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Plane- and stripe-wave phases of a spin-orbit-coupled Bose-Einstein condensate
in an optical lattice with a Zeeman field

Kristian Mæland,1 Andreas T. G. Janssønn,1 Jonas H. Rygh ,2 and Asle Sudbø 1,*

1Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
2Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

(Received 4 September 2020; accepted 29 October 2020; published 19 November 2020)

A weakly interacting, spin-orbit-coupled, ultracold, dilute Bose gas on a two-dimensional square lattice with
an external Zeeman field is studied. We explore the plane- and stripe-wave phases of the system involving
nonzero condensate momenta, which occur when the Zeeman field is below a critical value. Their excitation
spectra are found using Bogoliubov theory and by two different routes. The validity of each method to obtain
the excitation spectrum is discussed, and it is found that projection on the lowest single-particle band is an
excellent approximation in the plane-wave phase, while it is a poor approximation in the stripe-wave phase.
While the plane-wave phase has a phonon minimum at its single condensate momentum, revealing a nonzero
sound velocity of the excitations, the stripe-wave phase has quadratic minima at its two condensate momenta
showing zero sound velocity of the excitations. We discuss how the presence of more than one condensate
momentum is essential for these differences between the two phases. Additionally, it is emphasized that the zero
sound velocity in the stripe-wave phase is a lattice effect, since continuum studies of the same phase have shown
nonzero sound velocity.
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I. INTRODUCTION

The first experimental achievement of Bose-Einstein con-
densation (BEC) in ultracold, dilute atomic gases [1] sparked
a flurry of activity in the physics of cold atoms, and great
strides have since been made in manufacturing and ma-
nipulating such condensates. The studies were extended to
include the effect of spin-orbit coupling (SOC) when a syn-
thetic SOC was demonstrated experimentally [2]. Due to
the Doppler effect, lasers can induce momentum-dependent
transitions between two pseudospin states, emulating the
SOC of spin-1/2 particles. The methods have since been
refined, and highly tunable synthetic SOC with different lin-
ear combinations of Rashba [3] and Dresselhaus [4] SOC
have been achieved experimentally [5–10]. The introduc-
tion of SOC to the ultracold gas has many interesting
consequences including the lack of Galilean invariance
[11] and hence a frame-dependent superfluid velocity [12].
This greatly complicates the theoretical treatment of such
condensates.

It is also possible to load the atoms onto an optical
lattice, since lasers can generate a periodic potential land-
scape [13]. In that case, the highly tunable experimental
setup can be used to simulate numerous condensed matter
physics phenomena under completely controlled conditions.
Examples where SOC plays an important role are the
quantum spin Hall effect and topological insulators [14].
Furthermore, the controllability of atoms trapped in opti-
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cal lattices means they could find applications in quantum
computing [15].

In this paper, we consider a two-dimensional (2D), Rashba
SOC, weakly interacting BEC in the presence of a square
optical lattice and an external Zeeman field. An important
consequence of the SOC is the presence of phases with
nonzero condensate momenta, some of which can be viewed
as bosonic analogs of Fulde-Ferrell-Larkin-Ovchinnikov
states in superconductors [16–18]. The Fulde-Ferrell analo-
gous plane wave (PW) phase with one nonzero condensate
momentum was treated in [19] by projection on the lowest
single-particle band. In this paper we will further explore
the Larkin-Ovchinnikov analogous stripe wave (SW) phase
with two oppositely directed condensate momenta. This phase
has previously been studied in a continuum [20,21], and was
later observed experimentally [22], but its excitation spectrum
has to our knowledge not been obtained in the presence of a
lattice. The excitation spectra in the two phases are found by
the same method used in [19] projecting down on the lowest
energy excitations, as well as without any projection. It is
found that the excitations in the SW phase have zero sound
velocity, unlike the nonzero sound velocity found in [19] for
the PW phase and in [20,21] for the SW phase in a continuum.
In addition, the method used in [19] is found to be an excellent
approximation in the PW phase, while it fails at almost all
parameters in the SW phase. The origin of these results will
be discussed.

II. BOGOLIUBOV THEORY

We start with a Bose-Hubbard Hamiltonian for a Bose gas
with two spin components akin to that introduced in [23], and
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include a Rashba SOC discretized to a lattice formulation:

H = −
∑

α

tα
∑
〈i, j〉

bα†
i bα

j −
∑

α

μα
∑

i

bα†
i bα

i

− iλR

∑
αβ

∑
i,n

[
bα†

i ẑ · (σαβ × ân)bβ
i+n − H.c.

]

+ 1

2

∑
αβ

U αβ
∑

i

bα†
i bβ†

i bβ
i bα

i . (1)

Here, bα
i annihilates a boson of spin α at the lattice site i, tα

is a spin-dependent nearest-neighbor hopping parameter, and
μα is a spin-dependent chemical potential. λR is the strength
of the Rashba SOC, σ is a vector containing the Pauli matrices,
an are the d primitive vectors of a d-dimensional Bravais
lattice, and hats denote unit vectors. The two spin components
are spin up and spin down, while H.c. indicates the Hermitian
conjugate of the preceding term. The interactions are assumed
to be repulsive and U αβ is the interaction parameter for an
on-site two-body scattering involving particles with spin α

and β. The main candidates for experimental realization of
this Hamiltonian are ultracold gases of bosonic atoms, where
external lasers set up an optical lattice and a synthetic SOC.
Experimentalists choose two hyperfine states of the atoms as
the two components of the system, which are then labeled
pseudospin up and pseudospin down.

It is advantageous to consider the system in momentum
space, since BEC is associated with the particles’ momentum
distribution. The bosonic operators are Fourier transformed
using bα

i = (1/
√

Ns)
∑

k Aα
k e−ik·ri , where Ns is the number of

lattice sites, Aα
k is a bosonic operator annihilating a boson

with spin α and momentum k, and ri is the position of lattice
site i. Technically, k is a quasimomentum limited to the first
Brillouin zone (1BZ). The system is periodic in terms of k by
the size of the 1BZ, and for the remainder of the paper we
will use the name momentum in place of quasimomentum. In
momentum space, the Hamiltonian becomes

H =
∑

k

∑
αβ

η
αβ

k Aα†
k Aβ

k

+ 1

2Ns

∑
kk′ pp′

∑
αβ

U αβAα†
k Aβ†

k′ Aβ
pAα

p′δk+k′,p+p′ , (2)

where

ηk =
(

ε
↑
k − μ↑ sk

s∗
k ε

↓
k − μ↓

)
, (3)

εα
k ≡ −2tα

d∑
n=1

cos(k · an), (4)

and the Rashba SOC term is

sk ≡ −2λR

d∑
n=1

(ân · ŷ + iân · x̂) sin(k · an). (5)

A. Mean-field theory

We assume the temperature is low enough for BEC to
occur, such that the condensate is dominant. We will set the
temperature to zero in the calculations, and consider quantum

TABLE I. The momentum configurations in the interaction terms
with at most two excitation momenta. Table reproduced from [24].

Case 1 2 3 4 5 6 7 8 9 10 11

k k0i k0i k0i k0i k k0i k0i k0i k k k
k′ k0 j k0 j k0 j k′ k0 j k0 j k′ k′ k′ k0 j k0 j

p k0i′ k0i′ p k0i′ k0i′ p k0i′ p k0i′ p k0i′

p′ k0 j′ p′ k0 j′ k0 j′ k0 j′ p′ p′ k0 j′ k0 j′ k0 j′ p′

fluctuations of the ground state. It is assumed that there are
few excitations, and terms in the Hamiltonian involving a
product of three or more excitation operators are therefore
neglected. Aα

k0i
is named a condensate operator if k0i is any

occupied condensate momentum, while Aα
k is an excitation

operator given that k 
= k0i. The momentum configurations
in the interaction terms that include at most two excitation
momenta are represented in Table I. Cases 2–5 lead to terms
that are linear in excitation operators, and originate from
the fact that the momentum conservation may be obeyed by
three condensate momenta and one excitation momentum.
This possibility, requiring multiple condensate momenta in
the system, was first elucidated by Janssønn [24] and has to
our knowledge not been explored previously. Inserting these
momentum configurations yields

H ≈ H0 + H1 + H2, (6)

where

H0 =
∑

i

∑
αβ

η
αβ

k0i
Aα†

k0i
Aβ

k0i

+ 1

2Ns

∑
i ji′ j′

∑
αβ

U αβAα†
k0i

Aβ†
k0 j

Aβ

k0i′
Aα

k0 j′
δk0i+k0 j ,k0i′+k0 j′ ,

(7)

H1 = 1

Ns

∑
k

′ ∑
i ji′

∑
αβ

U αβ
(
Aα†

k0i
Aβ†

k0 j
Aβ

k0i′
Aα

k

+ Aα†
k Aβ†

k0i′
Aβ

k0 j
Aα

k0i

)
δk+k0i′ ,k0i+k0 j , (8)

and

H2 =
∑

k

′ ∑
αβ

η
αβ

k Aα†
k Aβ

k

+ 1

2Ns

∑
kk′

′′ ∑
i j

∑
αβ

U αβ
[(

Aα†
k0i

Aβ†
k0 j

Aβ

k Aα
k′

+ Aα†
k Aβ†

k′ Aβ

k0 j
Aα

k0i

)
δk+k′,k0i+k0 j

+ 2
(
Aα†

k0i
Aβ†

k Aβ

k0 j
Aα

k′ + Aα†
k0i

Aβ†
k Aβ

k′Aα
k0 j

)
δk+k0i,k

′+k0 j

]
. (9)

The primes indicate that the sums exclude any occupied con-
densate momenta.

From now on, we specialize to a square 2D lattice and
assume that t↑ = t↓ ≡ t , μ↑ ≡ μ + �, μ↓ ≡ μ − �, U ↑↑ =
U ↓↓ ≡ U , and U ↑↓ = U ↓↑ ≡ αU . We let the chemical po-
tential μ control the total number of particles N , while the
external Zeeman field � controls the spin imbalance, i.e.,
the values of Nα , where Nα is the total number of particles
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with spin α. With the lattice constant a set to 1, we have
εk = −2t (cos kx + cos ky) and sk = −2λR(sin ky + i sin kx ).

To gain some insight into the SOC BEC, we first discuss
the single-particle problem, i.e., no interactions. The single-
particle excitation spectrum is given by the eigenvalues of ηk

which are λ±
k = εk − μ ±

√
�2 + |sk|2. We will refer to these

as the upper and lower helicity bands. Let �c ≡ 2λ2
R/t . For

� > �c, λ−
k has only one minimum at (0,0). For � < �c

it has four minima at k01 = (k0, k0), k02 = (−k0, k0), k03 =
(−k0,−k0), and k04 = (k0,−k0) with k0 = k0m,

k0m ≡ arcsin
√

[1 − (�/�c)2]/[1 + 2(t/λR)2]. (10)

The same was found in [19] where both � > �c and
� < �c were considered for α < 1. In this paper we will
include α � 1 and focus on � < �c.

We need to diagonalize the Hamiltonian (6) in order to
obtain the quasiparticle excitation spectrum, and we will con-
sider two methods of obtaining it. One way is to employ
the method used in [19] which involves projecting down on
the lowest helicity band. The argument for the validity of the
helicity projection is that we are considering a BEC at zero
temperature, and so, before introducing interactions, almost
no helicity quasiparticles should occupy the upper helicity
band. The other method will be to treat the system in the orig-
inal spin basis, which is equivalent to keeping both helicity
bands.

Using the spin basis and following the Bogoliubov ap-
proach [25,26], we insert

Aα
k0i

→ √
Nα

0ie
−iθα

i , (11)

where Nα
0i = 〈Aα†

k0i
Aα

k0i
〉 
 1 is the number of condensate par-

ticles with momentum k0i and spin α. The angle θα
i is a

variational parameter that can be determined by minimizing
the free energy [27]. It was found that these angles are impor-
tant in the phases under consideration in this paper.

We define the helicity operators C+
k and C−

k , which annihi-
late bosons in the upper and lower helicity bands. These are
connected to the spin operators Aα

k through a unitary matrix
containing the eigenvectors of ηk. The eigenvector for the
lowest helicity band contains the transformation coefficients

uk =
√[

1 + �/

√
�2 + 4λ2

R(sin2 kx + sin2 ky)
]/

2

and vk = −eiγk

√
1 − u2

k with e−iγk ≡ sk/|sk|. The helicity pro-

jection involves setting Ck ≡ C−
k and C+

k ≈ 0. Then we have
A↑

k = ukCk and A↓
k = vkCk. We transform the Hamiltonian be-

fore we use (11), and instead insert Ck0i → √
N0ie−iθi , where

N0i is the total number of condensate particles with momen-
tum k0i. In the helicity projection, we found that the free
energy is independent of the angles θi, and they are therefore
set to zero for brevity.

B. Phases

Without interactions, most of the helicity quasiparticles
should occupy the minima of λ−

k . It is expected that intro-
ducing weak interactions will designate certain momenta as
the ground state [28], and that a Bogoliubov effect appears

FIG. 1. The PWSW transition line for U/t = 0.1, n = 1, and
λR/t = 1.0, 3.0, and 10.

such that the condensate momenta become phonon minima of
the excitation spectrum, similar to the treatment of the weakly
interacting Bose gas [13,29,30].

As is often done [19,28], we will use the operator-
independent part, H0, of the Hamiltonian to determine the
possible phases. We are thus assuming that the free energy
F ≈ H0, and the phase with the lowest free energy at a cer-
tain set of parameters will be the preferred phase. With a
nonzero SOC and � < �c the two most interesting phases
are the plane- and stripe-wave phases, named according to the
wave patterns they produce in real space, and characterized as
follows.

(i) Plane-wave (PW) phase: The PW phase involves a sin-
gle nonzero condensate momentum, chosen to be k01 without
loss of generality.

(ii) Stripe-wave (SW) phase: The SW phase involves
condensation at two oppositely directed, nonzero momenta
chosen as k01 and k03 = −k01.

When � = 0 the PWSW transition occurs at α = 1. For
0 < � < �c, the transition occurs at [19]

�/�c =
√

(α − 1)/[α + 1 + (λR/t )2]. (12)

This analytic expression was found using the operator-
independent part of the Hamiltonian after projecting onto the
lowest helicity band, and is found to be an adequate approx-
imation. The SW phase is preferred for � less than the value
given above and its excitation spectrum was not treated in
[19]. A plot of this transition line is shown in Fig. 1. See Fig. 1
in [19] for an �-α phase diagram based on H0.

The obtained PWSW transition at α = 1 when � = 0 was
also found in [31]. As further elaborated in [10,28] the wave
function in the PW phase gives a uniform density of both
spin components, while in the SW phase both components
have a periodic, striped density variation with opposite phase.
Since this minimizes the overlap of the two components, the
SW phase is preferred when the intercomponent interactions
are stronger than the intracomponent interactions. Upon intro-
ducing a Zeeman field the system obtains a spin imbalance.
Hence, minimizing the overlap of the two components be-
comes less effective, and a higher value of α is required before
the SW phase is energetically favorable.
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C. Generalized diagonalization method

Since the system is bosonic and the Hamiltonian contains
terms that individually do not conserve the particle num-
ber, diagonalizing the Hamiltonian (6) must be done by a
generalization of the Bogoliubov-Valatin (BV) transformation
introduced in [32] with further details in [33]. A unitary trans-
formation is in general not sufficient for a bosonic system as
there is no guarantee the quasiparticles will be bosonic. To
circumvent this, the BV transformation introduces a matrix
J = (I 0

0 −I), where I is the identity matrix. If M is the matrix
in a Hamiltonian which is quadratic in bosonic operators, then
the BV transformation involves diagonalizing MJ . Complex
eigenvalues of MJ are interpreted as dynamic instabilities of
the system [13,29].

III. PLANE-WAVE PHASE

The PW phase is treated by the helicity projection in [19].
The quadratic part of the Hamiltonian can be written

H2 = 1

4

∑
k 
=k01

C†
kNkCk, (13)

where, with p = 2k01 − k,

Ck = (Ck,Cp,C†
k ,C†

p )T (14)

and

Nk =

⎛
⎜⎝

N11(k) 0 0 N∗
32(k)

0 N11(p) N∗
32(k) 0

0 N32(k) N11(k) 0
N32(k) 0 0 N11(p)

⎞
⎟⎠. (15)

The matrix elements are

N11(k) = λ−
k − λ−

k01
+ Un

[
2u2

ku2
k01

+ 2
∣∣vk

∣∣2∣∣vk01

∣∣2

− u4
k01

− ∣∣vk01

∣∣4] + Uαn
[
u2

k

∣∣vk01

∣∣2

+ u2
k01

(∣∣vk

∣∣2 − 2
∣∣vk01

∣∣2)
+ 2ukuk01 Re

(
vkv

∗
k01

)]
,

N32(k) = Un
(
u2

k01
ukup + v∗2

k01
vkvp

)
+Uαnuk01v

∗
k01

(ukvp + upvk), (16)

where n = N/Ns. The eigenvalues of NkJ are

EH (k) = 1
2 {N11(k) − N11(p)

+
√

[N11(k) + N11(p)]2 − 4|N32(k)|2}, (17)

and its inverse about k01. This agrees with the result obtained
in [19]. Using this inversion symmetry, it is possible to write
the diagonalized Hamiltonian as [34]

H2 =
∑

k 
=k01

EH (k)

(
B†

kBk + 1

2

)
. (18)

As discussed in [19] this energy band has a phonon min-
imum at the condensate momentum, k01, and gapped roton
minima close to the other minima of the single-particle ex-
citation spectrum. This is illustrated in the insets of Fig. 2.
When approaching the PWSW transition line (12) from above,

FIG. 2. PW phase excitation spectrum in the direction kx = ky,
obtained numerically in the spin basis. The dashed vertical line shows
the position of k = k01. The insets show the phonon minimum at
the condensate momentum, and the gapped roton minimum close to
−k01. The parameters were set to U/t = 0.1, n = 1, λR/t = 10, α =
1.5, and �/t ≈ 15.37. This value of � corresponds to 1.1 times the
PWSW transition line (12).

the roton minimum close to k03 goes to zero and eventually
becomes negative, indicating an energetic instability [13].

Treating the PW phase in the spin basis requires a numeri-
cal solution for the eigenvalues of an 8×8 matrix. The method
follows the same course as the SW phase, to be presented later,
and is therefore omitted here. The matrix elements are shown
in Appendix A. The lowest band, E2(k), is almost equal to
the eigenvalue EH (k) in the helicity projection at all k, while
the upper band, E1(k), is similar to the upper helicity band
λ+

k (k). Both bands are shown in Fig. 2. Using EH (k) we can
find an analytic expression for the anisotropic sound velocity
of the excitations close to k01 [19]. The numerical sound
velocity from the spin basis corresponds to this analytic result,
even without any Zeeman field and at weak SOC. Hence, the
helicity projection provides a good approximation for the PW
phase at all parameters of interest, even though it is expected
to be a better approximation at strong SOC and with a Zee-
man field � > max{U, αU } [19]. The latter requirement is
intended to reduce interband scatterings between the helicity
bands. Apparently, the interband scatterings are not relevant
for the speed of sound of the phonon excitations in the PW
phase.

IV. STRIPE-WAVE PHASE

A. Spin basis

Since there are no terms in the Hamiltonian that would
introduce a momentum imbalance, we assume that N↑

k01
=

N↑
k03

= N↑
0 /2 and N↓

k01
= N↓

k03
= N↓

0 /2, where Nα
0 is the total

number of condensate particles with spin α. Using (7) and
(11) we find an initial expression for H0. Then we use Nα =
Nα

0 + ∑′
k Aα†

k Aα
k to replace Nα

0 by Nα . In this replacement
we neglect terms that are more than quadratic in excitation
operators. The new operator-independent part is named H0,
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while the terms that are quadratic in excitation operators are
moved to H2. We may replace Nα

0 by Nα directly in H1 and
H2 to the same order of approximation. The treatment of the
linear terms in H1 is only relevant for a calculation of the free
energy, which is left for Appendix D.

We set N↑ = Nx and N↓ = N (1 − x), with 1/2 � x � 1
when � � 0. We view x as a variational parameter that can be
determined by minimizing the free energy. The expression for
H0 is

H0 = (
εk01 − μ

)
N + �N (1 − 2x)

+ N
√

x(1 − x)
∣∣sk01

∣∣ ∑
i=1,3

cos
(
γk0i + �θi

)

+ UN2

4Ns
{3x2 + 3(1 − x)2

+ 2αx(1 − x)[2 + cos(�θ1 − �θ3)]}, (19)

where �θi ≡ θ
↓
i − θ

↑
i .

We write H2 as

H2 = 1

4

∑
k

′
A†

kMkAk. (20)

Introducing p± = k ± 2k01 and q± = −k ± 2k01, the operator
vector is defined by

A†
k = (

A↑†
k , A↑†

−k, A↑†
p+ , A↑†

q+ , A↑†
p− , A↑†

q− ,

A↓†
k , A↓†

−k, A↓†
p+ , A↓†

q+ , A↓†
p− , A↓†

q− ,

A↑
k , A↑

−k, A↑
p+

, A↑
q+

, A↑
p−

, A↑
q−

,

A↓
k , A↓

−k, A↓
p+

, A↓
q+

, A↓
p−

, A↓
q−

)
, (21)

and Mk is a 24×24 matrix on the form

Mk =
(

M1 M2

M∗
2 M∗

1

)
. (22)

The matrix elements are presented in Appendix B. They are
obtainable from the expression (9), by using commutators and
making −k terms explicit, a procedure that produces some
additional operator-independent terms in the Hamiltonian, rel-
evant for a calculation of the free energy. More details are
found in Appendix D.

The 24 eigenvalues of MkJ are equally distributed around
0 [32,33]. Eight eigenvalues are within numerical accuracy
0, while the remaining eigenvalues are doubly degenerate,
upon inserting the values of the variational parameters which
minimize the free energy. The two lowest positive, dou-
bly degenerate eigenvalues have anomalous modes [13], and
therefore enter the diagonalized Hamiltonian with a negative
sign [33]. By moving the chemical potential controlling the
quasiparticles to just below the (negative) minimum of the
excitation spectrum, −E0, Bose-Einstein statistics ensure that
the majority of the quasiparticles will occupy the minima
of the lowest band. Since we prefer to have only positive
energy bands, we move the zero of energy by E0. The final
diagonalized Hamiltonian reads [34]

H2 = −E0Nq +
∑

k

′ 6∑
σ=1

�Eσ (k)

(
B†

k,σ
Bk,σ + 1

2

)
, (23)

FIG. 3. The energy bands in the SW phase in the direction
kx = ky. The dashed vertical lines show the positions of k = ±k01.
The parameters were set to U/t = 0.1, n = 1, λR/t = 10, α = 1.5,
and �/t ≈ 12.57. This value of � corresponds to 0.9 times the
PWSW transition line (12).

where the quantity Nq ≡ ∑′
k

∑6
σ=1(B†

k,σ
Bk,σ + 1/2) was de-

fined to simplify the expression, and � is used to indicate that
the energies have been shifted by E0. The energies are ordered
such that �Ei(k) � �Ej (k) if j � i and are shown in Fig. 3.
Since there are only two degrees of freedom originally, spin
up and spin down, the four highest excitation energies will be
considered unoccupied. The lowest energy band, �E6(k), is
the most interesting band in the context of BEC and is shown
in Fig. 4. It has its global minima at the condensate momenta,
and gapped roton minima at the unoccupied minima of the
single-particle spectrum. Note the highly unusual feature that,
unlike the typical results when introducing interactions, the
minima at the condensate momenta show a nonlinear behav-
ior.

These quadratic minima indicate that the excitations in the
SW phase have zero sound velocity, and separate our results
from those of continuum SW phase excitation spectra studied
in [20,21], wherein nonzero sound velocities are found. The
SW phase excitation spectrum, found numerically in the spin
basis, is the main result of this paper. In the next subsection
we consider the helicity projection, and find that it is a poor
approximation in the SW phase. The treatment is however
useful, since it provides a way to explain the quadratic be-
havior found in the SW phase.

FIG. 4. Left: The lowest energy band in the SW phase shown
along kx for ky = k0. Right: The quadratic minimum close to k01 for
the lowest energy band in the direction kx = ky. The dashed vertical
lines show the position of k = k01. The parameters are the same as in
Fig. 3.
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FIG. 5. The figure represents all the scattering processes relevant
for the quadratic part of the Hamiltonian in the SW phase. Time
progresses upward, and the reverse processes are also relevant. Inter-
changing either the incoming or the outgoing momenta reveals other
relevant scatterings. The dotted line illustrates the on-site interaction
with strength U αβ when the two particle lines have spin α and β,
respectively.

B. Helicity projection

Obtaining the quasiparticle excitation spectrum, utilizing
the helicity projection, follows the same course as in the
spin basis, the difference being the projection onto the lowest
helicity band. This reduces the number of components of the
basis to 12. The matrix is presented in Appendix C.

The excitation energies are, at first glance, similar to the
energies �E2i, i = 1, 2, 3, in the spin basis. We denote them
�EH

σ , σ = 1, 2, 3. The lowest band �EH
3 (k), however, has

some properties that separate it from the spin basis result
�E6(k). At zero Zeeman field and λR/t <

√
6, the minima

at the condensate momenta show a linear behavior, contrary
to the result in the spin basis, but more in accord with the in-
tuition one would have based on a standard single-momentum
condensate. However, for λR/t >

√
6 and � = 0 or any λR

with nonzero �, a quadratic behavior is found.
The value λR/t = √

6 corresponds to k0 = π/3. This is the
point where k + 2k01 at k = k01 goes beyond the 1BZ. The
term sk/|sk| involved in the transformation to the helicity basis
has discontinuities when k crosses the boundary of the 1BZ.
For λR/t <

√
6 and � = 0 certain matrix elements are zero

around k01 or −k01, while they become nonzero when λR/t >√
6. This appears to be the root cause for why the linear

behavior of the excitation spectrum is replaced by quadratic
behavior.

The absolute squares of these matrix elements represent the
transition rates of the scatterings (c), (d), (e), and (f) in Fig. 5.
There is no reason why the transition rates of these scatterings
should be zero, something which is supported by the fact that
they are nonzero in the original spin basis. The conclusion is
that the helicity projection fails for weak SOC and zero Zee-
man field due to the discontinuities in the transformation to
the helicity basis with zero Zeeman field. Furthermore, the he-
licity projection should be a better approximation at stronger
SOC, where it too shows quadratic behavior even without a
Zeeman field. However, it is found that when λR/t >

√
6,

the global minima of the excitation spectrum occur at ±k02,
instead of at ±k01 as in the spin basis. Since the spin basis
is more accurate than the helicity projection, we conclude
that the helicity projection fails in the SW phase at almost all

parameters, the possible exception being for λR/t <
√

6 and
� > 0.

The main reason why the discontinuities in the transfor-
mation to the helicity basis when � = 0 have such a large
influence on the SW phase, but apparently no influence on the
PW phase, is the presence of two condensate momenta. In the
PW phase, the momentum indices of the operators are k and
p = 2k01 − k only. At the condensate momentum, p = k01

and there are no problems with this crossing the boundary of
the 1BZ since the condensate momentum is kept in the 1BZ
by definition. On the other hand, the presence of two conden-
sate momenta enables more scattering processes such that,
e.g., p+ = k + 2k01 becomes one of the momentum indices
in the operators. Hence, it is possible for the discontinuities
of the transformation to the helicity basis to directly influence
the excitation spectrum close to the condensate momenta.

The remaining question is why the excitation spectrum in
the SW phase shows quadratic behavior close to its minima,
contrary to the usual Bogoliubov result when introducing in-
teractions. The simplest explanation is that it is a consequence
of the presence of more than one condensate momentum, a sit-
uation which has no counterpart in the standard treatments of
such interacting condensates. The presence of two condensate
momenta is the reason for the large basis, and the number of
nonzero matrix elements. Furthermore, removing a certain set
of these matrix elements is required to obtain a linear result.
We further discuss how interactions generally lead to linear
minima, and how the SW phase breaks with the conventional
behavior in Appendix F.

C. Stability

With � = 0 it is found that the SW phase is stable when
α > 1 [34]. Introducing a Zeeman field, we find that on ap-
proaching the PWSW transition line (12) from below, the
excitation spectrum in the SW phase becomes complex, indi-
cating a dynamical instability. Like the energetic instability of
the PW phase, this occurs very close to the PWSW transition
line. Hence, there is a small area close to this line where
neither phase is stable. It may be of interest to study which
phase the system will enter in this area. The main candidate
is the lattice-wave (LW) phase involving all four condensate
momenta [24,34], which did not enter the phase diagram when
neglecting excitations [19]. This paper will not explore this
further.

When λR/t = 1.0 and α � 2 we find that energetic insta-
bilities develop for � around approximately half the PWSW
transition line and beyond ∼0.9 of the PWSW transition line.
A greater set of values for � is affected by these instabilities
when α is increased. These energetic instabilities are charac-
terized by a distance between the minima of the excitation
spectrum and the condensate momenta considered to be so
large that these no longer correspond to the same lattice sites.
If the minima of the excitation spectrum are not located at
the condensate momenta, then the initial assumption that the
system condenses at ±k01 is invalid. Once again, this paper
will not explore the system in the region where neither the
PW nor the SW phase is stable. We note that upon choosing
λR/t = 10, these energetic instabilities disappear inside the
region where the SW phase is already dynamically unstable.

053318-6



PLANE- AND STRIPE-WAVE PHASES OF A … PHYSICAL REVIEW A 102, 053318 (2020)

FIG. 6. The lowest bands in the 1BZ for the single-particle problem, λ−
k , for the PW phase using the helicity projection, EH (k), and for

the SW phase using the spin basis, �E6(k). The black lines are contour lines. Two values of �/�c < 1 are considered, and λR/t = 3.0 in all
figures. The lowest helicity band has been shifted so that its minimum is zero. In the PW phase we used U/t = 1.0 and α = 0.9 to better show
its difference from the lowest helicity band. In the SW phase, U/t = 0.1 and α = 10 were used to ensure stability at both values of �/�c.
Note the fourfold symmetry of the helicity bands, reflecting the underlying fourfold symmetry of the optical lattice.

One can understand this behavior by considering Fig. 1 show-
ing the PWSW transition line at different SOC strengths.
We notice that when the strength of SOC increases, the
maximum value of �/�c found in the SW phase decreases.
Hence, a value of � close to the PWSW transition line when
λR/t = 10 represents a significantly smaller �/�c than when
λR/t = 1.0.

A calculation of the ground-state depletion for a weakly in-
teracting Bose gas can be found in, e.g., [29]. The calculation
here is completely analogous, except now we must use the
numerically constructed BV transformation matrix [32–34].
At zero temperature and for parameters where the SW phase
is stable, we find that (N − N0)/N is lower than 1% when
U/t = 0.1, confirming the validity of the mean-field theory.

Though we have calculated all bands for the single-particle
problem and the two phases, the most important bands in
the context of BEC are the lowest bands. We summarize our
results in Fig. 6 showing the lowest bands in the 1BZ. As
we can also see from (10), the length of the momenta at the
minima decrease when � increases. The lowest band in the
PW phase is very similar to the lowest helicity band except
for the phonon minimum at the condensate momentum and
gapped roton minima at the other three momenta where λ−

k
has its minima. The figure also reveals that the SW phase
is special, since the maximum value of its lowest band is
much lower than the lowest helicity band. This is connected
to the presence of both zero and anomalous modes in the SW
phase excitation spectrum. These are caused by the presence
of two condensate momenta, enabling a larger set of possible
scatterings and so a larger matrix from which the excitation
spectrum is obtained. The presence and location of the four

local minima is however very similar to the lowest helicity
band. There are two quadratic minima at the condensate mo-
menta, and gapped roton minima at the other two momenta
where λ−

k has its minima.

V. CONCLUSION

We have explored the plane- and stripe-wave phases of
a weakly interacting SOC BEC on a square lattice in the
presence of a Zeeman field. It was found that while the he-
licity projection provides an excellent approximation for the
PW phase with only one condensate momentum, it fails to
describe the SW phase which has two condensate momenta.
While the PW phase has a phonon minimum at its con-
densate momentum showing a nonzero, anisotropic speed of
sound, the minima in the SW phase excitation spectrum show
quadratic behavior and hence zero sound velocity. At strong
SOC, the phase diagram based on the operator-independent
part of the Hamiltonian provides a good description of the
system. The PW phase develops an energetic instability close
to the PWSW transition line, while the SW phase becomes
dynamically unstable when approaching the PWSW transition
line.
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APPENDIX A: PW PHASE MATRIX IN SPIN BASIS

In the spin basis, the PW phase operator basis, Ak, is(
A↑

k , A↑
2k01−k, A↓

k , A↓
2k01−k, A↑†

k , A↑†
2k01−k, A↓†

k , A↓†
2k01−k

)T
.

The matrix takes the form (22) with M1 =⎛
⎜⎜⎜⎝

M11(k) 0 M13(k) 0

0 M11(2k01 − k) 0 M13(2k01 − k)

M∗
13(k) 0 M33(k) 0

0 M∗
13(2k01 − k) 0 M33(2k01 − k)

⎞
⎟⎟⎟⎠

and

M∗
2 =

⎛
⎜⎜⎜⎜⎝

0 M52 0 M72

M52 0 M72 0

0 M72 0 M74

M72 0 M74 0

⎞
⎟⎟⎟⎟⎠.

The matrix elements are

M11(k) = εk + Unx + G↑
k0
,

G↑
k0

= 4t cos k0 + ∣∣sk01

∣∣
√

1 − x

x
,

M33(k) = εk + Un(1 − x) + G↓
k0
,

G↓
k0

= 4t cos k0 + ∣∣sk01

∣∣√ x

1 − x
,

M13(k) = sk + Unα
√

x(1 − x)ei(θ↓
1 −θ

↑
1 ),

M52 = Unxei2θ
↑
1 ,

M72 = Unα
√

x(1 − x)ei(θ↑
1 +θ

↓
1 ),

M74 = Un(1 − x)ei2θ
↓
1 . (A1)

Where it leads to simplifications we have used the fact that
θ

↓
1 − θ

↑
1 = π/4 minimizes the free energy in the PW phase.

APPENDIX B: SW PHASE MATRIX IN SPIN BASIS

Due to the form of the matrix Mk (22) together with the
fact that M1 is Hermitian and M2 is symmetric [32,33] it is
enough to specify rows 1,2,7, and 8 of M1 and M∗

2 . The rest
of the matrix may then be filled, and any unspecified elements
are 0. With the values of the variational parameters found to
minimize the free energy inserted, we have

M1,row1 = (M1,1(k), 0, M1,3, 0, M∗
1,3, 0,

sk, 0, M1,9, 0,−iM∗
1,9, 0),

M1,row2 = (0, M1,1(k), 0, M1,3, 0, M∗
1,3,

0,−sk, 0, M1,9, 0,−iM∗
1,9),

M1,row7 = (s∗
k, 0, iM1,9, 0, M∗

1,9, 0,

M7,7(k), 0, M7,9, 0, M∗
7,9, 0),

M1,row8 = (0,−s∗
k, 0, iM1,9, 0, M∗

1,9,

0, M7,7(k), 0, M7,9, 0, M∗
7,9), (B1)

M∗
2,row1 = (0, M13,2, 0, M13,4, 0, M13,6,

0, 0, 0, M13,10, 0, M13,12),

M∗
2,row2 = (M13,2, 0, M13,4, 0, M13,6, 0,

0, 0, M13,10, 0, M13,12, 0),

M∗
2,row7 = (0, 0, 0, M13,10, 0, M13,12,

0, M19,8, 0, M19,10, 0, M19,12),

M∗
2,row8 = (0, 0, M13,10, 0, M13,12, 0,

M19,8, 0, M19,10, 0, M19,12, 0). (B2)

The matrix elements in M1 are

M1,1(k) = εk + Un

2
[x + (1 − x)α] + G↑

k0
,

G↑
k0

= 4t cos k0 + ∣∣sk01

∣∣
√

1 − x

x
,

M7,7(k) = εk + Un

2
(1 − x + xα) + G↓

k0
,

G↓
k0

= 4t cos k0 + ∣∣sk01

∣∣√ x

1 − x
,

M1,3 = Un

4
ei(θ↑

1 −θ
↑
3 )[2x − (1 − x)α],

M1,9 = Unα

4

√
x(1 − x)ei(θ↓

1 −θ
↑
3 ),

M7,9 = Un

4
ei(θ↑

1 −θ
↑
3 )[−2(1 − x) + xα], (B3)

while the elements in M∗
2 are

M13,2 = Unxei(θ↑
1 +θ

↑
3 ),

M13,4 = Un

4
xei2θ

↑
1 ,

M13,6 = Un

4
xei2θ

↑
3 ,

M13,10 = Unα

4

√
x(1 − x)ei(θ↓

1 +θ
↑
1 ),

M13,12 = Unα

4

√
x(1 − x)ei(θ↓

3 +θ
↑
3 ),

M19,8 = Un(1 − x)ei(θ↓
1 +θ

↓
3 ),

M19,10 = Un

4
(1 − x)ei2θ

↓
1 ,

M19,12 = Un

4
(1 − x)ei2θ

↓
3 . (B4)

The angles are left unspecified in the elements where insert-
ing them would not lead to simplifications. We mentioned
that setting a certain subset of these matrix elements to zero
leads to a linear behavior close to the minima of the excita-
tion spectrum. One choice is M1,3 = M7,9 = M1,9 = M13,2 =
M13,6 = M13,12 = M19,8 = M19,12 = 0 with � = 0. These are
connected to the scatterings (c), (d), (f), and (g) in Fig. 5, i.e.,
mostly the scatterings involving both condensate momenta,
supporting the claim that the quadratic behavior in the SW
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phase is caused by the presence of more than one condensate
momentum.

APPENDIX C: SW PHASE MATRIX
IN HELICITY PROJECTION

The operator vector is

Ck = (Ck,C−k,Cp+ ,Cq+ ,Cp− ,Cq− ,

C†
k ,C†

−k,C†
p+ ,C†

q+ ,C†
p− ,C†

q− )T . (C1)

The 12×12 matrix MH
k is of the form (22). It is enough to

specify rows 1 and 2 of MH
1 and MH∗

2 :

MH
1,row1 = (M11(k), 0, M13(k), 0, M15(k), 0),

MH
1,row2 = (0, M11(−k), 0, M13(−k), 0, M15(−k)),

MH∗
2,row1 = (0, M72(k), 0, M74(k), 0, M76(k)),

MH∗
2,row2 = (M72(k), 0, M74(−k), 0, M76(−k), 0). (C2)

The matrix elements are defined as follows:

M11(k) = λ−
k − λ−

k01
− Un

2

(
3u4

k01
+ 3

∣∣vk01

∣∣4 + 2αu2
k01

∣∣vk01

∣∣2) + Un
(
2u2

k01
u2

k + 2
∣∣vk01

∣∣2|vk|2 + αu2
k01

|vk|2 + α
∣∣vk01

∣∣2
u2

k

)
,

M13(k) = Un

4

(
2u2

k01
ukup+ − 2

∣∣vk01

∣∣2
v∗

kvp+ − αuk01vk01v
∗
kup+ + αu2

k01
v∗

kvp+ + αv∗
k01

uk01 ukvp+ − α
∣∣vk01

∣∣2
ukup+

)
,

M15(k) = Un

4

(
2u2

k01
ukup− − 2

∣∣vk01

∣∣2
v∗

kvp− + αuk01vk01v
∗
kup− + αu2

k01
v∗

kvp− − αv∗
k01

uk01 ukvp− − α
∣∣vk01

∣∣2
ukup−

)
,

M72(k) = Un
[
u2

k01
u2

k + (
v∗

k01

)2
v2

k

]
,

M74(k) = Un

4

[
u2

k01
ukuq+ + (

v∗
k01

)2
vkvq+ + αuk01v

∗
k01

vkuq+ + αuk01v
∗
k01

ukvq+

]
,

M76(k) = Un

4

[
u2

k01
ukuq− + (

v∗
k01

)2
vkvq− − αuk01v

∗
k01

vkuq− − αuk01v
∗
k01

ukvq−

]
. (C3)

When � = 0 and λR/t <
√

6, M13(k) = 0 and M76(k) = 0
around k01, while M15(k) = 0 and M74(k) = 0 around −k01.
Such cancellations are considered erroneous upon comparison
with the spin basis.

APPENDIX D: FREE ENERGY

In this Appendix we will give an overview of the methods
involved in calculating the free energy in the SW phase, and
hence determining the values of the variational parameters.
The use of commutators when setting up the matrix Mk gives a
shift −∑′

k[M1,1(k) + M7,7(k)]/2 of the operator-independent
part of the Hamiltonian. Employing the BV transformation,
we numerically transform H1 to the basis where H2 is diag-
onal. The terms that are linear in excitation operators may
then be removed by completing squares using terms from H2.
We shift some operators by complex numbers, which does not
alter their interpretation since their commutation relations are
conserved. Finally, this procedure leads to a shift of the free
energy by a real number. More details can be found in [34].

We consider the free energy at zero temperature, such that
F = 〈H〉. Using that 〈B†

k,σ
Bk,σ 〉 = 0 for k 
= ±k01 we may

now calculate the free energy numerically at a given set of
parameters. To find the minimum of F with respect to a varia-
tional parameter, we vary it while keeping the other variational
parameters set to the values that minimize H0. The result is
that k0 = k0m and x equal to the value that minimizes H0 also
minimizes F to a good approximation. Upon choosing θ

↑
1 as

a free parameter, the angles that minimize F are

θ
↓
1 = θ

↑
3 = θ

↑
1 + π

4
and θ

↓
3 = θ

↑
3 + 5π

4
. (D1)

A more rigorous approach would be to use simulated anneal-
ing [35] to find the global minimum of the free energy in terms
of the set of variational parameters. This was performed on the
SW phase with no Zeeman field in [36], and again the values
that minimize H0 were found to minimize F .

In general we find that the values of the variational parame-
ters which minimize F = 〈H〉 can be approximated very well
by the values that minimize H0. This can be understood from
the order of the terms in the Hamiltonian (6). H0 is of order
N2/Ns, H1 of order N

√
N/Ns, and H2 of order N/Ns. When

n = N/Ns = 1 and Ns 
 1 it is natural that H0 dominates the
minimization. In experiments, typical lattice sizes are Ns ∼
(1–3)×105, while n is most often of order unity [13,37,38].
We have therefore set n = 1 when producing the figures, and
have assumed that μ is set to the value which ensures this.

APPENDIX E: SPECIAL MOMENTA AND ENERGETIC
INSTABILITY IN SW PHASE

This Appendix will briefly mention some subtle points not
considered in the paper. First, there are special momenta that
require a separate treatment [34]. Considering the SW phase
operator vector (21) at k = 0 and ±2k01 several elements be-
come equal, which is not acceptable in the BV transformation.
Additionally, at k = ±3k01 there are elements involving the
condensate momenta ±k01 in (21). Such terms should have
been excluded from the sum

∑′′
kk′ as mentioned after (9).

However, the physical interpretation of these results is
problematic. For instance, the special eigenvalues found at
±2k01 do not correspond to the eigenvalues of M±2k01 J sug-
gesting the excitation spectrum is discontinuous. For α close
to 3 and � close to 0 these special eigenvalues are lower
than the minimum of the excitation spectrum, which seems to
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indicate energetic instabilities. However, we suggest treating
this as an artifact of the BV diagonalization, rather than an
indication of instability in the SW phase. On physical grounds
we expect a continuous excitation spectrum.

For α = 3 and no Zeeman field we find that the anomalous
modes in the excitation spectrum are zero for all k. Hence, the
lowest energy band is zero for all k, indicating that the phase
is unstable. This seems to be caused by the fact that |M1,3| and
|M7,9| become equal to |M13,4|, |M13,6|, |M19,10|, and |M19,12|.
This means that the transition rates of the scatterings (c) and
(d) become equal to the rates of (e) and (f) in Fig. 5. These ma-
trix elements are related to scatterings where the k-dependent
particles have the same spin. A similar behavior is not found
for � > 0, since then x 
= 1/2. At least when ignoring any
indications of energetic instability from the special momenta
and keeping the SOC strength large, this energetic instability
appears to be located at a single point in �-α space and was
therefore omitted in the paper.

APPENDIX F: LINEAR EXCITATION SPECTRA
IN INTERACTING BOSE GASES

In this Appendix we review Bogoliubov’s treatment of the
weakly interacting Bose gas, focusing on the delicate cancel-
lations that are required for the interactions to give a linear
behavior of the excitation spectrum close to its minimum.
From this, we will give arguments for why the excitation spec-
trum in the PW phase showed a linear behavior in momentum,
while the SW phase showed a quadratic behavior. We follow
the treatments in [13,29,30] with the exception that we will
consider the Bose gas defined on a 2D square lattice. The
Hamiltonian is

H =
∑

k

(εk − μ)A†
kAk + U

2Ns

∑
kk′ pp′

A†
kA†

k′ ApAp′δk+k′,p+p′ .

(F1)

It is assumed that the condensate is dominant, such that terms
containing more than two excitation operators are neglected.
Also, condensate operators are replaced by their expectation
values. From now on we focus solely on the quadratic part of
the Hamiltonian, H2, which is

H2 =
∑
k 
=0

(Ek + Un)A†
kAk + Un

2

∑
k 
=0

(AkA−k + A†
kA†

−k).

(F2)

Here, we introduced Ek = 4t + εk which varies between 0 and
8t and has a quadratic minimum at k = 0. Before applying the
Bogoliubov transformation [25], it is convenient to rewrite H2

to

H2 = 1

2

∑
k 
=0

[(Ek + Un)(A†
kAk + A−kA†

−k)

+Un(AkA−k + A†
kA†

−k)]. (F3)

We refer to [13,29,30]. Notice that in (F2) the off-diagonal
terms are Un/2 whereas the diagonal term contains Un.
Then, we use commutators and let k → −k. The off-diagonal
operator combinations are symmetric under this combined
operation. Hence, the factor of 1/2 discrepancy is absent in

(F3). Now, the term Un appears both in the diagonal term
Ek + Un as well as the off-diagonal term. This leads to a
cancellation of the constant term (Un)2 in the expression
(Ek + Un)2 − (Un)2 which is involved in obtaining the ex-
citation spectrum ωk = √

Ek(Ek + 2Un). For ωk to show a
linear behavior close to its minimum, it was essential that the
(Un)2 term canceled exactly.

We note that similar cancellations are found for two-
component condensates at zero momentum [23,34]. These
give linear minima in the excitation spectra which are obtained
using the BV transformation. Now, we move on to the two
phases studied in this paper, and focus on the spin basis.

In the PW phase, we encounter similar effects as in the
interacting Bose gas considered above. The PW phase matrix
elements are presented in Appendix A. Notice that |M52|
is contained in M11(k), |M74| is contained in M33(k), and
|M72| is contained in M13(k). While we are unable to get
analytic expressions for the excitation spectrum in this case,
it is likely these relations between the matrix elements allow
the cancellations necessary to get a linear spectrum. These
relations between the matrix elements are caused by the way
we rewrite the Hamiltonian by using commutators and, in
this case, symmetrizing around k01. The interaction terms
in the M2 matrix elements originally have a factor of 1/2
difference from the interaction terms in the M1 matrix ele-
ments. However, since the operator products associated with
these terms are symmetric under the combined operation of
using commutators and letting k → 2k01 − k this discrepancy
disappears, analogously to what happened in the interacting
Bose gas. A key aspect the PW phase shares with the case
considered in detail above is that the condensate exists only at
one momentum, albeit finite instead of zero.

In the SW phase, the condensate exists at two distinct finite
momenta. This is a qualitatively new aspect not shared by
the PW phase or the standard case with condensate at zero
momentum. Moreover, it is clearly a lattice effect. In the SW
phase, all the scatterings represented in Fig. 5 are relevant for
the quadratic part of the Hamiltonian. In the interacting Bose
gas, there are scatterings like (a), (b), and (g), if we let the
condensate momenta go to zero. In the PW phase, only (a)
and (e) are relevant. In these cases it is the symmetries in
(g) or (e) which lead to a linear behavior. Scattering (e) is
symmetric about k01, scattering (f) is symmetric about k03,
while scattering (g) is symmetric about k = 0.

As usual, we rewrite the sum over k in the Hamiltonian in
the SW phase, using commutators and a symmetry. Choos-
ing the symmetry of scattering (g), i.e., symmetrizing about
k = 0 by making −k terms explicit, is the only choice which
does not make the operator basis larger. The resulting matrix
elements are represented in Appendix B.

Because the scattering (g) can be constructed in two
ways due to the two condensate momenta, its corresponding
matrix elements get an extra factor of 2. Therefore, e.g.,
|M13,2| = Unx is a factor of 2 larger than the corresponding
U -dependent term in M1,1(k). The scatterings (e) and (f) are
not symmetric about k = 0. Hence, their matrix elements
retain their factor of 1/2 discrepancy from the diagonal el-
ements, also after the symmetrization of the Hamiltonian.
Therefore, e.g., |M13,4| = Unx/4 is a factor of 1/2 smaller
than the corresponding U -dependent term in M1,1(k).
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Though we do not have analytic expressions for the exci-
tation spectrum, we believe these discrepancies are the reason
for the quadratic behavior in the SW phase. Essentially, the
conditions for delicate cancellations which give linear behav-
ior are not present. The presence of two condensate momenta
yields a greater set of scattering processes, which gives a
larger operator basis, and a larger matrix from which the

excitation spectrum is obtained. This makes the eigenvalue
problem more complicated, and reduces the likelihood of
cancellations. In particular, the simultaneous presence of the
scatterings (e), (f), and (g) with separate symmetries is a
unique feature of more than one condensate momentum, and
seems to be essential for why the necessary cancellations are
not present to give a linear behavior.
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