and outer bound-
aries of the shell. The situation is illustrated in Fig. 1. This
figure shows typical rays of resonance modes located in a
meridional cut through a spherical resonator. One sequence of
white and black on the rays represents the wavelength. The
left half of the cut in Fig. 1 shows rays of a resonance in
a homogeneous spherical resonator. The resonance condition
for such a mode reads [29,32]:

�� = �AbC − �ABC = 2πm2

λ
(2Ab − rc2β ) + δ23 − π

2

= 2π (n − 1), n = 1, 2, . . . and rc = �
λ

2πm2
, (1)

where �� is the phase difference �AbC between a ray prop-
agating from A via b to C, and the phase propagation �ABC ,
along the caustic from A via B to C. Here λ is the free space
wavelength, mi are the refractive indices (see Fig. 1), δ23 is the
phase change due to reflection on the shell surface (the m2/m3

interface), and rc is the caustic radius of the mode, � = 	 + 1
2 ,

with the mode number 	:

AbC = Ab + bC = 2
√

R2 − r2
c , ABC = 2rc arccos

rc

R
,

δ23 = −2 arctan

⎛
⎝N2

23

√
m2

2 sin2 θ23 − m2
3

m2 cos θ23

⎞
⎠, (2)

N23 =
{

1, TE mode,
m2
m3

, TM mode,
m2 > m3, sin θ23 = rc

R
.

We have used the formula for the phase shift for reflection on
a plane interface, although relations for the phase shift on a
curved interface are available [29,33,34]. It can be shown that
the difference from the plane case is less than 3% in the cases
investigated here [33]. Therefore, it seems to be well justified
to use the formulas for total reflection on a plane interface.

The right side in Fig. 1 shows rays ab, bc, cd , etc. of a
shell-guided mode. This mode is bounded by the inner and
outer surfaces of the layer. As shown in the figure, we assume
that the resonator size, R, and the refractive index of the
shell, m2, are identical to those of the homogeneous resonator

shown on the left. The caustic of the shell-guided mode is
located in the core of the resonator outside of the shell mode.
The caustic on both sites in Fig. 1, both the mode of the
homogeneous resonator and that of the shell-guided mode,
may be identical. The rays of the shell-guided mode, which
propagate in a zigzag way in the shell, from a over b to c
etc. are virtual continuations of the rays in the homogeneous
resonator in the corresponding outer region. That means, e.g.,
the phase propagation along ab of the ray Ab a member of
homogeneous resonator is the same as along the ray ab of
the shell-guided mode. It satisfies, therefore, the resonance
condition. In this case, the rays ab, bc, cd also satisfy the
resonance condition. That means, after each round trip each
ray of the shell-guided mode crosses its tail in phase in the
same way as the rays on the left of Fig. 1, belonging to
the homogeneous resonator. Obviously, these rays satisfy the
resonance condition. Continuations of the rays in the core
region do not exist in the shell-guided mode. Therefore, they
are shown in light gray. If the ray ab is in phase with Aab, the
ray bc is automatically in phase with bcC. To manage that the
ray cd of the shell-guided mode is in phase with the ray Bcd
of the core mode, the reflection on the inner boundary of the
shell has to be taken into account and the following condition
has to be met:

�Ab + δ23 + �bc + δ21 = �AB + �Bc + 2π (n − 1),

n = 1, 2, . . . . (3)

As illustrated by the inset in Fig. 1 that shows a detail of the
main figure indicated by the dashed line, α = arccos ( rc

R ) −
arccos ( rc

R−t ) and one gets

�Bc = �Ab − �dc, �dc = �bc, �AB = 2πm2

λ
rc2α

= 2πm2

λ
rc

(
2 arccos

rc

R
− 2 arccos

rc

R − t

)
,

�bc =
√

R2 − r2
c −

√
(R − t )2 − r2

c . (4)

Combination of Eqs. (3) and (4) yields the phase difference
of a ray traversing the mode volume, taking into account
the phase shift due to reflections on the boundaries to the
phase propagation along the associated arc on the caustic. In
the case of resonance, the following condition for the phase
difference must be satisfied:

�� = 2πm2

λ
2
(√

R2 − r2
c −

√
(R − t )2 − r2

c

)
︸ ︷︷ ︸

��M

+ δ23 + δ21︸ ︷︷ ︸
��R

− 2πm2

λ
rc

(
2 arccos

rc

R
− 2 arccos

rc

R − t

)
︸ ︷︷ ︸

��C

= 2(n − 1)π, (5)

δ21 = 2 arctan

⎛
⎝N2

21

√
m2

2 sin2 θ21 − m2
1

m2 cos θ21

⎞
⎠, (6)

N2
21 =

{
1, TE mode,
m2
m1

, TM mode,
m2 > m1, sin θ21 = rc

R − t
, (7)
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(a) (b)

FIG. 2. Calculations for resonator radius R = 100 μm, m1 = 1.452, m2 = 1.7, m3 = 1.32, and � = 655.5. (a) Dependence of the phase
function �φ on the wave number k and the layer thickness t ; contour lines at �φ = 0, 2π, 4π, . . . . (b) Dependence of the resonance mode
wave number on the layer thickness for different resonance orders �φ = 0, 2π, 4π, . . . .

where δ21 is the phase shift due to reflection on the core-shell
interface, and δ23 is the phase shift due to reflection on the
outer shell interface. The phase equation (5) consists of three
components: two volume-related terms ��M and ��C and
one surface-related term ��R. The first term ��M represents
the phase progression along a characteristic mode ray. This is
a ray that propagates from one mode boundary to the opposite
boundary and back, such as the ray M = abc. ��R is the
phase shift due to reflection on the outer and inner boundary
of the layer, and ��C is the phase accumulated along the arc
C = 2αrc. Equation (5) states that the resonance condition is
satisfied if the phase accumulated by a characteristic mode ray
including the phase changes due to reflection on the bound-
aries is equal up to a multiple of 2π to the phase accumulated
along the associated arc on the caustic. In addition, in the
case of a spherical resonator, the caustic radius rc must satisfy
the relation rc = (	 + 1

2 ) λ
m , where 	 is the mode number, λ the

vacuum wavelength of the resonance, and m is the refractive
index in the mode region. The left side of Fig. 1 shows that in
case of a mode in a homogeneous resonator the area between
the caustic and the reflecting surface is completely filled with
radiation. However, in the case of a shell-guided mode the
radiation fills only the shell while the range between the
caustic and the shell remains free of radiation. The radiation
is compressed to the width of the shell.

III. PROPERTIES OF SHELL-GUIDED RESONANCES

The properties of shell-guided TM modes were investi-
gated using the following data set, unless otherwise specified:
m1 = 1.452, m2 = 1.7, m3 = 1.32, R = 100 μm, � = 666.5,
k = 4.5 μm−1, t = 0, . . . , 5 μm. The range of real solutions
of the phase equation (2) with these parameters is shown in
Fig. 2. Contour lines for �� = 0, 2π, 4π, . . . are also shown.

If the layer becomes small, the phase difference becomes
negative. The reason is that the phase retardation caused by
the supercritical reflections on the inner and outer boundaries
of the layer is larger than the phase difference ��M − ��C .
Resonances are not possible below this limit. The range of
real phase differences has also a lower ku and an upper
limit in wave number ko. The phase difference in Fig. 2 is
calculated at a fixed mode number. Therefore, decreasing
wave numbers mean increasing caustic radii rc = �

m2k . The
lower limit for k is reached if the inner boundary of the
layer coincides with the caustic R − t = �

m2ku
. With increasing

wave number k, the caustic radius rc = �
km2

decreases and
the angle of incidence on the inner boundary decreases too;
see Eq. (7).

Finally, if θ21 is equal to the critical angle sin θ21 = m1
m2

=
rc

R−t = �
(R−t )m2ko

⇒ ko = �
m1(R−t ) , the total reflection breaks

down. The same holds for the reflection on the outer
surface: sin θ23 = m3

m2
= �

m2kM R ⇒ kM = �
m3R . Which surface

determines ko depends obviously on the ratios m1
m3

and t
R . For

wave numbers k > kM there is no total reflection on the inner
or outer boundary. The upper and lower limits of the range
of real phase differences are shown in Fig. 2(a). In the case
shown in Fig. 2, the reflection on the outer surface fails to
be total at a layer thickness t

R > 0.09 under the conditions
investigated. If the total reflection breaks down on the outer
boundary, the upper limit of k becomes independent of the
layer thickness.

Comparisons of geometric optics results with wave theo-
retical calculations [3,13] are shown in Figs. 3(a) and 3(b).
Only on the limits of the allowed layer thickness as given
by geometrical optics, there are slight differences between the
results of wave optics and geometrical optics. The differences
on the limits are no surprise because in geometric optics the
shell-guided resonances are strictly limited to the layer. The
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(a) (b)

FIG. 3. Resonance wave number as function of the layer thickness. Comparison of geometrical-optics results with wave theory [3,13],
gray lines. Same parameters as in Fig. 2 but for different resonance orders and mode numbers. (a) Effect of the mode order. (b) Effect of the
refractive index of the layer (TM modes, � = 666.5). Dashed lines indicate TE mode and solid lines TM modes.

boundaries of the layer are hard boundaries, which is not
the case in wave theory. As the layer becomes thinner, wave
theory provides a continuous transition from a resonator with
a layer to a homogeneous resonator with the properties of the
core. At the other end, with the layer becoming thicker, the
resonator finally changes back into a homogeneous resonator,
but with the properties of the layer.

There are no hard boundaries in wave theory. Part of
the electromagnetic energy contained in the layer is always
leaking into the surroundings, where the mode energy is ex-
ponentially decaying with increasing distance from the layer.
As the layer becomes thinner the part of the mode energy
outside the layer increases and surpasses finally that within the
layer. This contradicts the assumption of geometrical optics
that the mode energy is completely contained within the layer.
Consequently, in geometrical optics no eigenmode is possible
if the layer is so thin that a sizable part of the mode energy lies
outside of the layer. This limitation appears clearly in Fig 2.
It shows that in the geometrical-optics solution shell-guided
modes are restricted to a certain range of the thickness of the
layer.

This range depends on the mode type and mode number
and mode order. The wave-theoretical solutions show no such
restriction. No restrictions on the location of the eigenmodes
were made in the wave-theoretical calculations. The reso-
nances at a layer thickness below the limit of geometrical
optics are actually resonances that are partly located in the
core. Resonances at a layer thickness above the geometrical-
optics limit are actually shell resonances that only fill the layer
to some extent. These resonances are not reflected on the inner
boundary of the layer because the caustic radius, which is the
inner limit of the mode, is larger than the radius of the inner
boundary. There is no mode compression.

These modes have the same properties as modes of a homo-
geneous resonator with the same refractive index as the layer.
There are a number of possibilities to use micro-optical res-
onators as sensors. In this investigation, the effects of changes
in the size and refractive index of the layer and the refractive

index of the surrounding medium are investigated. In all cases
shown, the radius R, the refractive index of the core, m1, and of
the surroundings, m3, were kept constant. From the resonance
condition analytical solutions for the sensitivities ∂k

∂t , ∂k
∂m2

,

and ∂k
∂m3

can be found. The phase propagation along a ray is
linearly proportional to km2 and the length of the ray, which in
turn is linearly proportional to t . One would expect therefore
that the dependences of the t sensitivity ∂k

∂t on t and m2 are the
same. However, the refractive index m2 changes the caustic
radius and therefore the angle of incidence and so the length
of M as well as that of the caustic arc K . The change of t has
no effect on the caustic. The quantitative effects of t and m2 on
∂k
∂t are therefore different. The sensitivity of shell-guided res-
onances on the refractive index of the layer is shown in Fig. 4.

It is interesting to see that the sensitivity increases with
increasing layer thickness. This is also visible in Fig. 3(b).

FIG. 4. Sensitivity of the resonant wave number k to the refrac-
tive index of the layer, m2. All data are as before, with contour lines
at ∂k

∂m2
= −2.5, −2.0, . . . , −0.5 μm−1
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FIG. 5. Sensitivity of the resonant wave number k to the refrac-
tive index of the surroundings, m3. Contour lines at ∂k

∂m3
= −0.6,

−0.5, . . . , −0.1 μm−1

The different behavior of the t sensitivity compared with the
m2 sensitivity has its source in the dependence of the caustic
radius on m2. This dependence causes changes of the angle
of incidence of the mode rays and that affects L as well
as K and the phase shift due to reflection. As a result, the
effect of the refractive index on the phase is larger than that
of the wave number and increases with layer thickness. The
growth rate of ∂φ

∂m2
increases with the layer thickness faster

than ∂φ

∂k .This explains the dependence of the m2 sensitivity on
t as shown in Fig. 4 as ∂k

∂m2
= − ∂φ

∂k /
∂φ

∂m2
. Finally, the sensitivity

of the layered resonator to changes of the external refractive
index m3 also depends on the coating thickness. The external
refractive index acts only on the phase shift due to reflection
on the external boundary. The importance of this contribution
to the phase shift of Eq. (7) becomes even more important the
smaller ��M and ��K become. In effect, at t = 0 these two
terms disappear. The interaction of the optical properties of
the surroundings with the resonator takes place at the location
of reflection of a mode ray. The effect of this interaction
depends on the dependence of the phase shift on the external
refractive index but also on the number of reflections per
round trip. The later increases as the layer becomes thinner.
The sensitivities reproduced in Figs. 5, 4, and 6 hold for TM
modes. Similar results can be found for TE modes. Examples
are shown in Fig. 3(b).

IV. SUMMARY AND CONCLUSIONS

The theory of geometric optics was used to analyze the
properties of shell-guided modes of a spherical resonator.
These modes fill the width of the shell completely. They are
bounded in the radial direction by two reflecting surfaces.
Geometric optics was chosen because of its comparatively
simple mathematical apparatus and its clarity. Geometric op-
tics provides not only results for the resonance properties, but
also explanations. The resonance condition for shell-guided
modes was formulated. It was shown that shell-guided modes
can only exist in a certain layer thickness range. The re-

FIG. 6. Sensitivity of the resonant wave number k to the layer
thickness t . Contour lines are at ∂k

∂t = −1.0, −0.8, . . . , −0.2 μm−1.

flections at the inner and outer boundaries cause a negative
phase shift that must be compensated by the positive phase
the beam accumulates as it passes through the layer. This
requires a minimum layer thickness. The maximum thickness
is reached when the inner boundary coincides with the caustic.
By further increasing the thickness, the mode switches to the
normal mode, which is limited by the caustic and a reflec-
tive surface. It no longer fills the whole cross section of the
layer. The resonance condition was used to calculate the res-
onance wave numbers and their dependence on the thickness
of the layer. A comparison with wave theory results shows
an excellent agreement. The lower and upper limits of the
resonance wave numbers were also investigated. A decrease
in the wave number leads to an increase in the caustic radius.
The limit is reached when the caustic radius coincides with
the radius of the inner boundary of the layer. An increase in
the resonance wave number reduces the caustic radius and
thus the angle of incidence of the mode rays until the angle
of incidence on the outer or inner surface falls below the
critical angle for total reflection. Since only WG modes are
considered, the angle of incidence on the reflective surfaces
must be larger than the critical angle of incidence. Finally, the
resonance condition was used to calculate the sensitivity of
the resonance wave number to changes in the refractive index
of the surrounding medium and to changes in the refractive
index and thickness of the layer. It has been shown that a
decrease in film thickness increases the sensitivity to changes
in film thickness of the surrounding medium. The behavior of
the sensitivity to changes in the refractive index of the layer
is reversed; it decreases with decreasing layer thickness. In
summary, the main effect of layer thickness on the properties
of shell-guided modes is that a decrease in film thickness
shifts the number of reflections on the surface relative to the
length a beam travels within the resonator in favor of the
reflections. Consequently, the effects of reflections on the res-
onance state increase. The resonator becomes more sensitive
to the reflections and the refractive index of the environment.
Conversely, an increase in thickness increases the influence
of the resonator properties on the resonance condition and
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the sensitivity to the refractive index of the layer. For sensor
applications where the analyte affects the refractive index of
the surrounding medium or the thickness of the layer, a thin
layer with a high refractive index thick enough to support

shell-guided resonances would increase the sensitivity of the
sensor. For sensor applications where the analyte only changes
the refractive index of the resonator, the layer would not be
advantageous.
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