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Quantum motion of a squeezed mechanical oscillator attained via an optomechanical experiment
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We experimentally investigate a mechanical squeezed state realized in a parametrically modulated membrane
resonator embedded in an optical cavity. We demonstrate that a quantum characteristic of the squeezed dynamics
can be revealed and quantified even in a moderately warm oscillator, through the analysis of motional sidebands.
We provide a theoretical framework for quantitatively interpreting the observations and present an extended
comparison with the experiment. A notable result is that the spectral shape of each motional sideband provides
a clear signature of a quantum mechanical squeezed state without the necessity of absolute calibrations, in
particular in the regime where residual fluctuations in the squeezed quadrature are reduced below the zero-point
level.
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I. INTRODUCTION

Quantum mechanics has proven to be very effective in
describing the behavior of physical systems at the atomic and
subatomic levels and a large part of our technology is based
on quantum processes occurring on microscopic scales. Since
the inception of the theory, a long debate has continued about
which typically quantum properties are conserved or mod-
ified at the quantum-to-classical boundary and, eventually,
observed in the macroscopic reality. While an extensive lit-
erature exists on nonclassical properties of molecules, atoms,
and their constituents, experiments demonstrating genuine
quantum properties of macroscopic degrees of freedom are
comparatively very few. This situation has greatly changed in
the past years thanks to the progresses in the realization and
control of cavity optomechanical systems, in which the radia-
tion pressure coupling between optical and mechanical modes
allows us to manipulate their state at the quantum level [1].

One major result of the field is the cooling of macroscopic
oscillators close to their quantum ground state [2–4] and the
observation of quantum signatures in their motion. One of
such nonclassical features is the so-called motional sideband
asymmetry. The mechanical interaction of the oscillator with
a probe electromagnetic field measuring interferometrically
its position, produces in the latter two motional sidebands at
±�m around its main optical frequency [4–10], where �m
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is the mechanical eigenfrequency. The asymmetry originates
from the fact that a mechanical oscillator in the quantum
ground state can only absorb energy. Since the blue sideband
can be associated to an anti-Stokes scattering, implying an
energy transfer from the oscillator to the field (absorption of
a phonon and frequency up-conversion of a photon), and vice
versa for the red (Stokes) sideband, even at finite tempera-
ture the former process is less probable. The spectral areas
below the blue and red sidebands are proportional to n̄th and
n̄th + 1 respectively, where n̄th is the mean thermal occupation
number. In cavity optomechanical systems, the interplay be-
tween radiation pressure force acting on the oscillator and the
delay in the intracavity field buildup generates an additional
mechanical damping, allowing the effective cooling of the
mechanical motion to a lower mean phonon number n̄ [1].
The ratio between Stokes and anti-Stokes sidebands can be
written as R0 = (n̄ + 1)/n̄ and a deviation from unity of R0

becomes measurable for sufficiently low n̄. Such an imbalance
provides a direct measure of the displacement noise associated
with zero-point quantum fluctuations [11–13] and allows for
a direct calibration of the mean phonon occupation number,
i.e., of the absolute temperature of the oscillator [14–16].

The preparation of strongly nonclassical states in such
systems and the identification of specific quantum indicators
would represent a relevant step further, from both the sci-
entific and technological points of view. Recent microwave
experiments with cooled nano-oscillators have produced a
mechanical squeezed state where the fluctuations in one
quadrature are reduced below the zero-point level [17–20].
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Such a noise reduction can actually play an important role in
several applications, for instance in optimizing the sensitivity
of the oscillator used as quantum sensor. Nevertheless, the
quadrature spectra do not carry any distinctive feature of the
nonclassical nature of the phenomenon, which can be only
inferred (and actually demonstrated) a posteriori through ac-
curate calibration procedures.

In a recent experiment, we realized a squeezed state of
a macroscopic mechanical oscillator embedded in an opti-
cal cavity [21]. The squeezing is generated via parametric
modulation of the oscillator spring constant at twice its reso-
nance frequency [22]. In this condition, classical and quantum
fluctuations in phase with the parametric driving are ampli-
fied, while those 90 degrees out of phase are suppressed.
As a result, the oscillator motion in the phase space is
squeezed in one quadrature and amplified in the orthogonal
one. Such a scheme had already been implemented in cavity
optomechanical experiments with thermal oscillators, where
the modulation of the spring constant is achieved by modulat-
ing the light frequency or intensity [23,24].

Remarkably, in the presence of parametric modulation, the
motional sidebands assume a peculiar shape, related to the
modified system dynamics, unveiling the quantum component
of the squeezed oscillator motion. Here we further investigate
this phenomenon, extending the experimental measurements
of Ref. [21] and developing a theoretical framework able to
explain the observations.

The paper is organized as follows. In Sec. II, we introduce
the theoretical background with a discussion of key concepts
and the derivation of relevant equations. In Sec. III, we de-
scribe the experimental setup. In Sec. IV, we present the
experimental results and compare them with the theoretical
predictions. In particular, we report a complete characteriza-
tion of the sideband asymmetry, as a function of the strength
of the parametric drive, occupation number, and detuning
of the cooling beam. Our results demonstrate that some de-
gree of quantum squeezing occurs and can be observed and
quantified through the analysis of the motional sidebands,
even for a moderately cooled mechanical oscillator, in which
thermal noise is dominating over quantum fluctuations. We
also show theoretically that, when the residual fluctuations
in the squeezed quadrature are reduced below the zero-point
level, the sideband spectra provide a clear indication of a
quantum mechanical squeezed state, without the necessity of
absolute calibrations. The conclusions and future perspectives
are presented in Sec. V.

II. THEORETICAL BACKGROUND

The linearized evolution equations for the intracavity field
operator δâ and the mechanical bosonic operator b̂, in the
frame rotating at frequency ωL, are [1]

δ ˙̂a =
(

i� − κ

2

)
δâ + ig0α(b̂ + b̂†) + √

κ δâin, (1)

˙̂b =
(

−i�0
m − �m

2

)
b̂ + ig0(α∗δâ + αδâ†) +

√
�m b̂th, (2)

where � = ωL − ωc is the detuning with respect to the cav-
ity resonance frequency ωc, κ , and �m are the optical and
mechanical decay rates, �0

m is the mechanical resonance fre-
quency, g0 is the single-photon optomechanical coupling rate,
and α is the intracavity mean field. The input noise operators
are characterized by the correlation functions

〈âin(t )â†
in(t ′)〉 = δ(t − t ′), (3)

〈â†
in(t )âin(t ′)〉 = 0, (4)

〈b̂th(t )b̂†
th(t ′)〉 = (n̄th + 1) δ(t − t ′), (5)

〈b̂†
th(t )b̂th(t ′)〉 = n̄th δ(t − t ′), (6)

where n̄th is the thermal occupation number.
In our experiment, the input field is composed of two

tones, whose frequencies are shifted by ±�m around their
mean value ωL. The shift frequency �m � �0

m is tuned to
the effective mechanical resonance frequency, modified by the
optomechanical interaction. It is determined experimentally
by observing the oscillator spectrum, while in the framework
of this theoretical model it will be defined later in a self-
consistent way [Eq. (14)]. The mean value of the input field
has the form

αin = αin
− e−i(ωL−�m )t + αin

+ e−i(ωL+�m )t . (7)

The intracavity mean field, in the rotating frame, is α =
α−ei�mt + α+e−i�mt , with amplitudes

α± = αin
±

√
κin

−i(� ± �m ) + κ/2
, (8)

where κin is the input coupling rate.
In the Fourier space, Eq. (1) can be written as

δã(�) = 1

−i� − i� + κ/2
{ig0[α−(b̃(� + �m ) + b̃†(� + �m )) + α+(b̃(� − �m ) + b̃†(� − �m ))] + √

κ δãin(�)}, (9)

where we use Õ to indicate the Fourier transformed of the operator Ô, and Õ† for the Fourier transformed of Ô†, therefore
(Õ(�))

† = Õ†(−�).
When Eq. (9) and its Hermitian conjugate are replaced into Eq. (2) in the Fourier space, the mean-field factors α and α∗ in

the optomechanical coupling shift the δã and δã† operators by ±�m, giving terms proportional to b̃(�), b̃(� ± 2�m ), b̃†(�),
and b̃†(� ± 2�m ). Equation (2) can thus be written as( − i� + i�0

m + �m/2
)
b̃(�) = −g2

0[C1b̃(�) + C2b̃(� − 2�m )

+ C3b̃(� + 2�m ) + C4b̃†(�) + C5b̃†(� − 2�m ) + C6b̃†(� + 2�m )] + b̃in(�), (10)
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where Ci are c-numbers and the source term is

b̃in(�) =
√

�m b̃th(�) + ig0
√

κ

[
α∗

−
δãin(� − �m )

−i� − i� + i�m + κ/2
+ α∗

+
δãin(� + �m )

−i� − i� − i�m + κ/2

+ α−
δã†

in(� + �m )

−i� + i� − i�m + κ/2
+ α+

δã†
in(� − �m )

−i� + i� + i�m + κ/2

]
. (11)

The total input noise source described by Eq. (11) includes thermal noise and back-action noise, the latter given by the terms
into square brackets.

We now restrict our analysis to weak coupling, in which case the optomechanical damping rate and frequency shift of the
mechanical oscillator [whose expressions will be given later, in Eqs. (13) and (14)] are much smaller than its resonance frequency.
Therefore, in Eq. (10), we just consider the quasiresonant components in the optomechanical coupling term. From the left-hand
side of Eq. (10), we see that b̃ is peaked around �m, while b̃† is peaked around −�m. Therefore, the relevant terms in the
optomechanical coupling, on the right-hand side of Eq. (10), are those proportional to b̃(�) and b̃†(� − 2�m ). Writing the
explicit form of the C coefficients, Eq. (10) becomes

( − i� + i�0
m + �m/2

)
b̃(�) � −g2

0

[
|α−|2 b̃(�)

(
1

−i� − i� + i�m + κ/2
− 1

−i� + i� − i�m + κ/2

)

+ |α+|2 b̃(�)

(
1

−i� − i� − i�m + κ/2
− 1

−i� + i� + i�m + κ/2

)

+ α∗
−α+ b̃†(� − 2�m )

(
1

−i� − i� + i�m + κ/2
− 1

−i� + i� + i�m + κ/2

)]
+ b̃in(�).

(12)

In the right-hand side of Eq. (12), we notice the usual optomechanical effects of the two laser tones (first two terms inside
square brackets), plus their coherent common interaction, proportional to the fields product α∗

−α+, that originates the parametric
squeezing. It can be directly calculated that this parametric effect is null for � = 0, i.e., when the two tones are equally shifted
with respect to the cavity resonance.

The standard optomechanical interaction is parametrized by the total optical damping rate �opt, defined as [1]

�opt = 2g2
0 Re

[
|α−|2

(
1

−i� − i� + i�m + κ/2
− 1

−i� + i� − i�m + κ/2

)

+ |α+|2
(

1

−i� − i� − i�m + κ/2
− 1

−i� + i� + i�m + κ/2

)]
, (13)

and by a frequency shift that determines the effective resonance frequency �m according to the equation

�m = �0
m + g2

0 Im

[
|α−|2

(
1

−i� − i� + i�m + κ/2
− 1

−i� + i� − i�m + κ/2

)

+ |α+|2
(

1

−i� − i� − i�m + κ/2
− 1

−i� + i� + i�m + κ/2

)]
. (14)

For an easier comparison with the experimental data, it is useful to define the total optomechanical coupling strength g2 =
g2

0(|α−|2 + |α+|2) and the the ratio between intracavity powers εc = |α−|2/(|α−|2 + |α+|2). Using the quasiresonant frequency
condition � � �m, the total damping rate �eff = �m + �opt can be written as

�eff = �m + g2κ

(
εc

�2 + κ2/4
− εc

(� − 2�m )2 + κ2/4
+ 1 − εc

(� + 2�m )2 + κ2/4
− 1 − εc

�2 + κ2/4

)
. (15)

With the same condition and notation, Eq. (12) simplifies to

(−i� + i�m + �eff/2)b̃(�)

= −�par

2
eiφ b̃†(� − 2�m ) + b̃in(�), (16)

where

�par = 4g2√εc(1 − εc) �

�2 + κ2/4
(17)

and φ = π/2 + arg[α∗
−α+].

Moving to the frame rotating at �m by means of the trans-
formation

b̂R = b̂ ei�mt , b̂†
R = b̂†e−i�mt (18)

and, for Fourier transformed operators,

b̃R(�) = b̃ (� + �m ), b̃†
R(�) = b̃†(� − �m ), (19)

and defining the frequency with respect to the mechanical
resonance as δ� = � − �m, Eq. (16) and its Hermitian con-
jugate can be written in the form of the system of coupled
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linear equations(
−iδ� + �eff

2
�par

2 eiφ

�par

2 e−iφ −iδ� + �eff
2

)(
b̃R

b̃†
R

)
=

(
b̃in

b̃†
in

)
. (20)

The determinant of the system matrix is

D =
(

−iδ� + �+
2

)(
−iδ� + �−

2

)
, (21)

where

�± = �eff ± �par (22)

and the solutions of the system can be written as

b̃R = 1

D

[(
− iδ� + �eff

2

)
b̃in − �par

2
eiφ b̃†

in

]
, (23)

b̃†
R = 1

D

[(
− iδ� + �eff

2

)
b̃†

in − �par

2
e−iφ b̃in

]
. (24)

The correlation function for the input noise source of
Eq. (11) is obtained from Eqs. (3)–(6) by consider-
ing that 〈Ô(t )Ô†(t ′)〉 = c δ(t − t ′) implies 〈Õ(�)Õ†(�′)〉 =
2πc δ(� + �′):

1

2π
〈b̃in(−�)b̃†

in(�)〉 = �m(n̄th + 1) + A+, (25)

1

2π
〈b̃†

in(−�)b̃in(�)〉 = �m n̄th + A−, (26)

1

2π
〈b̃in(−�)b̃in(�)〉 = 1

2π
〈b̃†

in(−�)b̃†
in(�)〉∗

= −g2
0κ

α∗
−α+

�2 + κ2/4
, (27)

where the Stokes and anti-Stokes rates due to the two field
tones are [1]

A− = g2
0κ

[ |α−|2
�2 + κ2/4

+ |α+|2
(� + 2�m )2 + κ2/4

]
, (28)

A+ = g2
0κ

[ |α−|2
(� − 2�m )2 + κ2/4

+ |α+|2
�2 + κ2/4

]
, (29)

and it can be verified that �opt = A− − A+.
The spectra of the Stokes and anti-Stokes motional side-

bands are finally calculated from Eqs. (23) and (24) using the
correlation functions given above, and are respectively

Sb̂†
Rb̂†

R
= 1

2π
〈b̃R(−δ�)b̃†

R(δ�)〉

= �eff

2

[
1 + n̄ − s/2

δ�2 + �2−/4
+ 1 + n̄ + s/2

δ�2 + �2+/4

]
, (30)

Sb̂Rb̂R
= 1

2π
〈b̃†

R(−δ�)b̃R(δ�)〉

= �eff

2

[
n̄ + s/2

δ�2 + �2−/4
+ n̄ − s/2

δ�2 + �2+/4

]
, (31)

where we have introduced the squeezing parameter s =
�par/�eff and the oscillator effective phonon number in the

absence of parametric effect is

n̄ = �m n̄th + �opt n̄BA

�eff
(32)

with n̄BA = A+/�opt.
The spectral shape of each motional sideband departs from

a simple Lorentzian peak, and it is indeed composed by the
sum of two Lorentzian curves with the same center but dif-
ferent amplitudes and widths. The ratios between the areas
of the broad and narrow Lorentzian components in the two
sidebands are

R+ = n̄ + 1 + s/2

n̄ − s/2
, (33)

R− = n̄ + 1 − s/2

n̄ + s/2
, (34)

respectively for the broader (R+) and narrower (R−) compo-
nents. In the absence of parametric gain (s = 0), the two ratios
coincide, and we recover the usual sideband asymmetry result
for a thermal state R+ = R− = R0.

A generic quadrature Xθ of the oscillator is defined as Xθ =
(eiθ b̂R + e−iθ b̂†

R)/2. The quadrature operator can be calcu-
lated in the Fourier space from Eqs. (23) and (24), obtaining

X̃θ = 1

2D

[
eiθ b̃in

(
−iδ� + �eff

2
− �par

2
e−i(2θ+φ)

)

+ e−iθ b̃†
in

(
−iδ� + �eff

2
− �par

2
ei(2θ+φ)

)]
. (35)

The shape of the spectrum of Xθ can be written as the sum
of two Lorentzian functions, with width �+ and �−. Sin-
gle Lorentzian shapes characterize the quadratures defined
by (2θ + φ) = 0 and (2θ + φ) = π . These quadratures are
defined in the following as Y ≡ X−φ/2 and X ≡ X−φ/2+π/2.
Their operators are

Y = e−iφ/2 b̃in + eiφ/2 b̃†
in

2
(−iδ� + �+

2

) , X = i(e−iφ/2 b̃in − eiφ/2 b̃†
in )

2
(−iδ� + �−

2

) ,

(36)
and the associated spectra are

SYY = �eff (2n̄ + 1)

4
(
δ�2 + �2

+
4

) , SXX = �eff (2n̄ + 1)

4
(
δ�2 + �2

−
4

) . (37)

The integrals of the spectra give different variances in
the two orthogonal quadratures σ 2

Y = σ 2
0 /(1 + s) and σ 2

X =
σ 2

0 /(1 − s) with σ 2
0 = (2n̄ + 1)/4. The oscillator is said to be

in a squeezed state.
To summarize, in a classical description the motion of

the oscillator is described by commuting variables, and the
spectra corresponding to the two motional sidebands must
be identical. On the other hand, in a quantum-mechanical
description, even if the oscillator is dominated by thermal
noise (i.e., n̄ 	 1), the sideband asymmetry is always present
(R0 > 1), being originated by the noncommutativity between
its ladder operators. Of course, the effect is actually measur-
able only for moderately low occupation numbers n̄.

In the presence of parametric modulation, when the system
is in a squeezed state, the sideband ratios R+ and R− differ
not only from unity, but also from the ratio R0 measured in a
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FIG. 1. Sketch of the experimental setup (see text) and conceptual scheme of the field frequencies. The LO is placed on the blue side of
the probe (ωprobe) and detuned by �LO 
 �m; therefore, the Stokes lines are on the red side of the LO, while the anti-Stokes lines are on the
blue side. In the heterodyne spectra, they are located respectively at �m + �LO (Stokes) and �m − �LO (anti-Stokes).

thermal state. Namely, the ratio is higher for the broadened
Lorentzian component, while for the narrowed component
it approaches unity as s → 1 (i.e., close to the parametric
instability threshold).

Therefore, the quantum features of the oscillator motion
can be brought out even for a state having a variance exceed-
ing that of the ground state in any quadrature and, besides
thermal noise, even for states that are not of minimal un-
certainty (i.e., with 〈X 2〉〈Y 2〉 > 1/16) as those created by
parametric squeezing.

In the following, we describe an experimental study of this
effect and provide evidence of the realization of a nonclassical
state of the macroscopic mechanical oscillator.

III. EXPERIMENTAL SETUP

A simplified scheme of the experimental setup and of the
field frequencies used in the experiment is sketched in Fig. 1.
The mechanical oscillator is a circular SiN membrane with
a thickness of 100 nm and a diameter of 1.64 mm, equipped
with a specific on-chip structure that, working as a “loss
shield” [25–28], reduces the coupling between the membrane
and the frame and the consequent dissipation losses. Typical
quality factors are of the order of a few millions for all the
membrane modes, even at low frequencies, being limited by
the intrinsic dissipation in SiN.

In this work, we exploit the (0,2) drum mode at �m/2π �
530 kHz, having a quality factor of 6.4 × 106 at cryogenic
temperature. The membrane is placed inside a 3.92-mm-long
cavity, 2 mm far from the flat back mirror, thereby forming
a “membrane-in-the-middle” setup [29]. The input mirror is
concave with a radius of 50 mm, which generates a waist of
70 μm. The cavity linewidth is k/2π = 1.9 MHz correspond-
ing to a finesse around 20 000. The vacuum optomechanical
coupling factor is g0/2π = 30 Hz, determined by the overlap
between the membrane mechanical mode and the beam waist.
The optomechanical cavity is cooled down to ≈7 K in an
helium flux cryostat.

The light of a Nd:YAG laser is filtered by a Fabry-Perot
cavity (FC) with a linewidth of 66 kHz, frequency tuned by a
first acousto-optic modulator (AOM1) and then split into three

different beams. A weak probe (≈20 μW), phase modulated
at 13.3 MHz, is kept resonant with the optomechanical cavity
(OMC) using the Pound-Drever-Hall (PDH) technique with a
servo loop exploiting AOM1 to correct fast fluctuations and
a piezoelectric transducer to compensate slow changes of the
cavity length.

About 2 μW of the reflected probe are used for the PDH
locking scheme, while most of the power (≈10 μW) is com-
bined with a local oscillator (LO) beam (≈2 mW) and sent
to a balanced detection (BHD). The LO frequency ωLO is
blue shifted with respect to the probe (namely, by �LO/2π =
11 kHz) by AOM4 to realize a low-frequency heterodyne
detection [30]. The BHD signal is acquired and off-line pro-
cessed to study the motional sidebands and also sent to a
lock-in amplifier and demodulated at frequency �m. The two
quadrature outputs of the lock-in amplifier are simultaneously
acquired and off-line processed.

The pump beam, orthogonally polarized with respect to
the probe field, consists of two tones: The main one at fre-
quency ωcool red detuned from the cavity resonance allows
us to cool down the mechanical motion. The second much
weaker tone at a frequency ωpar, blue shifted with respect to
the cooling beam by ωpar − ωcool = 2�m, realizes the para-
metric modulation of the oscillator generating the mechanical
squeezing. The two tones are obtained by driving the AOM2
on the pump beam with the sum of two radio-frequency sig-
nals. Reference spectra in the absence of resonant parametric
effects are obtained by further shifting the modulation tone
by �shift ≈ 2π × 12 kHz. This shift is much larger than the
mechanical width and much smaller than the cavity linewidth.
This choice on one hand makes the coherent effect of the two
tones negligible and on the other hand keeps the cooling effect
of the modulation tone almost constant.

During the experiment, the frequency difference between
ωcool and ωpar is periodically changed between 2�m and
(2�m + �shift ) every 5 s. The 10-s-long time series of the
BHD signal are then acquired and the 5-s segments are sepa-
rated. Spectra with a resolution of 0.2 Hz are calculated from
both segments and averaged over 10 consecutive time series
for the subsequent analysis. In this way, we can accurately
compare the spectra with and without parametric modulation
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FIG. 2. [(a), (d)] Heterodyne spectra around the (0,2) drum resonance at �m/2π � 530 kHz showing the two motional sidebands separated
by �LO/2π = 11 kHz. Each experimental spectrum (green symbols) is calculated from 10, 5-s-long segments of the acquired time series. Gray
symbols are used for data points excluded from the fitted regions. In panel (a), there is no resonant parametric drive, and the spectrum is fitted
with one couple of Lorentzian curves (gray solid line) with equal width �eff and different amplitudes. For the same data, we also show the
fit curve with two couples of Lorentzian curves (violet dashed line) according to the expressions (30) and (31). The shaded (pink and light
blue) regions shows the two Lorentzian contributions. Panel (c) shows in this case the statistical distribution for the parametric gain s, on 60
independent measurements. Panel (b) shows the statistical distribution of s obtained with the same procedure on 6000 artificial, numerically
generated spectra. In panel (d) (with resonant parametric drive), the parametric gain obtained from the fit with expressions (30) and (31) (here
shown with a green solid line) is s = 0.53.

even in the presence of slow variations in the system parame-
ters. In order to avoid the effects of possible long-term drifts
during the measurements, all the radio-frequency signals used
to drive the AOMs are phase locked.

IV. EXPERIMENTAL RESULTS

As discussed in the previous sections, the analysis of
the motional sidebands allows us to explore the quantum
components of the mechanical squeezed dynamics. Typical
heterodyne spectra, displaying the two motional sidebands
centered at frequencies �m ± �LO, are shown in Fig. 2.
Without any parametric modulation [Fig. 2(a)], the spectrum
consists of a couple of Lorentzian curves, having the same
width �eff but different areas. After the correction for the
effect of the residual probe detuning [16], their ratio R0 pro-

vides a direct measurement of the mean occupation number
n̄ through R0 = 1 + 1/n̄. From this sideband asymmetry, we
infer n̄ = 5.8 for the shown spectrum.

In the presence of parametric modulation, the oscillator
quadratures are no longer identical and each sideband is
composed of two Lorentzian functions centered at the same
frequency but with different linewidth and amplitude. The
corresponding spectra for a given parametric gain s are shown
in Fig. 2(d). The spectral peaks are fitted using Eqs. (30)
and (31) where, in the two widths �+ = �eff (1 + s) and
�− = �eff (1 − s), �eff is fixed to the value extracted from
the corresponding spectra in the absence parametric drive,
while the parametric gain s is left as free fitting parameter. We
obtain a parametric gain of s = 0.53 ± 0.01, where the quoted
error corresponds to the standard deviation in five consecutive
independent measurements, each one lasting 100 s. The pink
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and light blue areas plotted in Fig. 2(d) show the contributions
to the motional sidebands from the squeezed Y quadrature and
amplified X quadrature. We remark that the shape of each
sideband is no longer represented by one single Lorentzian
and carries a distinctive signature of the squeezed oscillator
motion.

In order to verify that the fitting procedure on the hetero-
dyne spectra, assuming two couples of Lorentzian functions,
is not biased, we have applied it to a set of 60 independent
spectra acquired in the absence of parametric drive, for differ-
ent values of pump power and detuning. An example of the
fitted Lorentzian components is shown in Fig. 2(a) (shaded
pink and light blue regions). The statistical distribution of s,
displayed in Fig. 2(c), is characterized by a mean value of
0.038 and a standard deviation of 0.046, a result which is
compatible with s = 0 as expected. The standard deviation on
s is similar to those obtained in the presence of parametric
drive. For a further check, we have generated artificial spectra,
with s = 0 and the same parameters and signal-to-noise ratio
of the experiment, and repeated the analysis. The statistical
distribution of s derived from the fits is shown in Fig. 2(b),
and displays a mean value of 0.014 and standard deviation of
0.019, figures similar to the experimental ones. It can be no-
ticed that both the experimental and the artificial distributions
are slightly asymmetric, with comparable skewness (respec-
tively 1.12 and 0.7). This feature seems therefore related to
the fitting procedure. We have not further studied this issue,
but we infer that the analysis is reliable at the few hundredths
level on s.

The most straightforward method to show squeezing is
the direct measurement of the variance in different quadra-
tures that are usually chosen by tuning the local oscillator
phase in a homodyne detection. On the other hand, in a
standard heterodyne setup, the rapidly rotating phase differ-
ence between signal and local oscillator prevents the access
to selected quadratures. This drawback can be overcome by
controlling such phase difference [30]. In our setup, all the
oscillators are indeed phase locked, including the time base
of a lock-in amplifier that demodulated the heterodyne sig-
nal at �m. The spectrum of the lock-in output signal is a
quadrature spectrum, centered at �LO and symmetrized, i.e.,
1
2 [SXθ Xθ

(ω − �LO) + SXθ Xθ
(ω + �LO)]. The phase of the de-

modulator allows to tune θ , and thus select the Y and X
quadratures. Examples of the recorded spectra are shown in
Fig. 3. The quadratures spectra are acquired and analyzed
independently from the heterodyne signals, and the analyses
agrees for both the Lorentzian widths and the squeezing factor
[21].

In the following, we describe an extended characterization
of the parametric squeezing as a function of different mean-
ingful parameters and compare the experimental results with
the model reported in Sec. II.

In Fig. 4, we plot the sideband asymmetry at increasing
strength of the parametric tone, keeping constant the total
pump beam power, for two different values of the occupation
number. When the parametric tone is not resonant (i.e., the
parametric effect is off), the ratio R0 (green symbols) remains
almost constant for both occupation numbers, although we
observe a clear decreasing trend as the parametric tone is
increased. Such behavior is well reproduced by theoretical
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FIG. 3. Spectra of two orthogonal quadratures at the output of
the lock-in amplifier. The demodulation phase is chosen to obtain
respectively maximal (X ) and minimal (Y ) variance in the two sig-
nals, in the presence of resonant parametric modulation. (a) The
parametric tone is detuned from the resonant condition. The experi-
mental signals of the two quadratures (light and dark green symbols)
are not distinguishable, and one single Lorentzian fit is shown with
a solid line. (b) With resonant parametric drive, the spectra in the
two quadratures (respectively red and blue symbols) are fitted with
different single Lorentzian curves (red and blue solid lines). Gray
symbols show spurious electronic peaks that are excluded from the
fits.

curves [see Eq. (15)] calculated by using independently mea-
sured parameters, and it is due to a change in the relative
strength of the two pump tones, which results in a slightly
reduced cooling power. We note that the parametric tone is
injected into the cavity through the pump beam and the para-
metric effect is turned off by shifting the driving frequency
from 2�m to 2�m + �shift (see Sec. III). Although this pro-
cedure allows us to reduce to a minimum the changes in the
cooling efficiency (as explained in Sec. III), a residual effect
is still present.

Figure 4 also shows the sideband asymmetry for the
Lorentzian components related to the broad quadrature R+
(blue symbols) and narrow quadrature R− (red symbols), with
resonant parametric effect. The parametric gain s used to
calibrate the horizontal axis in the figure is deduced from
the width of the Lorentzian curves, as above described. The
corresponding theoretical ratios can be calculated from the
theoretical spectra Sb̂†b̂† and Sb̂b̂ [Eqs. (30) and (31)] and are
given by Eqs. (33) and (34). Such theoretical curves are also
plotted in Fig. 4 without free fitting parameters, showing a
good quantitative agreement with the experimental data.

We now analyze the sideband asymmetry as a function
of the effective mechanical width �eff , which is varied by
increasing the pump power while keeping a constant mean
detuning of the pump tones �, and parametric gain s. The
experimental results and their relative theoretical curves are
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FIG. 4. Sideband asymmetry as a function of the strength of the
parametric modulation (upper horizontal axis) for constant detuning
and two different occupation numbers: (a) n̄ = 4.2 and (b) n̄ = 5.8.
The green symbols refer to the sideband asymmetry R0 without any
resonant parametric drive, realized by detuning the modulation tone
(see text). Blue (red) symbols indicate the ratio between the areas of
the broad (narrow) Lorentzian contributions R+ (R−) in the two side-
bands, observed with resonant parameteric modulation. The values of
parametric gain s (lower horizontal axis) are derived from the fitted
widths �+ = �eff (1 + s) and �− = �eff (1 − s). The error bars cor-
respond to one standard deviation calculated from five consecutive
independent measurements, each one lasting 100 s. The solid lines
show the corresponding theoretical behavior, with shadowed areas
given by the uncertainty in the system parameters (5% in the cavity
width and 0.5 K in the temperature).

displayed in Fig. 5. In the absence of any parametric modu-
lation, R0 increases with �eff as expected. The mean phonon
number in R0 includes not only the cooling effect resulting
from the optomechanical interaction, but also the additional
occupation number due to the backaction from the probe and
the pump beam. When the parametric modulation is turned on,
the equivalence between R+ and R− is broken and the curves
start to diverge, with a separation which increases with the
pump power and thus with �eff . While in the absence of para-
metric effect the agreement between experiment and theory
is good, the data of R+ and R− depart from the theoretical
predictions, in particular at high pump powers. We remark that
the parametric gain can be written as s = �par/�eff and thus
is explicitly dependent on the mean pump detuning � and
on the ratio between the cooling tone and total pump power
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FIG. 5. (a) Sideband asymmetry as a function of �eff for fixed
mean pump detuning � and parametic gain s. Green symbols refer
to the sideband asymmetry R0 (without resonant parametric drive)
while blue (red) symbols show ratios between the areas of the broad
(narrow) Lorentzian contributions R+ (R−) in the presence of res-
onant parameteric modulation. The values of �eff in the abscissa
are obtained from fits of the heterodyne spectra without resonant
parametric drive. The solid lines show the corresponding theoretical
behavior and shadowed areas represent the uncertainty in the system
parameters (as in Fig. 3). The mean sideband asymmetry and their
standard deviations are extracted from five consecutive independent
measurements, each one lasting 100 s. (b) The same experimental
data are compared with modified theoretical curves taking into ac-
count the changes of s with �eff obtained by fitting the data in the
inset. The χ 2 of the fit is around 0.1.

[see Eq. (17)]. During the measurements, the parametric gain
is maintained roughly constant by adjusting the strength of
the parametric tone each time the pump power is varied.
Nevertheless, we observe a residual variation of s as shown
in the inset of Fig. 5(b). We attribute such deviations to small
changes of the locking point as the pump power increases,
which induce changes in � and hence of the parametric ef-
fect. In Fig. 5(b), we show the experimental data together
with modified theoretical curves for R+ and R−, in which
we phenomenologically include the dependence of s on �eff

(see inset). These new theoretical lines show indeed a better
agreement at high pump powers. However, the theory is still
slightly underestimating the asymmetry at low �eff . In this re-
gard, we remark that the sideband asymmetry is corrected by
taking into account the effect of the residual probe detuning,
following the procedure described in Ref. [16]. Such correc-
tions are typically of a few percent and become increasingly
important at low �eff , where the measured asymmetry has a
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FIG. 6. (a) Parametric gain s as a function of the mean detuning
of the pump tones. The experimental values of the parametric gain
(red symbols) are obtained from the fitted widths �+ = �eff (1 + s)
and �− = �eff (1 − s). The theoretical curve (dotted line) is s =
�par/�eff with �par and �eff given by Eqs. (17) and (15), respectively.
(b) Sideband asymmetries R0 (green), R+ (blue), and R− (red) as a
function of the mean detuning of the pump tones �. The solid lines
show the corresponding theoretical behavior and shadowed areas
represent the uncertainty in the system parameters as in Fig. 3.

comparable magnitude. Moreover, since the data have been
acquired at different times, the observed deviations could also
be attributed to long-term drifts of the system parameters.

We finally study the dependence of the parametric gain
and sideband asymmetry on �. Its variation has the twofold
effect of affecting the cooling efficiency and the parametric
gain. The former is evidenced by the variation of the sideband
asymmetry R0 plotted in Fig. 6(b) (green points). The corre-
sponding theoretical curve (green line) exhibits a maximum
slightly below � = 0. � = 0 means that the cooling tone de-
tuning is ωcool − ωc = −�m, close to the value where optimal
cooling is indeed expected. The parametric gain values are
shown in Fig. 6(a), together with the theoretical curve showing
a minimum equal to zero at � = 0. The parametric gain can
indeed be written as s = �par/�eff , where �par ∝ � as � → 0.
Accordingly, as the null pump detuning is approached, the
difference between the sideband ratios R+ and R− decreases
to disappear at � = 0 [see Fig. 6(b)].

We have seen that sideband spectra provide a powerful
quantum indicator of a squeezed state: The narrow and broad
Lorentzian components of each motional sideband give a sig-
nature of the imbalance between the fluctuations in the two
quadratures, while the sideband asymmetry quantifies their
nonclassical nature. Similarly to thermal states, even for the
squeezed state the transition between classical and quantum
behavior is smooth and some level of quantum squeezing is
present even in macroscopic oscillators dominated by thermal
noise. We remark indeed that the sideband asymmetry is in
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FIG. 7. Theoretical spectra of the Stokes and anti-Stokes side-
bands as obtained from Eqs. (30) and (31) for n̄ = 0.12 and s = 0.4
(green solid line). Blue and red lines identify the broad and narrow
Lorentzian components.

itself a fully quantum feature. On the other hand, it is in-
teresting to explore the extreme case in which the residual
fluctuations in the squeezed quadrature are reduced below the
zero-point level. This occurs for (2n̄ + 1)/(1 + s) < 1, i.e.,
for s > 2n̄. Equation (31) dictates that the broad Lorentzian
contribution to the anti-Stokes sideband becomes negative,
although this is overcompensated for by the narrow compo-
nent, as the overall spectral density obviously remains positive
at all frequencies. A spectrum with these characteristics is
illustrated in Fig. 7. The negativity of the broad component
in the anti-Stokes sideband provides a clear indication of a
bona fide quantum squeezing without the necessity of abso-
lute calibrations. Under a continuous parametric drive, the
system is stable for s < 1, which represents the parametric
instability threshold. The condition s > 2n̄ would then require
an initial occupation number n̄ < 0.5, a level that has already
been reached even in optomechanical setups based on SiN
membranes (see, e.g., Refs. [4,31]).

V. CONCLUSIONS

We have recently described a cavity optomechanics ex-
periment where a macroscopic mechanical oscillator is
parametrically driven by a suitable combination of optical
fields [21]. We have shown that the generated mechanical
squeezed state exhibits a quantum dynamics that is evidenced
by the shape of the motional sidebands. In the present work,
we describe the theoretical model behind this phenomenon
and present a detailed characterization of the experimental
achievements in good agreement with the model. We suggest
that the analysis of the motional sidebands can provide a
clear signature of the noise reduction below the zero-point
fluctuations that occurs in one quadrature, without requiring
any absolute calibration of the displacement spectra or even a
direct measurement of the quadrature fluctuations.

Our results widen the range of macroscopic nonclassical
states that can be explored in optomechanical experiments.
For instance, interesting developments can involve nonstation-
ary squeezed states and multimode squeezing [32–34].
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