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A comparative study on the chromatic dispersions and the interactions with ultrashort pulses in epsilon-
near-zero (ENZ) transparent conducting oxides (TCOs) is theoretically presented. The ENZ TCOs exhibit
rapidly varying and unprecedentedly large N th-order dispersions in the ENZ region, which is exclusive to ENZ
plasmonic materials. However, it is found that in both physical and mathematical senses, the concepts of high
N th-order chromatic dispersions are inapplicable for ENZ TCOs with Drude-like permittivity. Subsequently,
the impacts of the complex permittivity dispersion profiles on ultrashort pulse interactions are discussed.
Comparisons are made between propagation patterns in an ENZ AZO waveguide obtained from the nonlinear
Schrödinger equation (NLSE) and Maxwell’s equations, as well as between interactions of femtosecond pulses
with different temporal widths in a subwavelength ENZ AZO slab. Results show that the well-received NLSE is
not suitable for modeling ENZ TCOs in either case, and subwavelength interaction patterns with different pulse
widths are quite different, where the shorter pulse can excite stronger localized resonance.
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I. INTRODUCTION

Epsilon-near-zero (ENZ) materials, with their capabilities
to exhibit extraordinary optical properties within the region
where the real part of the complex permittivity vanishes to
zero, have attracted much scientific attention from various
fields such as plasmonics, nonlinear optics, and nanophoton-
ics [1–4]. The current state-of-the-art theoretical studies have
unveiled optical properties of amplified electric fields [5],
optical nonlinearity enhancement [6], directive emission of
electromagnetic (EM) wave [7], ENZ mode [8,9], trapping
of slow light [10], and dynamics of subwavelength quasi-
standing-wave patterns [11].

Transparent conducting oxides (TCOs) such as indium
tin oxide (ITO), gallium-doped zinc oxide (GZO), and
aluminum-doped zinc oxide (AZO) are popular plasmonic
materials to realized ENZ in the infrared regime. It has been
found that in the proximity of the ENZ point, nonlinear ef-
fects such as ultrahigh Kerr nonlinearity [12,13] and harmonic
generations [14–17] are found, and applications such as all-
optical and electro-optical switching [18–20] are explored in
ENZ TCOs.

In nonlinear optics, second-, third-, and high-order chro-
matic dispersions are important concepts in understanding
nonlinear optical dynamics [21], which, however, are rarely
discussed in ENZ materials. These chromatic dispersions are
related to the refractive index which changes sharply due to
the zero crossing of permittivity near the ENZ point. They
could form high-order chromatic dispersions exclusive to
ENZ materials, which is worth an in-depth discussion. Based
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on the complex dispersion profile and optical nonlinearity, the
modeling of ultrashort femtosecond pulse interactions with
ENZ TCO materials can be further explored under longer-
than-wavelength and subwavelength setups.

In this work, a comparative study is presented on the chro-
matic dispersions and the interactions with ultrashort pulses
in ENZ TCOs. It is found that ITO, GZO, and AZO all exhibit
rapidly varying and unprecedentedly large N th-order disper-
sions in the ENZ region. However, resembling the situations
in effective media metamaterials, near the ENZ wavelength,
there exists the inapplicability of the high-order dispersion
concept. This condition is reported and discussed in ENZ
TCO materials under the Drude model. Subsequently, the
impacts of the complex permittivity and refractive index dis-
persion profiles on ultrashort pulse interactions are analyzed.
Comparisons are carried out between pulse propagation in an
ENZ AZO waveguide simulated by the nonlinear Schrödinger
equation (NLSE) and Maxwell’s equations, as well as between
light-matter interactions of femtosecond pulses with different
temporal widths in a subwavelength ENZ AZO slab. It is
shown that the well-received NLSE is not suitable for model-
ing ENZ TCOs in both cases due to different reasons, and the
interaction patterns depend greatly on pulse widths, where the
longer 100-fs pulse behaves like a pseudo-continuous-wave
(pseudo-cw) which exhibits a more uniformly distributed
electric field and excites weaker resonance, while the shorter
10-fs pulse can excite greater localized surface plasmon res-
onance (LSPR), indicating that temporal width might be
another affecting factor of LSPR in ENZ TCOs. The findings
of this work might be useful in broadening the understandings
of light-matter interactions in ENZ materials.

This work is structured as follows. The high N th-order
chromatic dispersion profiles are discussed in Sec. II. The
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comparison between NLSE and full Maxwell simulations on
ultrashort pulse propagation is demonstrated in Sec. III, and
the comparison of different-width pulse interactions with a
subwavelength slab is discussed in Sec. IV. Finally, a con-
clusion of this article is drawn in Sec. V.

II. CHROMATIC DISPERSIONS OF TCOs

Although subtly engineered TCO nanostructures can ex-
hibit non-Drude-like behavior [22], the complex permittivity
of simple TCO slabs and nanolayers can still be precisely
described by the Drude model [1–3,23],

εR = εr + iεi = εb − ω2
p

(ω2 + �2)
+ i

ω2
p�

(ω2 + �2)ω
, (1)

where εr and εi are the real and imaginary parts of the complex
permittivity, and ω is the angular frequency of the EM wave.
In this work, experimental data [1] for AZO [24], GZO [25],
and ITO [26] are used. The high-frequency permittivity εb is
3.80 [1], and the damping rates � which represent the electron
scattering rates are 9.710 × 1013 [1,24], 1.4929 × 1014 [1,25],
and 1.2836 × 1014 rad/s [1,26] for AZO, GZO, and ITO,
respectively. The plasmonic frequencies ωp are tuned by free
carrier concentration such that the ENZ points λENZ where
εr reach zero locate exactly at the telecom wavelength of
1550 nm, and their corresponding values are ωp = 2.3765 ×
1015, 2.3867 × 1015, and 2.3822 × 1015 rad/s, respectively.
The variations of the complex permittivity are shown in
Figs. 1(a) and 1(b). The refractive index n + ik at this region
can be calculated using the generalized Maxwell relations,

n =

√√√√
√

ε2
r + ε2

i + εr

2
,

k = εi

2n
=

√
n2 − εr. (2)

From Eq. (2), the intrinsic loss εi in TCO is generally
nonzero and nontrivial. Therefore, no matter what value εr is,

n is always larger than zero. However, near λENZ, n possesses
values smaller than 1.0. The variations of the complex refrac-
tive index are plotted in Figs. 1(c) and 1(d). On the other hand,
the attenuation coefficients α and αdB can help one understand
the degree of loss in ENZ TCOs more intuitively, which are
defined as follows [21]:

α(ω) = ω

nc
Im[χ (1)(ω)],

αdB(ω) = 10(log10e)α(ω) ≈ 4.343α(ω), (3)

where c = 299 792 458 m/s is the speed of light in vacuum,
and χ (1) is the first-order susceptibility which can be obtained
from εR = 1 + χ (1). The dispersions of both attenuation coef-
ficients are shown in Figs. 1(e) and 1(f).

From Fig. 1(a), the curves for the real part of the per-
mittivity of the three TCOs are almost the same within the
ENZ region. However, the values for intrinsic loss are quite
different, as shown in Fig. 1(b), with AZO having the lowest
loss. It is worth mentioning that, εb, εr, and εi may vary with
different fabrication techniques and manufacturing errors, but
the tendency would agree with Figs. 1(a) and 1(b). Compared
with other TCOs, AZO tends to have a smaller �, meaning
that the scattering rate of the electrons is relatively low, hence
the lower optical loss. The same conclusion can be made from
Figs. 1(d)–1(f) with k, α, and αdB. However, even with AZO,
at λENZ, αdB has a value of 0.0137 dB/nm, which means
that in a 2 μm propagation distance, the total linear loss is
27.48 dB at 1550 nm, indicating that ideally, only 0.18% of the
incident power can transmit through. The huge loss limits the
applications of ENZ TCOs in large-scale integrated photonic
circuits and networks.

In Fig. 1(c), the curves of n experience a sharp turn near
λENZ due to the zero crossing of εr. In nonlinear optics, N th-
order dispersions are important concepts that greatly affect the
interplay between nonlinearity, pulse chirp, and chromatic dis-
persion [27]. They are all derived from n-related propagation
coefficient β [21], which is also known as the wave number.
By incorporating the Drude model, the analytical expression
of β(ω, εb, ωp, �) can be deduced as

β(ω, εb, ωp, �) = nω

c
=

√
2ω

2c

√√√√√εb +

√√√√(
− ω2

p

�2 + ω2
+ εb

)2

+ �2ω4
p

ω2(�2 + ω2)2 − ω2
p

(�2 + ω2)
. (4)

The N th-order chromatic dispersions are defined as the
coefficients of the Taylor expansion of β [21], namely,
βN = dβN/dNω. Each order of dispersion βN denotes the ω-
dependent dispersion of its previous order, βN−1. If numerical
derivatives are used to determine the values of βN , one may
find that with the increment of N , the curves of the high-order
βN will quickly become very inaccurate due to the loss of
precision each order. Therefore, here we use analytical deduc-
tions to obtain higher-order dispersion values. In experiments,
the Drude model is known to fit the measured permittivity
very well in the ENZ region [3], and therefore we assume
that the Drude function of Eq. (1) is the exact and actual

permittivity dispersion curve. By symbolic computation, the
Drude-based analytical expressions for arbitrary order N can
be calculated. The variations of β1-β4 for AZO, GZO, and
ITO are plotted in Fig. 2 as examples.

Due to the physical nature of the drastically changing
εr and n near λENZ, and the mathematical nature of the
square-root function in Eq. (4), ENZ TCOs, in theory, can
have infinitive orders of nonzero rapidly varying dispersions.
This dispersion profile is exclusive to ENZ materials in the
ENZ region. For AZO, the maximum value of second-order
dispersion is 0.2167 fs2/nm at 1565.2 nm, which is one
order of magnitude larger than the highly dispersive InP
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FIG. 1. The variations of the (a) real part of the permittivity εr ,
(b) imaginary part of the permittivity εi, (c) real part of refractive
index n, (d) extinction coefficient k, (e) attenuation coefficient α,
and (f) attenuation coefficient in decibel αdB with wavelength. The
solid, dashed, and dot-dashed lines represent AZO, GZO, and ITO,
respectively.

waveguide (∼0.0296 fs2/nm) [28], and several orders of mag-
nitude larger than silica fibers (∼20 ps2/km) [21,27]. The
maximum third-order dispersion is 3.2445 fs3/nm, which is
also significantly larger than silica fibers (∼0.1 ps3/km). It
seems that these enormous values can be beneficial in de-
signing efficient and nanoscale ENZ TCO-based dispersion
compensators by the dispersion management technique [29].
However, the curves of the first four order dispersions in
Figs. 2(a)–2(d) already indicate that in each order, the spec-
tral locations for positive and negative maximum values do
not always coincide and cancel each other out after dis-
persion management for any certain order. Seemingly, this
complex high-order dispersion profile of ENZ TCOs renders
their applications based on dispersion compensation almost
impossible, while an even deeper reason lies behind its im-
practicality.

If higher orders of βN are acquired in this way, it can
be calculated that at 1550 nm, β4 = −324 fs4/nm, β5 =
1.23 × 104 fs5/nm, β6 = 2.29 × 106 fs6/nm, β7 = −9.77 ×
107 fs7/nm, β8 = −3.61 × 1010 fs8/nm, etc. These values
do not decline with the increment of Taylor expansion order
N , indicating that high-order chromatic dispersions defined
at λENZ = 1550 nm are problematic. Previously, the inap-
plicability of the high-order dispersion concepts has existed
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FIG. 2. The variations of (a) first-order dispersion β1, (b) second-
order dispersion β2, (c) third-order dispersion β3, and (d) fourth-
order dispersion β4 with wavelength. The solid, dashed, and
dot-dashed lines represent AZO, GZO, and ITO, respectively.

in metamaterials consisting of effective media or with an
engineered “anomalous” permittivity profile [30–32]. Here,
with analytical calculation, we found that this phenomenon
also exists in ENZ TCOs with Drude-like permittivity at
λENZ. High orders of βN are derived physical parameters
other than the fundamental ones such as permittivity and the
refractive index. This means that by their definitions they
exist, but it is inappropriate to make the approximation in
this case. The above comparisons of βN between ENZ TCOs
with other dielectric materials are therefore also question-
able, as is their application of dispersion compensation. This
poses another potential challenge in experiments because, in
reality, the N th-order dispersions of an optical material or
product are not measured directly, but are calculated. They
are, per se, parameters fitted by theoretical models, compared
and approximated based on the measured results of pulse
shapes, phase shifts, optical time-domain reflectometry, etc.
Therefore, we consider that reporting the inapplicability of
high-order dispersions in the ENZ regions of TCOs in this
case is potentially useful and beneficial. As a result, the per-
mittivity and refractive index of ENZ TCOs are relatively
more reliable parameters to use in modeling. In Secs. III
and IV, their impacts are further discussed under longer-than-
wavelength and subwavelength setups.

III. PULSE PROPAGATION IN WAVEGUIDE LONGER
THAN WAVELENGTH

As mentioned in Sec. II, due to the enormous intrinsic loss,
waveguide lengths longer than 2 μm will result in spectral and
temporal patterns too small to plot alongside the incident pulse
as a comparison. Therefore, in this section, the propagation
of an incident 100-fs full width at half maximum (FWHM)
hyperbolic-secant pulse in a 2-μm-long ENZ AZO waveguide
with an effective area of 0.64 μm2 is discussed. ENZ AZO is
chosen due to its relatively large dispersions and low loss, as
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shown in Fig. 2. Due to the relations between dispersions, loss,
and permittivity (or refractive index) [21], other ENZ TCO
materials are expected to exhibit similar results as AZO. The
behavior of the EM wave in nonlinear media is governed by
Maxwell’s equations:

∇ × H = ∂D
∂t

,

D = ε0E + P,

∇ × E = −∂B
∂t

,

B = μ0H, (5)

where E and H are electric and magnetic fields, and D and B
are electric and magnetic inductions. The vacuum permittivity
ε0 = 8.85 × 10−12 F/m and the vacuum permeability μ0 =
4π × 10−7 N/A2. Considering nonlinearity, the total polariza-
tion P induced by the electric dipoles is

P = ε0(χ (1) · E + χ (2) : EE + χ (3) ... EEE). (6)

Here, χ (2) and χ (3) are second- and third-order susceptibil-
ity, respectively. For the AZO waveguide, the experimental
data [33] of χ (2) = 3.87 × 10−13 m/V and χ (3) = 2.91 ×
10−22 m2/V2 are used. The Maxwell’s Eqs. (5) and (6) can
be solved numerically using the finite-difference time-domain
(FDTD) method. In this work, simulations are run by com-
mercially available software from LUMERICAL.

Alternatively, if a longer-than-wavelength optical struc-
ture is considered, whose length is significantly larger than
the dimensions of its cross section and allows EM waves
to propagate unidirectionally without considering the effects
of multiple reflections and scattering, Eqs. (5) and (6) can
be reduced to the well-received NLSE [21] which possesses
the form

∂A

∂z
+ α

2
A −

∑
N=1

iN+1βN

N!

∂N A

∂tN
− iγ |A|2A = 0, (7)

where A(z, t ) is the slow-varying envelope of the signal, and
γ is the self-phase modulation coefficient which is related
to χ (3) by γ = 3πχ (3)/(2ε0cn2λSeff ) = 3.43 W/m, with Seff

being the effective mode area. The attenuation coefficient
α = 0.0137 nm, as per Sec. II. It has also been discussed
that the high values of high-order dispersions are unusable,
but the existence of the higher-order effects can have a great
impact on the pulse shape and spectrum. Therefore, the same
approach as Ref. [34], i.e., subtracting the first two orders
β0 and β1 from β(ω), is used here to express the disper-
sion terms in Eq. (7). This approach includes all effects
of dispersion at λENZ = 1550 nm without high-order Tay-
lor expansion: β̃(ω) = β(ω) − (ω − ω0)β1 − β0, where β0 =
1.5519 × 10−17 nm, and β1 = 0.0155 fs/nm.

The incident light for the Maxwell’s Eqs. (5) is a
100-fs hyperbolic-secant pulse with a rapidly oscillating elec-
tric field. It has the form u(0, t ) = A(0, t ) cos(ω0t ), where
A(0, t ) = √

P0sech(t/T0) is the exact envelope mentioned in
Eq. (7) and the very input signal for the NLSE. ω0 is the
corresponding angular frequency of the center wavelength,
and P0 is the peak power which is set to P0 = |β2|/γ T 2

0 in
order to maintain a soliton state at the moment of incidence. T0
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FIG. 3. Comparison of pulse propagation results in an ENZ AZO
waveguide obtained from the NLSE and FDTD. The (a) linear and
(c) logarithmic scales of the temporal shapes; the (b) linear and
(d) logarithmic scales of the spectra. The dashed lines denote the
envelope of the slow-varying input signal in (a) and (c), and its
corresponding spectrum in (b) and (d). The solid and dot-dashed lines
are results from FDTD and NLSE, respectively.

is the temporal width at 1/e intensity. The FWHM TFWHM =
2 ln(1 + √

2)T0 ≈ 1.763T0 = 100 fs. For this width, the cor-
responding P0 = 17.48 kW, which is realizable by solid-state
lasers. The propagation results obtained by Maxwell’s equa-
tions (via FDTD) and the NLSE are shown in Fig. 3 as solid
and dot-dashed lines, respectively.

As can be seen from Figs. 3(a) and 3(b), the 100-fs pulse
suffers from significant loss. The linear loss is predicted to
be ∼99.82%, with only ∼0.18% of energy transmitted, based
on the α value at 1550 nm from Sec. II. In Fig. 3, the results
from NLSE agree with this linear loss prediction because the
corresponding αdB value at 1550 nm is used as a global value
for all considered wavelengths in the NLSE simulation. How-
ever, in Figs. 1(d)–1(f), the loss is not uniform across the ENZ
region. The average loss in 1300–1700 nm can be estimated
by ᾱdB = ∫

αdB(λ)dλ/�λ = 0.0124 dB/nm, which is smaller
than the value at 1550 nm, while NLSE assumes the same loss
across the considered range. Also, Eq. (7) only considers the
effects of χ (3) in the form of Kerr nonlinearity, and it does
not take into account the effects of sum-frequency generation
of χ (2). Therefore, the energy redistribution processes are
different between the results of NLSE and FDTD. This means
that in this case, in the ENZ region, it appears that NLSE tends
to overestimate the total loss, while FDTD yields a loss that
is smaller than linear prediction, and their difference is within
one order of magnitude. Due to the discrepancy of these two
methods in handling loss, in other scenarios (not limited to
the case presented here), the NLSE can either overestimate or
underestimate the actual loss when the loss curve is not flat in
the considered region. In Figs. 3(c) and 3(d), the two methods
maintain the typical “triangular” feature of hyperbolic-secant
function in the logarithmic scale, but the central wavelength of
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the NLSE result blueshifts to 1549 nm. These results indicate
that although, with a complex permittivity profile, ENZ TCOs
might be able to support pulse propagation, its significantly
high loss greatly limits its application in long waveguide
structures.

Conclusively, with a complex dispersion and attenuation
profile, the NLSE results are generally similar to full Maxwell
simulations, which might provide fast evaluations because
the FDTD method is very time consuming. However, the
latter directly take complex permittivity into its calculations,
which inherently includes possible leakage, scattering, and
all orders of dispersions and attenuation values for different
wavelengths, whose results are, in theory, closer to reality. Al-
though the NLSE is sufficiently accurate for normal dielectric
waveguide structures, it is not recommended for the simula-
tion of ENZ TCO materials with complicated dispersion and
attenuation profiles.

IV. PULSE INTERACTIONS WITH
SUBWAVELENGTH STRUCTURES

In the regime of nanophotonics, especially in ENZ materi-
als, the multiple reflections and scattering of light can play a
big role in forming linear and nonlinear dynamics. Therefore,
in subwavelength structures, the NLSE is no longer valid due
to its approximation limits. Therefore, under the subwave-
length setup, all calculations should be carried out by full
Maxwell simulation. From previous works [11], one knows
that complex spectral and temporal patterns can be created
in subwavelength ENZ TCO slabs, which are mixed results
of multiple reflections, scattering, and the interplay between
high dispersion and high nonlinearity. However, the impact of
the temporal widths of ultrashort pulses has not been reported.

In this section, the interactions of a 100-fs and a 10-fs
hyperbolic-secant pulse with a 250-nm-thick ENZ AZO slab
are analyzed. The thickness of the slab is ∼1/6 of the incident
wavelength and the cross section of the slab is 800 × 800 nm.
As an attempt to maintain the pulse shape, the fundamental
soliton condition in Sec. III is used, P0 is 17.48 kW for the
100-fs pulse and 1.75 MW for the 10-fs pulse, which are all
possible with the state-of-the art solid-state lasers [12,17,21].
The pulses are launched into the slab along the 250-nm-
long axis [shown as the z axis in Figs. 4(e) and 4(f)] and
the incident end is marked “0 nm,” while the exit end is
marked “250 nm.” Due to the existence of potential reflec-
tions, scattering, and resonance, the temporal and spectral
profiles that are recorded are a combined result of different
processes. The temporal and spectral profiles for the 100-fs
pulse are plotted in Figs. 4(a) and 4(c), while those for the
10-fs pulse are plotted in Figs. 4(b) and 4(d). To investigate
the differences between the two interaction processes, the
schematic diagrams of the normalized electric-field distri-
bution patterns obtained from the trailing-edge wavelengths
of the corresponding pulses are demonstrated in Figs. 4(e)
and 4(f), respectively, with the green rectangles marking the
boundary of the subwavelength ENZ AZO slab, and the inci-
dent direction along the z axis from z = 125 to z = −125. The
reasons for studying the electric-field distributions from the
pulses’ spectral edges are that they are pulse-width related and
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FIG. 4. Comparison of the subwavelength ENZ AZO slab in-
teractions with 100-fs and 10-fs pulses. (a), (c) The temporal and
spectral profiles of the 100-fs pulse. (b), (d) The corresponding
diagrams of the 10-fs pulse. In (a)–(d), the blue lines denote the
profiles obtained at the incident end, and the red lines are the profiles
obtained at the opposite end. (e), (f) The schematic diagrams of
the electric-field distribution from the pulses’ spectral edges for the
100-fs and 10-fs pulse, respectively. The green dashed rectangles in
(e) and (f) mark the boundary of the ENZ AZO slab.

the 10-fs group exhibits a distinctive pattern that is not found
in the 100-fs group by adjusting the wavelength of interest.

Comparing with the 10-fs pulse, the 100-fs pulse acts like a
pseudo-cw wave. As can be seen from Figs. 4(a) and 4(c), both
the 0-nm and the 250-nm temporal and spectral profiles do
not show significant change. The temporal and spectral peak
power is larger at the 250-nm than at the 0-nm mark due to
the on-site reflection at the AZO-air interface (the reflected
waves are attenuated and become much weaker when they
return to the 0-nm mark). From Fig. 4(e), the EM energy prop-
agates around the ENZ AZO slab, with relatively low portion
entering and interacting with the material. The electric-field
distribution is relatively uniform and even. The 0-nm mark
corresponding to (y, z) = (0, 125) in Fig. 4(e) is at the in-
ner edge of the wrap-around electric field, whose strength is
apparently weaker than the 250-nm mark (y, z) = (0,−125),
which is located at the middle to the outer edge of the electric
field. Also, at the 250-nm mark, there exists a very small
area of energy localization, indicating some type of resonance.
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In subwavelength plasmonic ENZ materials, it is common
to find LSPR at the plasma-air interfaces. At the nanoscale,
the wavelength and strength of the LSPR are related to the
material’s shape, size, and nanostructure composition (dopant
concentration), and the ambient media’s optical properties
[1,2,35–37]. Particularly, in gold nanorods and silver nanopar-
ticles, the LSPR can be related to wavelength and bandwidth
[38,39]. A similar phenomenon is suspected in ENZ TCOs,
and the electric-field energy localization at the 250-nm mark
in Figs. 4(a) and 4(c) might be LSPR, but it is not very
significant in Fig. 4(e).

In the 10-fs pulse case, the presented interaction patterns
are completely different. From Figs. 4(b) and 4(d), multiple
peaks appear alongside the main pulse, both in temporal and
spectral profiles. This might be due to the interplay between
higher-order dispersions and nonlinearity and, considering the
high linear reflection [11] in longer wavelengths, the EM
waves recorded at the 0-nm mark generally have a longer
optical distance, hence the accumulated effects of frequency
conversion and the splitting of the main pulse lead to the
stronger secondary peak. The changes in spectral widths are
due to redistribution of energy and adiabatic frequency con-
version in the ENZ region below and above the band gap
[40]. The electric-field distribution in Fig. 4(f) shows mul-
tiple resonances at the four surfaces and corners, with the
250-nm mark (y, z) = (0,−125) being the strongest. These
resonances are clearly the LSPRs, and their incident direc-
tion dependency indicates that the excited patterns resemble
the situation in a Kretschmann-Raether configuration. The
stronger LSPR at the 250-nm mark than at the 0-nm mark
explains the corresponding higher power in Figs. 4(b) and
4(d). In reality, considering the ultrashort duration of the
10-fs pulse compared to the 100-fs one, we speculate that
another physical process might be involved which could cause
different types of pulse-matter interactions: it is called a “non-
thermal process” [41–43], where the Drude model is still able
to describe the complex permittivity of the material, but the
lattice temperature does not change under the 10-fs pulse
excitation. Only the free carrier density around the Fermi
level is redistributed. This circumstance is due to the longer
relaxation time than the pulse duration. Normally, after the
free carriers are elevated to the conduction band via intraband
absorption [40,44], they will relax by a scattering processes of
∼100 fs [40,45], which is much longer than the 10-fs pulse.
This is why the actual pulse-matter interactions of the 10-fs
and 100-fs pulse might be significantly different.

Additional simulations show that if the P0 value for the
100-fs pulse (17.48 kW, 100 times weaker) is chosen for
the 10-fs pulse regardless of the fundamental soliton condi-
tion, the interaction pattern (electric-field distribution pattern)
remains basically the same with Fig. 4(f), except for the 100-
times-weaker resonance intensity. This indicates that the enor-
mous difference between the 100-fs and the 10-fs results is
related to the temporal width of the pulse, not the peak power.

In conclusion, the interaction dynamics for 100-fs and
10-fs pulses are totally different. The 100-fs pulse induced
a more evenly distributed electric field and a significantly
weaker resonance. The temporal and spectral profiles remain
almost unchanged. On the other hand, the 10-fs pulse shows a
significant change in both temporal and spectral profiles, and

it excites a much stronger LSPR at the exit end of the slab
by a different physical process. These results might indicate
that besides shape, size, and composition, the temporal width
of the incident pulse can be another determining factor of the
LSPR in ENZ TCOs.

V. CONCLUSIONS

In this work, a comparative study on the N th-order chro-
matic dispersions and the interactions with ultrashort pulses
in ENZ TCOs is presented. Exclusive to ENZ plasmonic
materials, ITO, GZO, and AZO exhibit rapidly varying and
unprecedentedly large N th-order dispersions in the ENZ re-
gion. However, resembling the situations in effective media,
the concepts of the high-order dispersions are found to be
inapplicable in the proximity of the ENZ wavelength for both
physical and mathematical reasons, and the uses of complex
permittivity and refractive index in describing the dispersion
of ENZ TCOs are highly advisable.

Subsequently, the influences of the complicated and novel
dispersion profile on ultrashort pulse interactions under dif-
ferent setups are discussed. A comparison is made between
propagation patterns in an ENZ AZO waveguide obtained
from the NLSE and Maxwell’s equation by the FDTD method.
It is found that the NLSE is not suitable for modeling such
materials due to its incapability to include the wavelength
dependency of chromatic dispersions and attenuation, which
are not negligible in ENZ TCO materials. Also, modeling
subwavelength materials is beyond the approximation limit of
the NLSE; therefore, considering multiple reflections, scatter-
ing, and resonance, full Maxwell simulations using the FDTD
method are performed for such structures.

Another comparison is made between interactions with
100-fs and 10-fs ultrashort pulses in a subwavelength ENZ
AZO slab. Results show that the interaction patterns and
mechanisms are fundamentally different, and the 100-fs pulse
acts like a pseudo-cw wave with a more evenly distributed
electric field and a significantly weaker resonance. The tem-
poral shape and the spectrum of the shorter 10-fs pulse are
altered dramatically, and greater LSPR can be excited, which
might reveal the temporal-width dependency of the LSPR in
ENZ TCO nanostructures.

The issues and problems discussed in this work regarding
the inapplicability of higher-order dispersions and ultrashort
pulse interaction modeling might also be applicable in metal-
insulator multilayered ENZ materials [46,47], for they are
a combination of effective media and nanostructures. The
results of this work can be beneficial in broadening the
understanding of light-matter interaction dynamics in ENZ
materials.
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