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Optical simulation of atomic decay enhancement and suppression
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We discuss the decay of a two-level system into an engineered reservoir of coupled harmonic oscillators
in the single-excitation manifold and propose its optical simulation with a homogeneous chain of coupled
waveguides where individual elements couple to an external waveguide. We use two approaches to study the
decay of the optical analog for the probability amplitude of the two-level system being in the excited state. A
Born approximation allows us to provide analytic closed-form amplitudes valid for small propagation distances.
A Fourier-Laplace approach allows us to estimate an effective decay rate valid for long propagation distances.
In general, our two analytic approximations match our numerical simulations using coupled mode theory and
show non-Markovian decay into the engineered reservoir. In particular, we focus on two examples that provide
enhancement or suppression of the decay rate using flat-top or Gaussian coupling distributions.
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I. INTRODUCTION

Engineered periodic photonic structures provide a robust
and highly controllable platform to emulate a wide variety of
quantum phenomena related to matter-radiation interactions
using classical light [1,2]. For example, there exist proposals
for photonic analogies to Bloch oscillations [3–8], quantum
collapses and revivals [9,10], atom-strong-field interactions
[11–13], Anderson localization [14–16], and various models
of the Jaynes-Cummings type [17–19] among others. Such
proposals use classical light propagating through arrays of
waveguides described by coupled mode theory [20–22] and
are amenable to experimental realization via laser inscrip-
tion techniques [23–25]. These optical structures offer an
immediate and accessible platform to study and visualize new
characteristics of their quantum counterparts.

The decay of a quantum emitter coupled to a continuum
is an interesting scenario concerning the interaction of matter
and radiation. The spin-boson model [26,27] is a well-known
example of this:

Ĥ =
∫ ∞

0
dω {ωâ†(ω)â(ω) + g(ω)[σ̂+â(ω) + σ̂−â†(ω)]}

+ 1

2
ω0σ̂z. (1)

It models a single two-level system, described by Pauli ma-
trices σ̂z and σ̂± and frequency ω0, linearly coupled with
strength g(w) to an environment composed of a continuum
of harmonic oscillators, described by creation (annihilation)
operators â† (â) and frequency ω. This is the open quantum
system’s workhorse to study the effects of decoherence and
non-Markovian dynamics [28,29]. The fact that it is possible
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to discretize and unfold the spin-boson model into that of
a two-level system interacting with one end of a chain of
coupled harmonic oscillators [30–33],

Ĥ = 1

2
ω0σ̂z + g(σ̂+â0 + σ̂−â†

0)

+
∞∑
j=0

[ω j â
†
j â j + γ j (â

†
j â j+1 + â j+1â†

j )], (2)

opens the door for the optical simulation of decay from an
emitter into engineered environments using, for example, pho-
tonic lattices. It allows the visualization and study of effects
predicted to arise from impurities embedded within the geo-
metric structure of atoms in a crystal [34,35], for example, the
theoretical and experimental proposals to realize bound states
[36,37], decay control [38,39], or Zeno dynamics [40–42].

Here, we study the decay of an emitter into an engineered
reservoir using an optical analog for a two-level system cou-
pled to the continuum of states given by a chain of identical
oscillators [43,44]. For the sake of simplicity, an external
waveguide takes the role of the two-level emitter and we
use the Bloch states of a chain of homogeneously coupled,
identical waveguides as the optical analog of the continuum.
We control the placement of some of the chain waveguides
around the external waveguide to simulate the interaction
between emitter and continuum with engineered coupling
profiles leading to non-Markovian decay where we observe
enhancement or suppression of the decay. In Sec. II, we de-
scribe our quantum model and the continuum of states in the
chain. Then, in Sec. III, we introduce our optical analogy
using coupled mode theory and present two approaches to
understand its dynamics. One uses the Born approximation
to calculate short-distance propagation of light in the sys-
tem. The other uses Fourier-Laplace transform and yields
an analytic expression for the leading effective decay rate.
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In Sec. IV, we compare our analytic predictions with nu-
merical experiments to good agreement and demonstrate
enhancement and suppression of the effective decay rate using
two coupling distributions: flat-top and Gaussian. In addition,
we show that this phenomenon is robust against noise. Fi-
nally, we summarize our findings and state our conclusions
in Sec. V.

II. QUANTUM OPTICS MODEL

We focus on the analysis of a two-level system (TLS) inter-
acting with coupled resonator optical waveguides (CROW):

Ĥ =
∞∑

j=−∞
[γ (â†

j â j+1 + â j+1â†
j ) + g j (σ̂+â j + σ̂−â†

j )] + δσ̂z,

(3)

where the resonators have identical frequency, ω, and creation
(annihilation) operators, â†

j (â j). We consider a homogeneous
inter-resonator coupling strength, γ , and a variable coupling
strength between the jth resonator and the TLS given by g j .
This effective Hamiltonian rests in a frame defined by the
total excitation number N̂ = ∑

j â†
j â j + σ̂z/2 rotating at the

frequency of the CROW resonators ω, providing an effective
detuning, δ = (ω0 − ω)/2.

As we are interested in the optical simulation of this quan-
tum model, we study its dynamics in the single-excitation
manifold,

|ψ (t )〉 = Eα (t )|e, 0〉 +
∫ π

−π

dφ Eφ (t )|g, φ〉, (4)

where |e, 0〉 has the TLS in the excited state and the CROW
in vacuum and |g, φ〉 has the TLS in the ground state and the
CROW in a single-excitation Bloch state,

|φ〉 = 1√
2π

∞∑
k=−∞

eiφk|k〉, (5)

where |k〉 has a single excitation in the kth resonator and the
rest in vacuum. Thus, we obtain equations of motion,

i∂tEα (t ) = δEα (t ) +
∫ π

−π

dϕ G∗(ϕ)Eϕ (t ), (6)

i∂tEφ (t ) = �(φ)Eφ (t ) + G(φ)Eα (t ), (7)

for the probability amplitude of finding the excitation in the
TLS, Eα , or in the CROW, Eφ . These amplitudes are given in
terms of the effective dispersion relation for the Bloch modes
and their coupling strength to the TLS,

�(φ) = 2γ cos φ, (8)

G(φ) = 1√
2π

∞∑
k=−∞

gkeiφk, (9)

in that order. It is straightforward to argue an optical analogy
using classical fields in a whispering gallery mode CROW
where an extra resonator is placed close to the CROW to act
as the classical analog of the TLS.

III. COUPLED MODE THEORY MODEL

Here, our interest lies in the optical simulation of the quan-
tum optical system through arrays of evanescently coupled
waveguides. The TLS is simulated by a single waveguide
where g j denotes its coupling to the jth waveguide in the
chain. The CROW is simulated by an infinite array of identical
waveguides with homogeneous first-neighbors coupling γ .
The detuning δ = β0 − β is the difference between the effec-
tive propagation constants of the external waveguide and those
in the homogeneous chain. A coupled mode theory analysis
for these photonic lattices provides equivalent equations of
motion,

−i∂zEα (z) = δEα (z) +
∫ π

−π

dϕ G∗(ϕ)Eϕ (z), (10)

−i∂zEφ (z) =�(φ)Eφ (z) + G(φ)Eα (z), (11)

for the modal field amplitudes in the external waveguide and
the Bloch modes in the homogeneous chain, Eα and Eφ . These
modal field amplitudes play the analog role of probability
amplitudes in the quantum model. We favor photonic lattices
as laser writing techniques allow for control of refractive
index and placement position of individual waveguides in
three dimensions [25,45]. It may be possible to complicate
an experimental realization to address, for example, engi-
neered dispersion relations by treating inhomogeneous chains
or complex coupling patterns that depend on the propagation
direction.

Here, we are interested in simulating the decay of an
atomic excitation into an engineered reservoir. In order to
provide an analytic guide, we follow an approach similar to
that in the study of atomic decay into an oscillator reservoir.
First, we take the equation for the optical analog of the field
probability amplitude and integrate it:

Eφ (z) = ei�(φ)zEφ (0) + iG(φ)
∫ z

0
dζ ei�(φ)(z−ζ )Eα (ζ ). (12)

Then, we substitute it into the equation for the optical analog
of the TLS excited state probability amplitude:

∂zEα (z) = iδEα (z) + i
∫ π

−π

dϕ G∗(ϕ)ei�(ϕ)zEϕ (0)

−
∫ π

−π

dϕ

∫ z

0
dζ |G(ϕ)|2ei�(ϕ)(z−ζ )Eα (ζ ). (13)

For the sake of simplicity, we focus on an initial condition set
where the excitation starts at the waveguide playing the role
of the TLS,

Eα (0) = 1 and Eφ (0) = 0. (14)

Under these conditions and upon substitution of all the in-
volved parameters, we obtain an integrodifferential equation,

∂zEα (z) = −
∞∑

j,k=−∞
i|k− j|g∗

jgk

∫ z

0
dζ J|k− j|[2γ (z − ζ )]Eα (ζ )

+ iδEα (z), (15)

in terms of a sum of Bessel functions of the first kind weighted
by a product of the coupling strength between individual
waveguides in the chain and the external waveguide.
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FIG. 1. (a) Photonic lattice configuration, (b) coupling strength distribution between individual chain elements and the external waveguide
in units of the chain coupling constant gk/γ , and (c) effective coupling strength between the external waveguide to the Bloch modes of the
homogeneous chain in units of the chain coupling constant G(φ)/γ .

The standard method to solve integrodifferential equations of this type is, first, to solve for the analog of the TLS state
probability amplitude,

Eα (z) = eiδz

⎧⎨
⎩1 −

∞∑
j,k=−∞

i|k− j|g∗
jgk

∫ z

0
dζ1

∫ ζ1

0
dζ2 e−iδζ1 J|k− j|[2γ (ζ1 − ζ2)]Ea(ζ2)

⎫⎬
⎭. (16)

Then, iterate the integral term until the solution converges. Here, we restrict ourselves to the scenario where the detuning in the
individual propagation constants is larger than the coupling strength between waveguides in the chain and the external waveguide
δ > gj . This is an analogy to Born weak-coupling approximation in the quantum system. It yields an approximate solution,

E (1)
α (z) ≈ eiδz

⎧⎨
⎩1 −

∞∑
j,k=−∞

i|k− j|g∗
jgk

∫ z

0
dζ1

∫ ζ1

0
dζ2 eiδ(ζ2−ζ1 )J|k− j|[2γ (ζ1 − ζ2)]

⎫⎬
⎭, (17)

where it is not possible to perform Markov approximation in
the integral term as it is usually done in the standard atomic
decay scenario. Nevertheless, it is possible to solve the in-
tegral on the right-hand side of this equation if we expand
the exponential in its Maclaurin series. This result is valid
for small propagation values and it is hard to extract some
physical insight from its closed form. Thus, we do not write
it here. Instead, we discuss another approach to the solu-
tion that provides us with an approximation to the effective
decay rate.

FIG. 2. Optical analog for the probability of finding the TLS
in the excited state |Eα (z)|2 (a) on-resonance δ = 0 and (b) off-
resonance with δ = 0.5γ . We show coupled mode theory results
(black solid line), numerical solution to the coupled integrodiffer-
ential set (completely overlapped with the black solid line), analytic
solution using the Born approximation E (3)

α (red dashed line), and
analytic solution using the Fourier-Laplace approach (cyan dotted
line) providing the field amplitude decay rates (a) � = 2 × 10−2 γ

and (b) � = 2.0656 × 10−2 γ .

Let us start from the differential set in Eqs. (10) and (11)
and perform a Fourier-Laplace transform [46],

f̃ (ζ ) =
∫ ∞

0
e−iζ z f (z)dz, (18)

that allows us to write the solution for the analog of the TLS
state probability amplitude under the atom decay conditions
in Eq. (14),

Ẽα (ζ ) = −i

ζ − δ − �(ζ )
, (19)

where we use the shorthand notation for the coupling function

�(ζ ) =
∫ π

−π

|G(φ)|2
ζ − �(φ)

dφ

= −i
∞∑

j,k=−∞

g jg∗
k√

4γ 2 − ζ 2
e−i| j−k| arccos ζ

2γ . (20)

It is possible to calculate the inverse Fourier-Laplace trans-
form,

f (z) = 1

2π

∫ ∞+iε

−∞+iε
eiζ z f̃ (ζ )dζ , (21)

using the formula [47]

Eα (z) = − 1

π

∫ 2γ

−2γ

eiζ zIm

[
1

ζ − δ − �(ζ )

]
dζ

+ i2
∑

k

Res(ζα; zk ), (22)
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FIG. 3. Same as Fig. 1 for two-element [panels (a)–(c)] and four-element [panels (d)–(f)] flat-top coupling distributions.

where the first term is an integral around the branch cut de-
fined by the square root in the auxiliary function �(ζ ) and the
second is the sum of residues for the αth pole on the real line
outside the branch cut. As the detuning δ is real, the imaginary
part of the coupling �(ζ ) will rule the decay of the analog
of the TLS excited state probability amplitude and we can
approximate

Eα (z) = e−�zA(z), with � = Im[�(δ)]. (23)

These results, the Born approximation for small propagation
distances and the Fourier-Laplace method to approximate the
effective decay, allow us to discuss particular examples where
the decay can be enhanced or suppressed.

IV. ENHANCEMENT AND SUPPRESSION OF DECAY

In order to provide practical examples, we consider a
host of single-mode waveguides with circular profile in the
weak-guiding regime. For the homogeneous chain, we use
cores with the refractive index n(ch)

co = 1.4479 and the radius
r (ch)

co = 4.5 μm embedded in cladding with the refractive in-
dex ncl = 1.4440. Each core supports a single LP01 mode at
wavelength λ = 1550 nm, the telecommunications C band.
For the waveguides in the homogeneous chain, we set the
core to core separation at dch = 15 μm. This yields a chain
effective propagation constant and coupling strength of β =
5.85975 × 106 rad/m and γ = 256.635 rad/m, in that order.
Our numerical coupled mode theory simulations use a homo-
geneous chain of 501 elements where the last 20 waveguides
at each end are lossy in order to suppress back-reflections due
to finite size.

We focus on two types of coupling strength distributions,
flat-top and Gaussian, between individual waveguides of the
homogeneous chain and the external waveguide. These are
simple to realize in laser-written photonic lattices. For each
coupling distribution, we study on- and off-resonant scenar-
ios. In the former, the external waveguide is identical to
those in the chain. In the latter, the external waveguide has

a refractive index of n(e)
co = 1.44794 and a radius of r (e)

co =
4.5 μm that yield an effective propagation constant of β0 =
5.859 88 × 106 rad/m and a detuning of δ = 0.5 γ .

First, we consider a flat-top distribution for the coupling
strengths,

gk = g
qmax∑

p=qmin

δk,p, (24)

where the homogeneous chain elements from position qmin to
qmax form a circle of constant radius r = 20.044 μm around

FIG. 4. Optical analog for the probability of finding the TLS in
the excited state |Eα (z)|2 for the two-element [panels (a) and (b)]
and four-element [panels (c) and (d)] flat-top coupling configurations
with on-resonance [panels (a) and (c)], with δ = 0, and off-resonance
[panels (b) and (d)], with δ = 0.5 γ . We show coupled mode theory
results (black solid line), numerical solution to the coupled integrod-
ifferential set (completely overlapped with black solid line), analytic
solution using the Born approximation E (3)

α (red dashed line), and
analytic solution using the Fourier-Laplace approach (cyan dotted
line) providing the field amplitude decay rates (a) � = 4 × 10−2 γ ,
(b) � = 5.1640 × 10−2 γ , (c) � = 0, and (d) � = 1.2910 × 10−2 γ .
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FIG. 5. Same as Fig. 1 for Gaussian coupling distribution.

the external waveguide [Figs. 1(a), 3(a), and 3(d)]. This yields
a constant coupling strength of g = 0.2 γ . The scenario where
just one waveguide from the homogeneous chain couples to
the external waveguide belongs here [Figs. 1(a) and 1(b)].
This provides an optical simulation of a TLS coupled to an en-
gineered reservoir such that the coupling strength is constant
for all continuous modes [Fig. 1(c)]. The constant coupling
strength G(φ) allows the use of Markov approximation in the
resonant case to calculate the decay rate � = g2/(2γ ) = 2 ×
10−2 γ [Fig. 2(a)], which is in accordance with that obtained
in the Fourier-Laplace approach,

�(δ) = g2√
4γ 2 − δ2

. (25)

In this scenario, the off-resonant detuning in the propagation
constants induces a slight increase in the effective-field ampli-
tude decay rate � = 2.0656 × 10−2 γ [Fig. 2(b)].

Coupling more elements from the homogeneous chain to
the external waveguide [Figs. 3(a) and 3(b) and Figs. 3(d)
and 3(e)] simulates a reservoir whose effective coupling does
not fulfill the requirements of the Markov approximation
[Figs. 3(c) and 3(f)]. The decay is no longer Markovian,
still, it is possible to use the Born approximation to good
agreement in both on- and off-resonance scenarios (insets in
Fig. 4). For two coupled elements, we find an enhancement
of the decay rate, compared to the single-waveguide coupling
scenario, with the addition of a high-frequency oscillation,
� = 4 × 10−2 γ in Fig. 4(a) and � = 5.1640 × 10−2 γ in
Fig. 4(b). For four coupled elements, we find suppression of
the decay rates, � = 0 in Fig. 4(c) and � = 1.2910 × 10−2 γ

in Fig. 4(d).
Second, we implement a Gaussian distribution for the cou-

pling strengths between elements of the homogeneous chain

FIG. 6. Same as Fig. 3 for couplings given in Fig. 4. The field
amplitude decay rates calculated with the Fourier-Laplace approach
are (a) � = 4.7591 × 10−4 γ and (b) � = 3.0660 × 10−3 γ .

and the external waveguide,

gk = ge−( k−p0
σ )

2

, (26)

where the distribution is centered at the p0th waveguide in
the chain and its standard deviation is σ . For the sake of
simplicity, we use the zeroth waveguide as the center of the
distribution. The homogeneous chain elements that couple to
the external waveguide are distributed between the auxiliary
circle defined above and a second auxiliary circle of radius
r = 29.7087 μm [Fig. 5(a)]. This provides us with couplings
following a Gaussian distribution [Fig. 5(b)] with the stan-
dard deviation σ = 2.31105 that simulates a reservoir whose
effective coupling follows Fig. 5(c). Again, the decay is non-
Markovian [Fig. 6] and the decay rate is suppressed compared
to the single-waveguide coupling case, � = 4.7591 × 10−4 γ

in Fig. 6(a) and � = 3.0660 × 10−3 γ in Fig. 6(b).
Disorder in photonic structures leads to effects like An-

derson localization of light [48–50] or cross-talk suppression
[51]. Such disorder may arise from manufacturing cir-
cumstances, for example, the step precision in the motor
controlling laser writing stages [52]. For the sake of com-
pleteness, we study the effect of random fluctuations in our
proposal. In particular, we add z-dependent random fluctua-
tions to all the couplings in the chain using a spatial frequency
of 81.6895 m−1 and a maximum fluctuation amplitude of 9%,
related to deviations of up to 250 nm from the ideal position
of the waveguides [52]. Figure 7 shows the ideal evolution

FIG. 7. Same as Fig. 4. The black solid line shows the ideal
evolution while the light blue region delimits one standard deviation
above and below the average of 75 cases with up to 9% random
fluctuations in the coupling strength.
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FIG. 8. (a) FEM simulation of a normal mode and (b) compari-
son between effective mode propagation constants from CMT (solid
blue dots) and FEM (empty red triangles) for the Gaussian profile in
Fig. 5(a), with a total of 70 waveguides.

from Fig. 4 and compares it with the region delimited by
one standard deviation above and below the average for the
evolution of 75 independent cases with such random fluc-
tuations. Decay enhancement or suppression remains even
for individual realizations including this type of fabrication
imprecision.

In addition to the comparison between our analytic ap-
proximations and numerical results, we compared between the
normal modes calculated using coupled mode theory (CMT)
and a finite element model (FEM) simulation of a smaller
system, with only 70 waveguides (see Fig. 8). We found good
agreement between these two approaches further informing
ourselves on the validity of our parameter values.

V. CONCLUSION

We study the decay of a two-level system into an engi-
neered continuum reservoir produced by an infinite chain of
oscillators. In order to propose an optical analogy using a
photonic lattice, we restrict ourselves to the single-excitation

manifold. The field amplitude in an external waveguide plays
the role of the probability amplitude to find the two-level
system in the excited state. The field in a chain of homoge-
neously coupled waveguides plays the role of the two-level
system excitation decaying into an engineered continuum
with a nonlinear dispersion relation. In addition, we control
the placement of the waveguides in the homogeneous chain
with respect to the external one to produce different coupling
profiles that simulate different coupling profiles between the
two-level system and the engineered continuum. Our optical
simulation may be experimentally realized by arrays of cou-
pled laser inscribed waveguides.

We explore different coupling profiles. In particular, we
discuss flat-top and Gaussian distributions and find non-
Markovian decay that leads to enhancement or suppression
of the decay rate compared to standard Markovian decay. We
implement two analytic approaches that allow us to calculate
short-distance propagation and long-distance effective decay
rate. We validate these approximations with coupled mode
theory numerical simulations for parameters from telecommu-
nication C-band experiments.

Exploring the interaction of a quantum system with its
environment is a demanding task as these systems are hard to
realize in a controlled manner. Optical analogs that simulate
reservoir and coupling engineering may aid in this explo-
ration, as they are easier to implement and control in the
laboratory, and can provide a platform to benchmark models
for system-environment dynamics.
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