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Generation and decoherence of soliton spatial superposition states
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Due to their coherence properties, dilute atomic gas Bose-Einstein condensates seem a versatile platform for
controlled creation of mesoscopically entangled states with a large number of particles and allow controlled
studies of their decoherence. However, the creation of such states intrinsically involves many-body quantum
dynamics that cannot be captured by mean-field theory and, thus, invalidates the most common methods for the
description of condensates. We follow up on a proposal in which a condensate cloud as a whole is brought into
a superposition of two different spatial locations by mapping entanglement from a strongly interacting Rydberg
atomic system onto the condensate using off-resonant laser dressing [Phys. Rev. Lett. 115 040401 (2015)].
A variational many-body ansatz akin to recently developed multiconfigurational methods allows us to model
this entanglement mapping step explicitly, while still preserving the simplicity of mean-field physics for the
description of each branch of the superposition. In the second part of the article, we model the decoherence
process due to atom losses in detail. Altogether we confirm earlier estimates that tightly localized clouds of
400 atoms can be brought into a quantum superposition of two locations about 3 μm apart and remain coherent
for about 1 ms.
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I. INTRODUCTION

Ever since the formulation of quantum mechanics in the
1920s, the quantum to classical transition has been the subject
of intense study [1–6]. One apparent difference between the
quantum and the classical realms is the existence of quantum
coherent superposition states in the former. Decoherence can
explain within the usual framework of quantum mechanics
why these are typically not observed for macroscopic systems,
whereas the root cause for observing a definite measurement
outcome is still not satisfactorily explained within the theory
[1]. This motivates the formulation of collapse models [7,8],
that explore if additional physical laws cause apparently dif-
ferent behavior of quantum and classical objects.

The unsatisfactory understanding of the quantum to clas-
sical transition motivates an experimental drive to bring ever
larger controllable quantum systems into superposition states,
to check whether they adhere to standard decoherence theory
and, hence, to the usual framework of quantum mechanics or
whether new physics comes into play. Although the creation
of truly macroscopic quantum systems remains elusive [9],
mesoscopic settings that are pushing towards this frontier in-
clude matter wave interference in C60 molecules [10], organic
molecules [11,12] or superposition of currents in supercon-
ductors [13]. In atomic systems, superposition states involving
up to 20 qubits have been realized for trapped neutral atoms
[14] and up to 14 qubits for trapped ions [15,16]. There are
further proposals to enlarge this pool of candidate platforms
for the exploration of the quantum classical boundary through
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the generation of mesoscopically entangled states in cavity
optomechanical systems [17], photon fields in a Kerr medium
[18], Rydberg dressed atom clouds [19], and in Bose-Einstein
condensates (BECs) [20–26]. Finally, mesoscopic superposi-
tion states also have technological applications in quantum
metrology where they allow measurements beyond the stan-
dard quantum limit [27].

Here we explore a scheme to generate quantum superpo-
sition state of a gaseous BEC that was proposed in Ref. [22]
in more detail where a mesoscopic superposition state of a
matter wave bright soliton [28–43] would be prepared by first
entangling two control atoms exploiting the Rydberg block-
ade [44–47] and then mapping this entanglement onto the
bright soliton using Rydberg dressed long-range interactions
[22,48–56]. Initially, a single stationary bright soliton forms
a quasi-one-dimensional (1D) BEC flanked by two control
atoms trapped on either side of it. One then attempts to opti-
cally excite these control atoms into a Rydberg state. Since the
interaction blockade prohibits simultaneous excitation of both
control atoms, this generates an entangled Bell state where
either the one or the other control atom has been excited. Only
at this point is the entire soliton subjected to Rydberg dressing
such that it is accelerated away from the excited control atom.
Since the system was in a superposition state of either control
atom excited, the soliton will evolve into a superposition state
of different velocities and later different positions.

The first aspect of the above scheme that we describe
here in more detail, is the transfer of entanglement from
the control atoms onto the mesoscopic BEC bright soliton.
Once the latter is in a genuine entangled state, it can no
longer be dealt with using mean-field theory in which all the
condensate particles macroscopically occupy the same single-
particle state. To nonetheless model the mapping step, we
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employ a variational many-body ansatz. For that we assume
that the total state of control atoms and Bose gas may be a
superposition in which each state of the control atom system
is entangled with a separate highly occupied orbital for the
Bose gas. This scheme goes beyond the standard mean-field
Gross-Pitaevskii dynamics by allowing entanglement arising
from the interaction of the BEC soliton with the control atoms.
Our approach has been guided by recent developments of the
multilayer multiconfigurational time-dependent Hartree for
bosons (ML-MCTDHB) [57–60] used to describe the dynam-
ics of composite systems, each with multiple states. Compared
to this technique, we keep the ansatz used here as simple as
possible to describe the physics of interest to us. A similar
approach was used, e.g., in Ref. [61].

The second aspect of the experiment proposed in Ref. [22]
that we expand upon here is decoherence of the mesoscopic
superposition state after it is created. We expect the pri-
mary source of decoherence in this scenario to be atom loss,
which can be classified into one-, two-, and three-body losses
[62–66]. Here, we use a Lindblad master equation [67] to
explicitly model the effect of these loss processes on the
entangled state of a BEC soliton, assuming a simplified two-
mode model for its spatial dynamics. As is known, the decay
of a single atom from the entangled state would destroy the en-
tanglement, hence, the combination of all loss processes will
govern the timescale on which the mesoscopic entanglement
can be sustained [68,69].

An advantage of the present superposition state genera-
tion scheme is the degree of control over the mesoscopic
entanglement generation process. By choosing the Rydberg
state of the control atoms and the Rydberg state to which the
BEC is dressed, one can control the duration of the required
interaction step as well as the final velocity of the soliton.
Simultaneously, also the range of Rydberg-Rydberg interac-
tions and, thus, the spatial extent of the superposition state can
be adjusted. This sets it apart from other proposals to create
mesoscopic superposition states in BECs using the collision
between two solitons [20], scattering of solitons from a barrier
[21] or collision between different condensates [23,24].

This paper is organized as follows. We start in Sec. II
with a review of the entanglement transfer scheme proposed
in Ref. [22]. After defining the model and Hamiltonian in
Sec. II A, we then describe our many-body ansatz for
modeling the generation of a superposition state of soliton
locations and present the resultant equations of motions in
Sec. II B, whereas details of the derivation are deferred to
Appendix A. For experimentally relevant parameters, listed
fully in Appendix B, we then present our numerical simula-
tions in Sec. II C. After Sec. II has, thus, comprehensively
treated the generation of a soliton spatial superposition state,
we then move to its destruction by decoherence in Sec. III
using a Lindblad master equation parameters of which are de-
rived in Appendix C. We conclude the article with a discussion
of the possible future directions.

II. ENTANGLEMENT MAPPING

Let us now briefly review the scheme for the creation of a
spatial superposition state of a BEC bright soliton proposed in
Ref. [22] in more detail. Consider an initially stationary bright

FIG. 1. Generating a mesoscopically entangled state of a BEC
bright soliton state by entanglement transfer from a pair of control
atoms as proposed in Ref. [22]. The purple curved line sketches
the density profile of the soliton and the circles marked A and B
represent control atoms. (a) Initially, the soliton is at rest between the
control atoms which are both in the ground-state |g〉. The BEC atoms
initially are described by the many-body state |�0〉 with a single
macroscopically occupied orbital. (b) A laser (arrows) targets the
control atoms to bring them into a Rydberg excited state |R〉, but ow-
ing to the interaction blockade generates the entangled state shown.
(c) We now initiate Rydberg dressing lasers (green) so that all atoms
in the soliton (green shade in centre) acquire long-range interactions
with the control atoms but not among themselves. (d) The resultant
long-range potential (red solid line) is conditional on the state of
the control atoms, which were in a superposition state. Hence, the
superposition in electronic states of the control atoms is mapped onto
a spatial superposition of the condensate soliton as shown with |�1〉
implying the soliton has moved left and |�2〉 that it has moved right.
Green dashed lines indicate the initial soliton position.

matter wave soliton consisting of N atoms centered at x = 0
with two tightly trapped atoms located at a distance d , e.g.,
d = 1.5 μm on either side from the center of the soliton as
sketched in Fig. 1.

We call these tightly trapped atoms “control atoms.” The
distance between the control atoms 2d is assumed to be less
than the blockade radius Rb for a particular Rydberg state
|R〉 = |nc, s〉 with principal quantum number nc and angular
momentum l = 0. We assume that the control atoms can be
coupled from their ground-state |g〉 to |R〉 with Rabi frequency
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�c, e.g., using a two-photon process. This may be experi-
mentally realized by using laser beams and beam splitters
to focus low waist coherent laser source on to the control
atoms without affecting the soliton. To enable the control
atoms to affect the soliton over the large range d , the atoms
in the latter are dressed to a Rydberg state |r〉 = |nd , s〉 with
nd �= nc. When attempting to excite the control atoms under
blockade conditions, they can be brought into the entan-
gled state |C〉 = (|gR〉 + |Rg〉)/

√
2 with high fidelity [46,47],

where |gR〉 (|Rg〉) indicates that the right (left) control atom
is excited. It has been shown in Ref. [22] that the Rydberg
dressed atoms interact with a Rydberg control atom through
an effective potential of the shape,

Ueff(r, t ) = V0(t )
[
1 −

( rc

r

)6]−1

, (1)

where r is the distance between the impurity atom and the
Rydberg dressed atom. The parameters governing the strength
V0 and range rc are given in terms of the underlying Ryd-
berg interactions and dressing parameters in Appendix B. The
potential (1) is sketched by solid red lines in Fig. 1(d), its
strength V0 can be controlled in time through the intensity of
dressing lasers.

The control atoms are tightly trapped in their respective
positions by an external potential, whereas Bose atoms form-
ing the soliton are untrapped along one direction. Hence, as
the latter feel the effective potential Ueff(r, t ), they accelerate,
setting the soliton into collective motion. Depending upon
which control atom is excited, the soliton will either move
towards the left or towards the right. The joint state of soliton
and control atoms following this conditional acceleration of
the soliton then becomes

|�(t )〉 = C1(t ) |Rg〉 ⊗ |�1(t )〉 + C2(t ) |gR〉 ⊗ |�2(t )〉, (2)

where |�1,2(t )〉 are shown in Fig. 1 and its caption. After
finally deexciting the control atoms again, we have gen-
erated a moving soliton in a superposition state given by
|�〉 = (|�L〉 + |�R〉)/

√
2, where |�L〉, |�R〉 indicate the

left-moving soliton state |�1〉 and right-moving soliton state
|�2〉, respectively, after they have spatially separated and have
negligible spatial overlap. The entire entanglement mapping
sequence is sketched in Fig. 1.

It is clear that the conversion of the condensate soliton
into the superposition state of two different locations |�L〉
and |�R〉 inherently cannot be described in the usual mean-
field picture since the latter requires all bosons to occupy the
same single-particle state. However since creation of the state
|�(t )〉 involves the superposition of just two different types
of dynamics, a multiconfigurational picture allowing two dif-
ferent highly occupied orbitals, each separately amenable to a
mean-field picture, can capture the essentials if each of these
orbitals is associated with a specific two-body state of the
control atom pair. In the following, we discuss the accordingly
customized variational approach for this type of dynamics,
which can be classified as a much simplified version of the
recently developed ML-MCTDHB method [57,61] that can
be used to describe the beyond mean-field physics of multi-
species Bose gases.

For successfully bringing the soliton into the mesoscopi-
cally entangled state, the entire process should be quantum

coherent. Hence, it is important to assess the strength of
decoherence affecting the system. We expect the most im-
portant decoherence sources for the soliton to be one-, two-,
and three-body loss of atoms, arising from interactions of
condensate atoms with vacuum imperfections or stray pho-
tons, spin-changing collisions or inelastic collision between
three condensate atoms [67]. When considering the soliton
as an open quantum system, the loss of an atom can consti-
tute a measurement of the system, leading to a collapse of
the wave function and breaking the coherence of the meso-
scopically entangled state [68,69]. All this will be explored
in Sec. III.

A. Two-species model

We first discuss the Hamiltonian of our system, which
we split into three parts. One describing the dynamics of
the control atoms Ĥctrl(t ), one for the bosonic atoms initially
constituting the matter wave soliton ĤBEC, and the last one
for interaction of control atoms with the soliton induced by
Rydberg dressing ĤI (t ),

Ĥ = Ĥctrl(t ) + ĤBEC + ĤI (t ). (3)

As described above, there are two control atoms which can
be in a ground-state |g〉 or Rydberg state |R〉 under dipole
blockade conditions. Thus, only the two-body states |0〉 ≡
|gg〉, |1〉 ≡ |Rg〉, and |2〉 ≡ |gR〉 are available to them. We
assume the control atoms to be tightly confined in the ground
state of an optical trap, and, hence, no spatial dynamics is
allowed for them. Coupling between these electronic states
is possible when driving the |g〉 ↔ |R〉 transition with Hamil-
tonian,

Ĥctrl(t ) = �c(t )√
2

(|0〉〈1| + |0〉〈2| + c.c.) ⊗ IB, (4)

where �c(t ) is the effective Rabi frequency of that transition
and we have included the

√
2 enhancement of the many-body

Rabi-frequency [46] and (c.c.) denotes the complex conjugate.
We denote the Hilbert space for the control atoms by C and for
the Bose atoms by B such that IB denotes the identity in the
space of the Bose atoms.

The Hamiltonian for N Bose atoms each with mass m is
given by

ĤBEC = IC ⊗
N∑

i=1

p̂2
i

2m
+ IC ⊗

N∑
i=1

Vext(r̂i)

+ IC ⊗
N∑

i, j=1, i �= j

g

2
δ(r̂i − r̂ j ),

where r̂i and p̂i are the position and momentum operators,
respectively, of the ith atom, Vext denotes an external potential
and g = 4π h̄2a/m is the usual contact interaction strength
with s-wave scattering length a. The external potential will
not be required for the scheme sketched in Fig. 1 but will
be included in the derivation of the next section to widen the
applicability of the results.
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Finally the interaction Hamiltonian is written as

ĤI (t ) =
2∑

i=0

(
|i〉〈i| ⊗

N∑
j=1

V (i)
int (xi − r̂ j, t )

)
, (5)

where for i ∈ {1, 2} we have V (i)
int (xi − r̂ j, t ) = Ueff(xi − r̂ j, t )

as the interaction potential between the BEC atoms and the
control atoms at positions xi, see Eq. (1) and Fig. 1. For
i = 0 we define V (0)

int ≡ 0 for later convenience since there
is no interaction between BEC atoms and the control atoms
when both are in the ground state. The time dependence of the
interaction potential is controlled via the intensity of the laser
dressing the BEC atoms off-resonantly to Rydberg states.

B. Variational multiorbital ansatz

The entanglement mapping sequence in Fig. 1 starts by
transferring the control atoms from a product state into an en-
tangled state. This entanglement is then mapped onto a fairly
simply structured many-body state for the atoms initially con-
stituting the soliton. To capture this sequence mathematically,
we employ the following ansatz for the many-body wave
function,

|�(t )〉 = C0(t )|0〉 ⊗ |�0(t )〉 + C1(t )|1〉 ⊗ |�1(t )〉
+C2(t )|2〉 ⊗ |�2(t )〉, (6)

where the |�i(t )〉 still represent a many-body state, namely,
of the Bose atoms in space B. The coefficients Ci(t ) are the
probability amplitudes for each component of the superposi-
tion. Now for each |�i(t )〉, we assume the usual mean-field
approach for a weakly interacting BEC, and write it in the
position space representation as a product,

〈r|�i(t )〉 = �i(r, t ) =
N∏

j=1

φi(r j, t ), (7)

where all the N particles occupy the same single-particle
state φi. Here r denotes a vector r = [r1, . . . , rN ]T with all
atomic positions except the control atoms. States φi(r j, t ) are
normalized at all times

∫
dr j |φi(r j, t )|2 = 1.

Using the Hamiltonian in Eq. (3) and the ansatz in Eq. (6)
with �(r, t ) = 〈r|�(t )〉, we can write the action,

S =
∫

dt dN r
{
�∗(r, t )

(
Ĥ − ih̄

∂

∂t

)
�(r, t )

}

−
∫

dt
2∑

j=0

λ j

(∫
dN r �∗

j (r, t )� j (r, t ) − 1

)
, (8)

where the λ j’s are Lagrange multipliers ensuring the nor-
malization of the many-body soliton wave-function � j (r, t ).
Importantly, the � j are not required to be orthogonal. From
the minimization of this action with respect to the coefficients
{Ci(t )} and single-particle wave-functions {φi(r, t )} in Eq. (6),
and exploiting the product forms in Eq. (7), we obtain our
evolution equations as discussed in detail in Appendix A.

The one describing the coefficients Ci(t ) becomes

ih̄
∂

∂t
Ci(t ) =

2∑
j=0, i �= j

Cj (t )〈i|Ĥctrl(t )| j〉Mi j (t )N

+ NCi(t )
∫

dr̃

[
[Vext(r̃) + V (i)

int (xi − r̃, t )]|

×φi(r̃, t )|2 + g(N − 1)

2
|φi(r̃, t )|4

]
, (9)

where Mi j (t ) = ∫
dr̃ φ∗

i (r̃, t )φ j (r̃, t ) is the overlap integral
between single-particle modes i and j. If Mi j (t ) < 1, the or-
bital attached to state |i〉 cannot correctly represent the spatial
wave function of condensate atoms earlier residing in |� j (t )〉
after those underwent a transition from | j〉 to |i〉. If there were
a large number of many-body states multiplying |i〉 in Eq. (6)
that formed a basis, Mi j (t ) would ensure the selection of
the appropriate spatial structure. Since this is not the case,
Mi j (t ) < 1 with 〈i|Ĥctrl(t )| j〉 �= 0 signals a limitation of the
present ansatz. We will restrict ourselves to scenarios where
this does not occur. The second line in Eq. (9) simply de-
scribes the potential and interaction energy of the N bosons
in single-particle state φi.

The equation of motion of single-particle orbitals is

ih̄
∂

∂t
φi(r, t ) =

2∑
j=0,i �= j

{[
Cj (t )

Ci(t )
〈i|Ĥctrl(t )| j〉Mi j (t )N−1

]

× [φ j (r, t ) − φi(r, t )Mi j (t )]

}

+ ĥiφi(r, t ) + V (i)
int (xi − r, t )φi(r, t )

−φi(r, t )
∫

dr̃ φ∗
i (r̃, t )[Vext(r̃)φi(r̃, t )

+ g(N − 1)|φi(r̃, t )|2φi(r̃, t )]

−φi(r, t )
∫

dr̃ φ∗
i (r̃, t )V (i)

int (xi − r̃, t )φi(r̃, t ),

(10)

where the operator ĥi acting on single-particle states is given
by

ĥi = − h̄2

2m
∇2

r + Vext(r̃) + g(N − 1)|φi(r̃, t )|2. (11)

The approach adopted above can be viewed as a (much)
simplified version of the ML-MCTDHB method [57–60],
which is an advanced method to study the dynamics of multi-
species ultracold atomic gases. It contains a component akin
to basic MCTDHB [70,71], where N atoms in one of the
species can be distributed among M orbitals in a dynami-
cally evolving manner. Additionally for multiple species, their
respective many-body wave functions are allowed to be in
several different product states of these multiorbital superpo-
sitions. We confine ourselves to a case where all N atoms are
in the same orbital, but this one may differ depending on the
state of the second species. The justification for this will be
discussed in detail at the end.
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In Eqs. (9) and (10), the terms on the right-hand
side involving integrals result in the usual complex phase
oscillations of the Ci due to the action of the trapping potential
on the soliton, the interparticle interaction of the BEC atoms
and the phase imprinted on the orbital |�i〉 by the control
atoms. However, the more interesting dynamics occurs due
to the of-diagonal parts represented by summations in the two
integrals and are dependent on the coupling between the Ryd-
berg states and the ground state of the control atoms. Without
this coupling the coefficients corresponding the orbitals |�1〉
and |�2〉 would remain zero and as such the system would
continue to remain in the initially occupied orbital |�0〉.

C. Generation of mesoscopic spatial superposition state

We now employ the variational method above to model
the procedure in Fig. 1 of bringing a BEC bright soliton
into a mesoscopically entangled state by mapping Rydberg
atomic entanglement onto it. Detailed parameters employed
throughout the demonstration are given in Appendix B.

Step (a). The starting point at t < 0 is a quasi-1D bright
soliton of N = 400 atoms of 85Rb with attractive interactions
as their scattering length is tuned to a = −5.33 × 10−9 m
using a Feshbach resonance [40]. For a quasi-1D setting,
the radial confinement must be much stronger than the axial
one, hence, we neglect the latter. The radial trap frequency
ωr then still affects the effective 1D interaction strength
g = 2h̄ωra, whereas the three-dimensional (3D) interaction
strength would have been g3D = 4π h̄2a/m.

As discussed before, the control atoms are tightly trapped
and placed at a distance of d = 1.5 μm on each side of the
center of the bright soliton. The total state of the system
(6) at the beginning is |�(t < 0)〉 = |0〉 ⊗ |�0(t < 0)〉, where
|�0(t < 0)〉 is given by Eq. (7) with

φ0(r, t < 0) = 1√
2ξ0

sech(r/ξ0). (12)

The scale ξ0 = h̄/(mωr |a|N ) = 0.4 μm is the condensate
healing length.

Thus, at this point all N atoms form a BEC bright soliton,
which is for now amenable to mean-field theory. In terms of
our formalism in Sec. II B this initial state is described by
C0(0) = 1, C1(0) = C2(0) = 0, and φi(r, 0) for i ∈ {0, 1, 2}
given by Eq. (12).

Step (b). The distance 2d between the control atoms is
within their mutual blockade radius Rb = (CRR

6 /�c)1/6, as-
suming a van der Waals interaction with dispersion coefficient
CRR

6 between two Rydberg atoms in a |R〉 state. The block-
ade effectively removes the doubly excited-state |RR〉 from
the control atom Hilbert space, and upon driving Rydberg
excitation with Rabi frequency �c = (6

√
2/π ) MHz for a

short-time texcite = 2.3 μs, we can bring the control atoms into
the entangled state (|Rg〉 + |gR〉)/

√
2. The total system state

is hence now |�(t = texcite )〉 = [(|1〉 + |2〉)/
√

2] ⊗ |�0(t =
texcite )〉. We can explicitly model this step as shown in Fig. 2,
using Eqs. (9) and (10), resulting in coefficients C0 = 0, C1 =
C2 = 1/

√
2, while all φi(r, t ) remain unchanged since the

soliton still is a stationary state of Eq. (10). Our simulation
makes use of the ARK89 [72,73] adaptive step-size algorithm
within the high-level language XMDS [74,75].

FIG. 2. Probability of finding the joint system of control atoms
and Bose gas in the many-body states |0〉 ⊗ �0 (blue solid line),
|1〉 ⊗ �1 (yellow star), and |2〉 ⊗ �2 (green dashed line) according
to Eqs. (9) and (10), during laser excitation of the control atoms from
their ground state to a Rydberg excited state. This corresponds to step
(b) in Fig. 1 and the description in the text. On this short timescale,
the single-particle states φ j do not evolve significantly.

Step (c). Only at this point does one enable Rydberg dress-
ing of the BEC soliton [22] for duration tdress = 36 μs such
that Vint �= 0 in Eq. (5). Dressing can be adiabatically enabled
and disabled so that after tdress all condensate atoms returned to
their ground state. Importantly, since the interaction potential
is centered on the particular control atom that is Rydberg
excited, the potential V (i)

int entering Eq. (10) is different for
i = 1, 2, as sketched in panel (d) of Fig. 1, and the potential
is absent for i = 0. This causes the soliton to feel an accel-
eration into different directions, conditional on the state of
the control atom. At the end of this initial acceleration step,
at t = texcite + tdress, the control atoms would ideally be again
deexcited into |0〉 = |gg〉 by inverting step (b). We cannot
explicitly model that step within the ansatz in Eq. (6) and will
discuss this limitation and a possible remedy later.

Step (d). We finally allow free motion of the N Bose gas
atoms for a duration tmov = 2 ms. As we can see in Fig. 3,
in this step the superposition of Rydberg control atoms that
we had generated in step (b) is finally converted into a super-
position state where the entire soliton of N atoms has either
arrived at a location near xL ≈ −1.5 μm in panel (a) or near
xR ≈ +1.5 μm in panel (b). The two kinds of motion natu-

FIG. 3. Evolution of the individual soliton orbitals (a) |φ1|2 and
(b) |φ2|2. We can clearly see that owing to the initial acceleration in
opposite directions due to interaction with Rydberg control atoms in
a superposition state, the soliton finds itself in a superposition of two
different modes of motion, through Eq. (6).
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rally occur in one joint simulation via Eqs. (9) and (10), and
allow identification of the many-body superposition character
through Eq. (6). In terms of Eq. (6), the final state of the
simulation at time tend = texcite + tdress + tmov is now

|�(tend)〉 = C1|1〉 ⊗ |�1(tend)〉 + C2(t )|2〉 ⊗ |�2(tend)〉,

= 1√
2

(|1〉 ⊗ |�L〉 + |2〉 ⊗ |�R〉), (13)

where the position space representation of |�L,R〉 is
〈r|�L,R〉 = ∏N

j=1 φL,R(r j ). Here φL,R represent the single-
particle states φ1,2 when they have significantly separated such
that their overlap

∫
dr φ∗

1 (r)φ2(r)  1.
At this point we have, thus, extended Ref. [22] by an

explicit calculation of the entangling many-body dynamics
yielding Eq. (13).

Prior to the period of free motion in step (d), the con-
trol atoms should be driven back in to their ground-state |0〉
to disentangle them from the BEC and avoid decoherence
through their spontaneous decay. This step cannot be mod-
eled yet with the present ansatz since it would require the
attachment of, at least, two orbitals to the |0〉 state of the
control atoms. We defer this extension to future work since
providing the variational ansatz with further orbitals may
cause convergence problems due to center-of-mass diffusion
of the soliton [20,76,77]. Although our restriction to a single
orbital per impurity state is, of course, also not a converged
many-body theory, it is still expected to capture the essence
of mesoscopically entangled state creation up to the point of
control deexcitation.

Experimental proof of the mesoscopic superposition cre-
ated as discussed here, would mainly have to distinguish it
from two similar states: (i) a classical incoherent mixture of
the left and right moving soliton, and (ii) a BEC that is split
into two parts, one of which moves left and the other right.
Possibility (ii) can be easily ruled out by simple absorption
images which show only ever a single soliton moving ei-
ther left or right in the mesoscopic superposition but would
simultaneously contain two fragments if the BEC has been
split. Ruling out (i) is more involved. One option is to place
the soliton into a weak trap along the direction of motion
and, thus, recombine the left and right moving parts of the
wave function after half an oscillation period. In that case
the mesoscopic superposition is heralded by fringes in the
wave function for the center of mass [19,26,78]. During the
initial time in which the superposition is getting created but
not yet complete, one can also distinguish the superposition
state from a mixture through features in single body densities
as we discuss in Ref. [79]. The period for this corresponds to
the first 5–10 μs of step (c) above.

III. DECOHERENCE OF MESOSCOPIC SPATIAL
SUPERPOSITION STATE

Atoms in the mesoscopic superposition state generated
above are not isolated but interact with their environment.
Two important components of this interaction are collisions
with residual uncondensed 85Rb atoms, as well as inelastic
collisions within the condensate, which result in ejection of
atoms from it and, hence, loss into the environment. Through

these, the many-body system discussed so far will decohere,
and we expect the mesoscopic superposition state to be frag-
ile. The loss of a single atom from such a state is known to
lead to complete decoherence [68,69]. A detailed assessment
of decoherence times is necessary for many practical uses of
mesoscopic superposition states since any bounds on parame-
ters for collapse models [7,8] can only arise if these affect the
state prior to decoherence.

We can neglect the decoherence induced in the soliton
during excitation of control atoms into the superposition state
and Rydberg dressing of soliton atoms: The control atoms can
be excited within tens of nanoseconds, much shorter than the
timescale of loss processes in the BEC. Furthermore, the Ry-
dberg dressing can operate far detuned with parameters listed
in Appendix C so that the relative fraction of Rydberg state
versus ground-state populations is of the order of 1 × 10−5.
This ensures that also spontanous Rydberg decay during the
dressing does not significantly affect the BEC on the relevant
timescale of tdress = 36 μs [80,81].

Since the duration of step (d) in Sec. II C in which the
soliton moves freely, is orders of magnitude larger than the
preceding steps, we conclude that decoherence is most rele-
vant during this phase. The three major loss mechanisms in a
BEC areas follows: (i) one-body loss due to collision of the
condensate atoms with the atoms in the thermal cloud stray
photons or vacuum imperfections, (ii) spin-flipping two-body
interactions which results in the loss of condensate atoms
from the trap and (iii) three-body losses due to inelastic col-
lisions between the condensate atoms [67]. In what follows,
we model our system using a Lindblad master equation and
calculate the time required for the loss of an atom from
the soliton. If this time is longer than the timescale of the
experiments performed, then we can successfully create a
macroscopic superposition state of the BEC which can be
tested in experiments.

Note that the only contribution of thermal cloud interac-
tions with condensate atoms that we consider here is when
these cause an atom to be lost from the condensate. Another
contribution could be decoherence from elastic collisions with
thermal cloud atoms. It has been shown in Refs. [82,83] that
the rate for the latter is, however, less than the former, hence,
we have neglected it in our estimate.

A. Two-mode model and decoherence sources

To render the treatment of decoherence with a master equa-
tion tractable, we use a two-mode model describing the atom
number dynamics with a restriction of spatial modes to a left-
and a right-moving soliton mode that are spatially separated.
These would correspond to φ1(r, t ) and φ2(r, t ) created after
step (c) in Sec. II C. We utilize Fock states, where |0N〉
represents all N atoms residing in the right-moving bright
soliton mode and |N0〉 correspondingly all atoms in the left-
moving one. A decay of atoms from these states will cause
incoherent population transfer to |0M〉 and |M0〉 with M < N .
As described above, major loss processes are one-, two-, and
three-body losses, which affect the density of the condensate
n(t ) as [84]

∂

∂t
n(t ) = −κ1n(t ) − κ2n2(t ) − κ3n3(t ), (14)
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where κ1, κ2, and κ3 denote the one-, two-, and three-body
loss rate coefficients, respectively. For 85Rb we take loss-rate
coefficients κ1 = 6 × 10−3 s−1 [62,63] for single-body loss,
κ2 = 2 × 10−20 m3 s−1 [64] for two-body loss, and κ3 = 2 ×
10−40 m6 s−1 [65,66] for three-body loss. Note, that these loss
rates vary significantly among atomic species, isoptopes, spin
states, and in the case of one-body loss even experimental
setup. Here we have chosen values for each loss rate that we
consider representative.

We now model the decoherence arising from these loss
processes with a Lindblad master equation for the density
matrix of the system,

ρ̂(t ) =
N∑

k,l,m,n=0

ρkl;mn(t )|kl〉〈mn|, (15)

where |nm〉 are Fock states in the two-mode model as dis-
cussed above.

Following Refs. [67,85], the starting point is the master
equation,

d ρ̂(t )

dt
= 1

ih̄
[Ĥ, ρ̂(t )] +

∫
dr

3∑
n=1

(
κn[�̂(r)]nρ(t )[�̂†(r)]n

−κn

2
{[�̂†(r)]n[�̂(r)]n, ρ(t )}

)
, (16)

where �̂(r)/�̂†(r) are field operators annihilating/creating a
boson at a position r and the sum over n, thus, lists the three
different loss processes. The Hamiltonian Ĥ is as given in
Eq. (3). In our simple model with two spatial modes, field
operators become

�̂(r) = φL(r)â + φR(r)b̂, (17)

where φL(r) and φR(r) represent the single-particle states
for the sequence of entanglement mapping discussed in the
previous section when the modes have separated. In other
words, φL(r) = φ1(r) and φR(r) = φ2(r) at a time where
φ1,2 have reached negligible spatial overlap. Here â and b̂
represent the annihilation operator for the left and the right
modes, respectively. Insertion into Eq. (16) and projection
onto |kl〉〈mn| yields the evolution equation for the coefficients
of the density-matrix ρ(t )kl;mn,

∂ρkl;mn(t )

∂t
= T0;klmnρkl;mn(t )

+ κ̄1[T1;kmρ(k+1)l;(m+1)n(t ) + T1;lnρk(l+1);m(n+1)(t )]

+ κ̄2[T2;kmρ(k+2)l;(m+2)n(t ) + T2;lnρk(l+2);m(n+2)(t )]

+ κ̄3[T3;kmρ(k+3)l;(m+3)n(t ) + T3;lnρk(l+3);m(n+3)(t )].

(18)

The details of the derivation along with the expression for the
effective loss-rate coefficients κ̄ j and combinatorial factors
T s are presented in Appendix C. The κ̄ j are based on the
κ j defined at the beginning of this section, but then also are
sensitive to the soliton mode shape φL,R(r).

To significantly simplify the equation above, we have
assumed that the overlap of the two modes vanishes

FIG. 4. Evolution of density-matrix components in the presence
of atom losses, starting from a mesoscopically entangled state with
N = 400 atoms. The figure shows the modulus of selected compo-
nents as a function of time. The (solid blue line) is ρN , corresponding
to populations ρ0N ;0N , ρN0;N0, and coherences ρ0N ;N0 and ρN0;0N ,
which all have identical time evolution. We also show ρN−1 (dashed-
dot orange line), ρN−2 (green circles), and ρN−3 (dotted red line),
where the elements ρi represent populations ρ0i;0i and ρi0;i0 for all
i < N , the corresponding coherences ρi0;0i and ρ0i;i0 for i < N remain
zero throughout.

∫
dN r φ∗

L (r)φR(r) = 0, which strictly means that the cal-
culation is accurate only after the soliton in different
branches of the superposition has moved by its width.
In Fig. 3 this happens after approximately 0.5 ms,
which makes this a good approximation for three-quarters of
the relevant evolution period.

In the two-mode model, the mesoscopically entangled
state of Sec. II C is represented by initial-state |�(t = 0)〉 =
(|N0〉 + |0N〉)/

√
2, which gives a density matrix ρ̂(t = 0) =

1
2 (|N0〉〈N0| + |N0〉〈0N | + |0N〉〈N0| + |0N〉〈0N |). Thus, the
only initially nonvanishing elements of the density matrix are
ρN0;N0 = ρN0;0N = ρ0N ;N0 = ρ0N ;0N = 1/2. This corresponds
to the final result of Sec. II C if we have de-excited the control
atoms. Equation (18) can in principle be solved analytically,
using the thermofield technique [86], however, here we resort
to a numerical solution which is shown in Fig. 4 for N = 400.

We show several selected density-matrix elements in
Fig. 4. All those discussed above, which are initially nonzero,
follow the same time evolution shown as the solid blue line.
Except ρ0N ;N0 and ρN0;0N , no coherence matrix elements
become populated, hence, the density matrix no longer sig-
nificantly contains coherences after roughly 3 ms. Instead we
see a rise of population matrix elements for fewer atoms.
For even later times density-matrix populations with even
smaller atom content become populated, which we do not
show.

To display the ramifications of this more clearly, we further
calculate the average number of particles,

〈N̂〉 =
N∑

k,l=0

ρkl;kl (t )(k + l ), (19)
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FIG. 5. Evolution of the average number of atoms 〈N̂〉 from
Eq. (19) (dotted blue line) and purity from Eq. (20) (solid red line)
of the system during the initial 10 ms. After a single atom is lost
on average, around time 1 ms, the purity indicates almost complete
decoherence to a mixed state.

and the purity of the density matrix as a function of time,

P = Tr[ρ̂2] =
N∑

k,l,m,n=0

|ρkl;mn(t )|2 (20)

shown in Fig. 5. We see that by the time the system has lost
just one atom on average, the initially complete purity has
almost entirely disappeared. After rapid initial decoherence,
the purity decay slows significantly but it still continues to
drop on much larger timescales. It is bounded from below
by the dimension of the computational Hilbert space, which
is d = N × N , but this minimum is not approached yet for
the times shown in Fig. 5. That the mesoscopically entangled
state is decohered essentially at the time a single atom is lost is
in accordance with earlier studies pertaining to BEC [23,87–
89]. It has been discussed in [90] that the coherence of a
mesoscopically entangled state decays exponentially with a
timescale that will in our case be proportional to the number of
atoms. Thus, the larger the number of atoms, the faster is the
decoherence. This can be seen directly from Eq. (18) and the
constant factors involved therein. As mentioned previously,
for the parameters of our system the most prominent loss is the
one-body loss. Therefore, looking at Eqs. (C2) and (C4), one
can see that the loss coefficient contains the number of atoms
N explicitly as well as implicitly in the factors k, l, m, n.
One can then conclude from these equations that increasing
the number of atoms in the system will accelerate the decay
processes and, consequently, accelerate the fall of purity as
well as the average atom number.

We have reproduced this phenomenology here for the spe-
cific parameters of the sequence in Fig. 1 in order to be
able to accurately predict the expected decoherence timescale
τ ≈ 1 ms. The results here confirm the estimates given in
Ref. [22]. By comparing simulations with different loss modes
separately, we further identified single body loss as chief de-
coherence mechanism for the scenario here, using parameters
listed above.

A point to note here, is that the period of free motion
during which the superposition may decohere could be short-
ened by more intensive or longer dressing during step (c) in
Sec. II C. This would impart a larger initial momentum kick
onto the soliton and result in it reaching a sizable superpo-
sition distance faster. However, longer or stronger dressing
would increase the probability of a spontaneous decay of
either control or Rydberg dressed atoms, which are small for
our present parameters.

IV. CONCLUSIONS AND OUTLOOK

We have studied the proposal of entanglement transfer
from two Rydberg control atoms in the blockade regime
onto a BEC bright soliton of Ref. [22] in more detail. Since
Ref. [22] did focus on engineering the interactions (1)
between dressed ground-state atoms and a Rydberg control
atom, the proposal to create a mesoscopically entangled state
relied on physical arguments without explicit simulation,
and decoherence timescales were estimated. Here we have
provided a formal theoretical framework for both these
aspects, going beyond mean-field theory and considering the
underlying many-body problem.

We confirm, that within a creation time of about 40 μs,
a BEC bright soliton containing about 400 atoms can be
quantum entangled with two control atoms. This timescale is
much less than the lifetime of the 76S Rydberg state used in
the scheme, which is of the order of few hundred microsec-
onds [91]. Conditional on which of the two control atoms is
Rydberg excited, the entanglement corresponds to the soliton
having received a momentum kick in either of two opposite
directions. After a further evolution time of about 1 ms, this
momentum kick can be converted into a significant distance
traveled so that the solitons finally find themselves in a super-
position of two locations about 3 μm apart.

Our model of this process is based on a restricted multi-
configurational wave function with just three orbitals, tied to
three control atom basis states. This is motivated by simplicity
and physically by the structure of the interaction Hamiltonian
between the BEC and the control atoms, which will to leading
order create a state of this form. In principle the ansatz can be
augmented to a larger number of superposition components,
more orbitals per components and varying atom numbers per
orbital, leading ultimately to the full fledged multicomponent
MCTDHB form.

After the overlaping orbitals have separated, they undergo
free motion. During that relatively long final phase of free
motion, the mesoscopically entangled state may suffer deco-
herence, which we have explored comprehensively using a
Lindblad master equation. We confirm the earlier estimate of
decoherence time of about a few milliseconds.

The variational formalism discussed here could be use-
ful also for other scenarios where entanglement between
an initially pure Bose-Einstein condensed cloud and Ryd-
berg impurity atoms is generated, for example, if a Rydberg
impurity in a quantum superposition is embedded directly
into the BEC [79], or if a multiatom Rydberg crystal [92–95]
is generated within a BEC and then diagnosed through its
interaction with it.
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APPENDIX A: DERIVATION OF VARIATIONAL
MULTIORBITAL EQUATIONS

We here present the details of the derivation of evolution
equations for the orbitals and coeffcients in the ansatz of
Eq. (6). The equations of motion are derived by minimization
of the action,

S =
∫

dt dN r
{
�∗(r, t )

(
Ĥ − ih̄

∂

∂t

)
�(r, t )

}

−
∫

dt
2∑

j=0

λ j

(∫
dN r�∗

j (r, t )� j (r, t ) − 1

)
, (A1)

where Ĥ is the Hamiltonian given by Eq. (3) and λ j’s are the
Lagrange multipliers. The second term on the right-hand side
in the above equation ensures the normalization of the wave
function at all times.

Inserting the ansatz in Eq. (6), we can split the resultant
expression for the action into six terms,

S =
∫

dt dN r[T1 + T2 + T3 + T4 + T5] −
∫

dt T6, (A2)

which are

T1 =
2∑

i=0

|Ci(t )|2�∗
i (r, t )Ĥbec�i(r, t ),

T2 =
2∑

i=1

|Ci(t )|2|�i(r, t )|2V (i)
int (xi − r j ),

T3 =
2∑

i, j=0,i �= j

C∗
i (t )Cj (t )〈i|Ĥctrl(t )| j〉�∗

i (r, t )� j (r, t ),

T4 = −ih̄
2∑

i=0

C∗
i (t )|�i(r, t )|2 ∂

∂t
Ci(t ),

T5 = −ih̄
2∑

i=0

|Ci(t )|2�∗
i (r, t )

∂

∂t
�i(r, t ),

T6 =
2∑

j=0

λ j

(∫
dN r�∗

j (r, t )� j (r, t ) − 1

)
,

(A3)

where the integral measure for T6 is
∫

dN r = ∫
dr1dr2 · · · drN

since �i/ j (r, t )’s are many-body wave functions for N bosons.
We now invoke the structure in Eq. (7) for each of them,
hence, assuming they can be written as a product of the same
single-particle states for all atoms in the orbital i. For this,
we write �i(r, t ) = ∏N

j=1 φi(r j, t ). With this product ansatz
and expanding

∫
dN r, we can simplify the above terms as

discussed in the following.

Since the single-particle states are normalized as stated
before, so are their many-body products and the expression
|�i(r, t )|2 in T4 is unity when integrated over all space. Many-
body overlaps of the form

∫
dN r �∗

i (r, t )�∗
j (r, t ) in T3 can

be reexpressed as a N-fold product of identical single-particle
overlaps, giving [

∫
dr̃φ∗

i (r̃, t )φ∗
j (r̃, t )]N . Terms T1 and T5 have

contributions of the form
∫

dN r �∗
i (r, t )Ô�i(r, t ), where Ô ∈

{ĥi,
∂
∂t } that simplify to a product of N identical single-particle

integrals, yielding N
∫

dr̃ φ∗
i (r̃, t )Ôφi(r̃, t ), where Ô is the

single-particle operator acting on a single boson. Finally, the
spatial integral over T2 contains

∫
dN r|�i(r, t )|2V (i)

int (xi − r).
When �i(r, t ) is written as a product of single-particle states,
we get N

∫
dr|φi(r, t )|2V (i)

int (xi − r). Considering these fac-
tors, the action in Eq. (A2) takes the form

S =
∫

dt

{
N

2∑
i=0

|Ci(t )|2
∫

dr̃φ∗
i (r̃, t )ĥi[φi]φi(r̃, t )

+ N
2∑

i=1

|Ci(t )|2
∫

dr̃|φi(r̃, t )|2V (i)
int (xi − r̃)

+
2∑

i, j=0, i �= j

C∗
i (t )Cj (t )〈i|Ĥctrl(t )| j〉

[∫
dr̃φ∗

i (r̃, t )φ j (r̃, t )

]N

−ih̄
2∑

i=0

C∗
i (t )

∂

∂t
Ci(t )

−ih̄N
2∑

i=0

|Ci(t )|2
[∫

dr̃ φ∗
i (r̃, t )

∂

∂t
φi(r̃, t )

]

−
2∑

j=0

λ j

[(∫
dr̃ φ∗

j (r̃, t )φ j (r̃, t )

)N

− 1

]}
, (A4)

where the operator ĥi is the single-particle Hamiltonian for
condensate atoms,

ĥi[φi] = − h̄2

2m
∇2

r + Vext(r) + g(N − 1)|φi(r, t )|2.

We now minimize the action above with respect to the single-
particle states and the coefficients using functional derivatives,
via δS

δC∗
i

= ih̄ ∂C
∂t and δS

δφ∗
i

= ih̄ ∂φ

∂t . From the resultant two equa-
tions, we still have to eliminate the Lagrange multiplier λi. By
combining the two equations, we find that these have to satisfy

λi

|Ci(t )|2
[∫

dr̃ φ∗
i (r̃, t )φi(r̃, t )

]N−1

= Ni
norm(t )

2∑
j=0, i �= j

Cj (t )

Ci(t )
〈i|Ĥctrl(t )| j〉Mi j (t )N

+ Ni
norm(t )

∫
dr̃ φ∗

i (r̃, t )ĥiφi(r̃, t )

+ Ni
norm(t )

∫
dr̃ φ∗

i (r̃, t )V (i)
int (xi − r̃)φi(r̃, t )

− Ni
norm(t )

∫
ih̄ dr̃ φ∗

i (r̃, t )
∂

∂t
φi(r̃, t ), (A5)

053322-9



PENDSE, SHIROL, TIWARI, AND WÜSTER PHYSICAL REVIEW A 102, 053322 (2020)

where Ni
norm(t ) = 1/Mii(t ) and Mi j (t ) = ∫

dr̃ φ∗
i (r̃, t )φ j

(r̃, t ). Using this expression for the Lagrange multipliers, we
finally reach the evolution equations as

ih̄
∂

∂t
Ci(t ) =

2∑
j=0, i �= j

Cj (t )〈i|Ĥctrl(t )| j〉Mi j (t )N

+ NCi(t )
∫

dr̃

[(
Vext(r̃) + V (i)

int (xi − r̃, t )
)|φi

× (r̃, t )|2 + g(N − 1)

2
|φi(r̃, t )|4

]
. (A6)

and

ih̄
∂

∂t
φi(r, t )

=
2∑

j=0, i �= j

({
Cj (t )

Ci(t )
〈i|Ĥctrl(t )| j〉

×
[∫

dr̃ φ∗
i (r̃, t )φ j (r̃, t )

]N−1
}

×
[
φ j (r, t ) − Ni

norm(t )φi(r, t )

×
∫

dr̃φ∗
i (r̃, t )φ j (r̃, t )

])

+ ĥiφi(r, t ) + V (i)
int (xi − r)φi(r, t )

− Ni
norm(t )φi(r, t )

∫
dr̃ φ∗

i (r̃, t )[Vext(r̃)φi(r̃, t )

+ g(N − 1)|φi(r̃, t )|2φi(r̃, t )]

− Ni
norm(t )φi(r, t )

∫
dr̃ φ∗

i (r̃, t )V (i)
int (xi − r̃)φi(r̃, t ).

(A7)

We see that Eq. (A6) implies that ∂
∂t

∑2
i=0 |Ci(t )|2 = 0 as

expected and then Eq. (A7) yields ∂Ni
norm(t )/∂t = 0. Since

we always start with normalized single-particle orbitals∫
dr|φi(r, t = 0)|2 = 1, and these normalizations are pre-

served, we can just set Ni
norm(t ) = 1 for all i, which then yields

Eq. (10) from Eq. (A7).

APPENDIX B: VALUES OF PARAMETERS USED
FOR COMPUTATION

We consider a bright soliton with N = 400 atoms of 85Rb,
hence, the atomic mass is m = 1.419 × 10−25 kg. Let the
scattering length be tuned to a = −5.33 × 10−9 m with a Fes-
hbach resonance. The system is made effectively 1D by tightly
trapping along the radial direction with trapping frequency
ωr = 300π Hz and weak trapping along the axial direction
with ωz = 100π Hz where we neglect the latter. The control
atoms are very tightly trapped with a spread of σ = 0.05 μm
and placed at a distance of d = 1.5 μm on each side of the
center of the bright soliton.

The control atoms are coupled to a Rydberg S state
with principal quantum number nc = 76 using a two-photon
process with effective Rabi frequency �c = 6

√
2/(π ) MHz.

The Rydberg blockade radius under these conditions is given

by Rb = 6

√
CRR

6
�c

∼ 8.5 μm for CRR
6 ∼ 103 GHz × μm6 for the

Rydberg state 76S [97].
The atoms in the BEC soliton are dressed to a separate Ry-

dberg S state with principal quantum number nd = 55, assum-
ing an effective Rabi frequency �bec = 3/(2π ) MHz and de-
tuning � = −500/(2π ) MHz. The Rydberg dressing causes
an interaction between the soliton and the control atoms in the
excited state with a potential given by V (i)

int (xi − r, t ) which
gives rise to (5). As mentioned there, for i ∈ {1, 2}, V (i)

int (xi −
r, t ) is given by the effective potential Ueff(xi − r, t ) =
α2�[1 − ∑N

j=1 Q(xi − r j )/�]
−1

where the bare van der
Waals potential is Q(xi − r j ) = CrR

6 /|xi − r j |6 and the dress-
ing parameter α = �bec/(2�) [22]. The position of the control
atom is denoted by xi and the position of the dressed atom
by r j . Detailed choices for all these parameters are given in
Table I.

APPENDIX C: CALCULATION OF EFFECTIVE
LOSS RATES

Using Eq. (16), we can find the master equation for
elements of the density matrix using the ansatz given
in Eq. (17) and inserting the ansatz for single-particle
states for particles in orbitals �L(r, t ) and �R(r, t ),
respectively, as φL(r, t ) = (1/

√
2ξ0)sech[(r + r0)/ξ0] and

φR(r, t ) = (1/
√

2ξ0)sech[(r − r0)/ξ0] since we are consider-
ing the bright soliton solution of the BEC. This would give us
the equation,

∂ρkl;mn

∂t
= T0;klmnρkl;mn

+ κ̄1T1;kmρ(k+1)l;(m+1)n + κ̄1T1;lnρk(l+1);m(n+1)

+ κ̄2,L T2;kmρ(k+2)l;(m+2)n + κ̄2,RT2;lnρk(l+2);m(n+2)

+ κ̄3,LT3;kmρ(k+3)l;(m+3)n + κ̄3,RT3;lnρk(l+3);m(n+3).

(C1)

where the density matrix elements ρkl;mn are time dependent.
The coefficients in the equation above are given as follows in
Eqs. (C2)–(C7). The coefficients involved in diagonal terms
are

T0;klmn =
[

1

ih̄

(
ĒL(k − m) + ĒR(l − n)

+ g

2
ρ2

L{k(k − 1) − m(m − 1)}

+ g

2
ρ2

R{l (l − 1) − n(n − 1)}
)

− 1

2
κ1(k + l + m + n)

− 1

2
κ2

(
k(k − 1)ρ2

L + m(m − 1)ρ2
L

+ l (l − 1)ρ2
R + n(n − 1)ρ2

R

)
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TABLE I. A tabular representation for the parameters and their values or expressions used in the simulation.

PARAMETER EXPRESSION VALUE/EXPRESSION

Number of Rb-85 atoms N 400
Mass of Rb 85 atoms m 1.419 × 10−25 kg
s-wave scattering length a −5.33 × 10−9 m
External trap frequencies for BEC (ωr , ωz) (300π, 100π ) Hz
Spread of control atoms σ 0.05 μm
Distance between control atoms 2d 3 μm
Rydberg state to which the control atoms are coupled nc 76S
Rabi frequency for control atom excitation �c (6

√
2/π ) MHz

Blockade radius for control atoms Rb = 6
√

CRR
6
�c

∼ 8.5 μm 8.5 μm
Rydberg state to which BEC atoms are dressed nd 55S
Rabi frequency for BEC atom dressing �bec 3/(2π ) MHz
Detuning for dressing excitation � −500/(2π ) MHz
Dressing parameter α = �bec/(2�) −3 × 10−3

C6 coefficient for interaction between two atoms in a 76S Rydberg state CRR
6 103 GHz × μm6

C6 coefficient for interaction between control atom in a 76S Rydberg state CrR
6 3 GHz × μm6

and BEC atoms dressed to a 55S Rydberg state

Effective interaction potential between control atom (i) Ueff (xi − r, t ) α2�
[
1 − ∑N

j=1
CrR

6
(|xi−r j |6 )�

]−1

and Rydberg dressed BEC atoms ( j)

− 1

2
κ3

(
k(k − 1)(k − 2)ρ3

L + m(m − 1)(m − 2)ρ3
L

+ l (l − 1)(l − 2)ρ3
R + n(n − 1)(n − 2)ρ3

R

)]
, (C2)

where ĒL/R, ρ2
L/R, and ρ3

L/R are defined in Eq. (C7). Note
that for the particular problem that we look at over here,
ĒL = ĒR, ρ2

L = ρ2
R, and ρ3

L = ρ3
R. However, we have kept

these terms distinct in the expression above to demonstrate the
origin of terms. Next, the terms which connect the coefficients
in the density matrix to coefficients separated by loss of one
boson are

T1;km = N
√

(k + 1)(m + 1),

T1,ln = N
√

(l + 1)(n + 1). (C3)

Similarly, the terms which connect the coefficients of the
density matrix to coefficients separated by the loss of two
bosons are

T2;km = N2
√

(k + 1)(k + 2)(m + 1)(m + 2),

T2,ln = N2
√

(l + 1)(l + 2)(n + 1)(n + 2). (C4)

and lastly the terms which connect the coefficients of the
density matrix to coefficients separated by the loss of three
bosons are

T3;km = N3
√

(k + 1)(k + 2)(k + 3)(m + 1)(m + 2)(m + 3),

T3;ln = N3
√

(l + 1)(l + 2)(l + 3)(n + 1)(n + 2)(n + 3).

(C5)

In the above expressions, the coefficients NL/R are defined due
to the symmetry of the system at hand as

ĒL =
∫

dr φ∗
L (r)ĥ f ψL(r)

=
∫

dr φ∗
R(r)ĥ f φR(r) = ĒR,

ρ2
L =

∫
dr |φL(r)|4

=
∫

dr|φR(r)|4 = ρ2
R,

ρ3
L =

∫
dr|φL(r)|6

=
∫

dr|φR(r)|6 = ρ3
R, (C6)

where ĥ f = −(h̄2/2m)∇2
r + Vext (r) in the above expression is

the single-particle Hamiltonian for noninteracting bosons and
the notation ρ2 indicates a squared density averaged over the
soliton mode. Finally, the redefined loss coefficients used in
Eq. (18) and Eq. (C1) are given by

κ̄1 = κ1, κ̄2 = κ̄2,L/R = ρ2
L/Rκ2, (C7)

κ̄3 = κ̄3,L/R = ρ3
L/Rκ3.
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(2019).

[29] P. J. Everitt, M. A. Sooriyabandara, M. Guasoni, P. B. Wigley,
C. H. Wei, G. D. McDonald, K. S. Hardman, P. Manju, J. D.
Close, C. C. N. Kuhn, S. S. Szigeti, Y. S. Kivshar, and N. P.
Robins, Phys. Rev. A 96, 041601(R) (2017).

[30] G. D. McDonald, C. C. N. Kuhn, K. S. Hardman, S. Bennetts,
P. J. Everitt, P. A. Altin, J. E. Debs, J. D. Close, and N. P. Robins,
Phys. Rev. Lett. 113, 013002 (2014).

[31] S. Lepoutre, L. Fouché, A. Boissé, G. Berthet, G. Salomon, A.
Aspect, and T. Bourdel, Phys. Rev. A 94, 053626 (2016).

[32] P. Medley, M. A. Minar, N. C. Cizek, D. Berryrieser, and M. A.
Kasevich, Phys. Rev. Lett. 112, 060401 (2014).

[33] A. L. Marchant, T. P. Billam, T. P. Wiles, M. M. H. Yu, S. A.
Gardiner, and S. L. Cornish, Nat. Commun. 4, 1865 (2013).

[34] A. L. Marchant, T. P. Billam, M. M. H. Yu, A. Rakonjac, J. L.
Helm, J. Polo, C. Weiss, S. A. Gardiner, and S. L. Cornish,
Phys. Rev. A 93, 021604(R) (2016).

[35] J. H. V. Nguyen, P. Dyke, D. Luo, B. A. Malomed, and R. G.
Hulet, Nat. Phys. 10, 918 (2014).

[36] J. H. V. Nguyen, D. Luo, and R. G. Hulet, Science 356, 422
(2017).

[37] S. L. Cornish, S. T. Thompson, and C. E. Wieman, Phys. Rev.
Lett. 96, 170401 (2006).

[38] B. Eiermann, T. Anker, M. Albiez, M. Taglieber, P. Treutlein,
K.-P. Marzlin, and M. K. Oberthaler, Phys. Rev. Lett. 92,
230401 (2004).

[39] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet,
Nature (London) 417, 150 (2002).

[40] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles,
L. D. Carr, Y. Castin, and C. Salomon, Science 296, 1290
(2002).

[41] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers
to Photonic Crystals (Academic, San Diego, 2003).

[42] C. J. Pethick and H. Smith, Bose-Einstein Condensation in
Dilute Gases (Cambridge University Press, Cambridge, UK,
2002).

[43] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet,
New J. Phys. 5, 73 (2003).

[44] T. F. Gallagher, Rydberg Atoms (Cambridge University Press,
Cambridge, UK, 2005), Vol. 3.

[45] T. Gallagher, Rep. Prog. Phys. 51, 143 (1988).
[46] A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau,

D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Nat. Phys.
5, 115 (2009).

[47] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. Yavuz, T.
Walker, and M. Saffman, Nat. Phys. 5, 110 (2009).

[48] Y.-Y. Jau, A. Hankin, T. Keating, I. Deutsch, and G.
Biedermann, Nat. Phys. 12, 71 (2016).

[49] J. B. Balewski, A. T. Krupp, A. Gaj, S. Hofferberth, R. Löw,
and T. Pfau, New J. Phys. 16, 063012 (2014).

[50] J. E. Johnson and S. L. Rolston, Phys. Rev. A 82, 033412
(2010).

[51] S. Wüster, C. Ates, A. Eisfeld, and J. Rost, New J. Phys. 13,
073044 (2011).

[52] N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302
(2010).

[53] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein,
Phys. Rev. Lett. 85, 1791 (2000).

[54] F. Maucher, N. Henkel, M. Saffman, W. Królikowski, S.
Skupin, and T. Pohl, Phys. Rev. Lett. 106, 170401 (2011).

[55] J. Honer, H. Weimer, T. Pfau, and H. P. Büchler, Phys. Rev.
Lett. 105, 160404 (2010).

[56] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P.
Zoller, Phys. Rev. Lett. 104, 223002 (2010).

[57] S. Krönke, L. Cao, O. Vendrell, and P. Schmelcher, New J. Phys.
15, 063018 (2013).

[58] R. Schmitz, S. Krönke, L. Cao, and P. Schmelcher, Phys. Rev.
A 88, 043601 (2013).

053322-12

https://doi.org/10.1126/science.1103190
https://doi.org/10.1103/RevModPhys.84.1655
https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1103/RevModPhys.85.471
https://doi.org/10.1103/PhysRevA.84.052121
https://doi.org/10.1103/RevModPhys.90.025004
https://doi.org/10.1038/44348
https://doi.org/10.1038/ncomms1263
https://doi.org/10.1039/c3cp51500a
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1038/nature04251
https://doi.org/10.1088/1367-2630/10/9/095020
https://doi.org/10.1103/PhysRevA.47.5024
https://doi.org/10.1103/PhysRevA.87.051602
https://doi.org/10.1103/PhysRevA.101.043604
https://doi.org/10.1103/PhysRevA.80.043616
https://doi.org/10.1103/PhysRevLett.115.040401
https://doi.org/10.1103/PhysRevA.57.1208
https://doi.org/10.1103/PhysRevLett.123.260403
https://doi.org/10.1103/PhysRevA.59.4623
https://doi.org/10.1103/PhysRevLett.102.010403
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/PhysRevA.99.033625
https://doi.org/10.1103/PhysRevA.96.041601
https://doi.org/10.1103/PhysRevLett.113.013002
https://doi.org/10.1103/PhysRevA.94.053626
https://doi.org/10.1103/PhysRevLett.112.060401
https://doi.org/10.1038/ncomms2893
https://doi.org/10.1103/PhysRevA.93.021604
https://doi.org/10.1038/nphys3135
https://doi.org/10.1126/science.aal3220
https://doi.org/10.1103/PhysRevLett.96.170401
https://doi.org/10.1103/PhysRevLett.92.230401
https://doi.org/10.1038/nature747
https://doi.org/10.1126/science.1071021
https://doi.org/10.1088/1367-2630/5/1/373
https://doi.org/10.1088/0034-4885/51/2/001
https://doi.org/10.1038/nphys1183
https://doi.org/10.1038/nphys1178
https://doi.org/10.1038/nphys3487
https://doi.org/10.1088/1367-2630/16/6/063012
https://doi.org/10.1103/PhysRevA.82.033412
https://doi.org/10.1088/1367-2630/13/7/073044
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1103/PhysRevLett.85.1791
https://doi.org/10.1103/PhysRevLett.106.170401
https://doi.org/10.1103/PhysRevLett.105.160404
https://doi.org/10.1103/PhysRevLett.104.223002
https://doi.org/10.1088/1367-2630/15/6/063018
https://doi.org/10.1103/PhysRevA.88.043601


GENERATION AND DECOHERENCE OF SOLITON SPATIAL … PHYSICAL REVIEW A 102, 053322 (2020)

[59] L. Cao, S. Krönke, O. Vendrell, and P. Schmelcher, J. Chem.
Phys. 139, 134103 (2013).

[60] J. M. Schurer, P. Schmelcher, and A. Negretti, Phys. Rev. A 90,
033601 (2014).

[61] M. R. Ebgha, S. Saeidian, P. Schmelcher, and A. Negretti, Phys.
Rev. A 100, 033616 (2019).

[62] E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A.
Cornell, and C. E. Wieman, Phys. Rev. Lett. 79, 337 (1997).

[63] L. A. Zundel, J. M. Wilson, N. Malvania, L. Xia, J.-F. Riou, and
D. S. Weiss, Phys. Rev. Lett. 122, 013402 (2019).

[64] J. L. Roberts, N. R. Claussen, S. L. Cornish, and C. E. Wieman,
Phys. Rev. Lett. 85, 728 (2000).

[65] C. M. Savage, N. P. Robins, and J. J. Hope, Phys. Rev. A 67,
014304 (2003).

[66] P. A. Altin, G. R. Dennis, G. D. McDonald, D. Döring, J. E.
Debs, J. D. Close, C. M. Savage, and N. P. Robins, Phys. Rev.
A 84, 033632 (2011).

[67] A. Sinatra and Y. Castin, Eur. Phys. J. D 4, 247 (1998).
[68] Y. P. Huang and M. G. Moore, Phys. Rev. A 73, 023606 (2006).
[69] D. Lombardo and J. Twamley, Sci. Rep. 5, 13884 (2015).
[70] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. A

77, 033613 (2008).
[71] A. U. J. Lode, Phys. Rev. A 93, 063601 (2016).
[72] W. H. Press and S. A. Teukolsky, Comput. Phys. 6, 188

(1992).
[73] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes: The Art of Scientific Computing,
3rd. ed. (Cambridge University Press, Cambridge, UK, 2007).

[74] G. R. Dennis, J. J. Hope, and M. T. Johnsson, Comput. Phys.
Comm. 184, 201 (2013).

[75] The SE and Tully’s algorithm were both implemented in the
high-level simulation language XMDS [74,96].

[76] J. G. Cosme, C. Weiss, and J. Brand, Phys. Rev. A 94, 043603
(2016).

[77] C. Weiss, S. A. Gardiner, and H.-P. Breuer, Phys. Rev. A 91,
063616 (2015).

[78] B. Gertjerenken, Phys. Rev. A 88, 053623 (2013).
[79] S. Rammohan, S. Tiwari, A. Mishra, A. Pendse, A. K. Chauhan,

R. Nath, A. Eisfeld, and S. Wüster, arXiv:2011.11022 (2020).

[80] J. A. Aman, B. J. DeSalvo, F. B. Dunning, T. C. Killian, S.
Yoshida, and J. Burgdörfer, Phys. Rev. A 93, 043425 (2016).
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