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Induced interactions and quench dynamics of bosonic impurities immersed in a Fermi sea
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We unravel the ground-state properties and the nonequilibrium quantum dynamics of two bosonic impurities
immersed in a one-dimensional fermionic environment by applying a quench of the impurity-medium interaction
strength. In the ground state, the impurities and the Fermi sea are phase separated for strong impurity-medium
repulsions while they experience a localization tendency around the trap center for large attractions. We
demonstrate the presence of attractive induced interactions mediated by the host for impurity-medium couplings
of either sign and analyze the competition between induced and direct interactions. A quench to repulsive
interactions triggers a breathing motion in both components, with an interaction dependent frequency and
amplitude for the impurities, and a dynamical phase separation between the impurities and their surrounding
for strong repulsions. For attractive postquench couplings a beating pattern owing its existence to the dominant
role of induced interactions takes place with both components showing a localization trend around the trap center.
In both quench scenarios, attractive induced correlations are manifested between noninteracting impurities and
are found to dominate the direct ones only for quenches to attractive couplings.
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I. INTRODUCTION

Multicomponent quantum gases constitute an ideal play-
ground for investigating a plethora of many-body (MB)
processes [1,2] including in particular the generation of
quasiparticles [3,4] such as polarons. Quasiparticle forma-
tion can be studied owing to the unprecedented experimental
tunability of the impurity-medium interaction strength, via
Feshbach resonances [5–7], while systems containing few
particles can be realized especially in one spatial dimen-
sion [8,9]. Depending on the quantum statistics of the host,
these quasiparticles are known as Bose [10,11] and Fermi
[12,13] polarons, respectively. Their existence and a variety
of their properties have already been experimentally probed
in both Bose [14–16] and Fermi [17–21] gases, e.g., via em-
ploying injection spectroscopy [14,15,20]. Progress regarding
the understanding of the quasiparticle features has also been
corroborated by an extensive theoretical activity revealing
different aspects of their underlying dressing mechanism such
as their effective mass [22,23], lifetime [18], induced interac-
tions [24–26], and bound states termed bipolarons [12,27] or
trimerons [28–30].

Accordingly, the interaction of the impurities with their
surrounding leads to deformations of the latter in the vicin-
ity of the former being manifested as impurity-medium
bound states [31] for strong attractions as well as sound
wave emission [32] and phase separation [25,33] for repul-
sive interactions. These phenomena are a direct imprint of
the inevitable entangled nature of these systems [33] whose
nonequilibrium dynamics is far less appreciated [34]. The

impurity dynamics holds the premise of unveiling even more
complex processes that will shape our understanding on these
settings and may be exploited in future technological applica-
tions. To date, remarkable demonstrations of the impurities’
nonequilibrium dynamics include the spontaneous generation
of nonlinear excitations [22,35], collision induced pattern
formation [36–40], their mediated correlations [25,41,42]
and relaxation processes [43–45], as well as their transport
properties in optical lattices [46–48]. It is also important
to emphasize that the above-mentioned investigations have
predominantly considered a single impurity while the ef-
fect of larger impurity concentrations leading to enhanced
correlation-induced phenomena is until now largely unex-
plored. For these latter settings, the interplay of the quantum
statistics between the impurities and the host is of importance
especially for the induced impurity-impurity correlations.

In this context, a very promising candidate is a fermionic
environment containing two bosonic impurities which can
interact via direct s-wave scattering. Indeed, most of the
experimental and theoretical endeavors of Fermi polarons
have been mainly focused on the limiting case of a strongly
spin imbalanced Fermi gas [49–56], while the situation of
bosonic impurities in a Fermi sea is arguably much less
studied [20,57–59]. In this setting it is very interesting to
reveal the presence and nature of induced impurity-impurity
interactions which are known to be suppressed for fermionic
impurities [24,26,35]. The study of the competition between
induced and direct s-wave interactions, with the latter being
naturally absent for fermionic impurities, is an intriguing
prospect. An additional perspective is the possible emergence
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of impurity-impurity and impurity-medium bound states for
strong attractions. Certainly, the identification of the above
properties in the dynamical response of the system, e.g., sub-
jected to an impurity-medium interaction quench [60,61], as
well as the characterization of the respective pattern forma-
tion especially of the host are desirable. In order to address
these questions we consider, as a paradigmatic setup, a
one-dimensional (1D) harmonically trapped Bose-Fermi (BF)
mixture consisting of two bosonic impurities immersed in
a few-body fermionic environment. To track the stationary
properties and importantly the quantum dynamics of this im-
purity setting we resort to the multilayer multiconfiguration
time-dependent Hartree method for atomic mixtures (ML-
MCTDHX) [62], being a variational approach that allows us
to capture all the relevant correlations of the BF mixture.

For the ground state we find that the impurities and the
fermionic environment phase separate for strong impurity-
medium repulsions [35,63,64], while they exhibit a localiza-
tion tendency close to the trap center for large attractions.
Interestingly, attractive induced impurity-impurity interac-
tions [59] mediated by the fermionic host are revealed for the
case of noninteracting bosons for increasing impurity-medium
repulsion and attraction. However, for repulsively interacting
impurities we unveil that the induced interactions dominate
the direct s-wave ones for increasing impurity-medium attrac-
tions.

A quench from zero to finite repulsive impurity-medium
interactions triggers a breathing motion [65,66], in each
component, with an interaction dependent frequency and
amplitude for the impurities. Moreover, a dynamical impurity-
bath phase separation takes place for quenches to strong
repulsions. Importantly, induced impurity-impurity correla-
tions mediated by the host are identified during the evolution
of two noninteracting impurities and become more pro-
nounced for quenches to stronger repulsions. However, in
the case of repulsively interacting impurities a competition
of induced and direct interactions is evident with the latter
dominating the former and forcing the impurities to reside in
a two-body superposition.

Quenching to attractive impurity-medium interactions
gives rise to a beating pattern [25] on the single-particle
level which originates from the participation of two breath-
ing frequencies in the dynamics of the impurities due to the
dominant presence of their attractive induced interactions. The
impurities show a spatial localization tendency around the trap
center leading to a density accumulation of the Fermi sea
at their instantaneous location. The strength of the attractive
induced interactions is larger compared to the reverse quench
scenario and it is possible to overcome the direct impurities
coupling for large postquench attractions [25,42]. In all cases,
we show that the degree of impurity-medium entanglement
is appreciable, and exhibits a hierarchy. For instance, it is
larger for fixed impurity interaction and increasing quench
amplitude.

This work is structured as follows. Section II introduces
the setup under consideration (Sec. II A), the employed
many-body variational approach (Sec. II B), and the main
observables (Sec. II C) utilized for the characterization of the
ground state and the dynamics of the BF mixture. In Sec. III
we address the ground-state properties of the BF mixture

with a particular focus on the impurity-impurity induced in-
teractions (Sec. III B). The nonequilibrium dynamics upon
considering a quench of the impurity-medium coupling to ei-
ther repulsive (Sec. IV A) or attractive (Sec. IV B) interaction
regimes is discussed in Sec. IV. The emergent entanglement
dynamics is presented in Sec. IV C. We summarize our results
and give an outlook in Sec. V. The Appendix elaborates fur-
ther on the details of our variational method and delineates the
convergence of the presented results exemplarily.

II. THEORETICAL BACKGROUND

A. Setup and Hamiltonian

We consider a particle-imbalanced ultracold BF mixture
containing NB = 2 bosonic impurities and NF = 6 spin-
polarized fermions constituting the environment. The mixture
is assumed to be mass balanced, i.e., MB = MF ≡ M, and both
species are confined in the same 1D harmonic trap, namely,
ωB = ωF ≡ ω. The individual species of such an approxi-
mately mass-balanced BF mixture correspond, for instance,
to bosonic and fermionic isotopes of the same element, e.g.,
7Li - 6Li [67,68] or 171Yb - 172Yb [69]. The underlying MB
Hamiltonian of the above-described system reads

H =
∑

σ=F,B

Nσ∑
i=1

[
− h̄2

2M

(
∂

∂xσ
i

)2

+ 1

2
Mω2(xσ

i

)2
]

+ gBB

∑
i< j

δ
(
xB

i − xB
j

) + gBF

NF∑
i=1

NB∑
j=1

δ
(
xF

i − xB
j

)
. (1)

Operating in the ultracold regime, s-wave scattering consti-
tutes the dominant two-body interaction process and hence
interparticle interactions can be modeled by a short-range con-
tact potential [70]. Note that for the spin-polarized fermions
s-wave scattering is forbidden due to the Pauli exclusion
principle [71,72] and therefore their intraspecies interactions
vanish. Accordingly, the boson-boson and boson-fermion
(alias impurity-medium) 1D effective coupling constants
[70] are gBB = 4h̄2aBB/(Ma2

⊥)[1 − CaBB/a2
⊥,B]−1 and gBF =

4h̄2aBF /(Ma2
⊥)[1 − CaBF /a2

⊥,B]−1, respectively. Here, aBB

(aBF ) is the three-dimensional boson-boson (boson-fermion)
s-wave scattering length and C ≈ 1.4603. The parameter
a⊥ = √

h̄/Mω⊥ denotes the transversal confinement length
scale, with ω⊥ being the transversal trapping frequency.
Importantly, the boson-boson and boson-fermion interac-
tion strengths gBB and gBF can be experimentally tuned
either by means of as

BB or as
BF using Feshbach resonances

[7,73] or via adjusting ω⊥ by employing confinement-induced
resonances [70].

Below, we rescale the MB Hamiltonian of Eq. (1) in terms
of h̄ω⊥. As a consequence, the length, time, and interac-
tion strengths are expressed in units of

√
h̄/Mω⊥ ≡ a⊥, ω−1

⊥ ,

and
√

h̄3ω⊥/M, respectively. We remark that the considered
1D geometry can be experimentally realized by imposing a
strong transverse confinement (ω⊥) compared to the longi-
tudinal (ω‖) one obeying ω = ω‖/ω⊥ � 1 [8,9,74]. For this
reason, in the following, we use ω = 0.1. It is also worth
mentioning that a BF mixture with NB � NF , as the one con-
sidered herein, features suppressed three-body recombination

053317-2



INDUCED INTERACTIONS AND QUENCH DYNAMICS OF … PHYSICAL REVIEW A 102, 053317 (2020)

particle losses, since their rate is known to be proportional to
N2

BNF [75].
In the following, we characterize the ground-state proper-

ties of the highly particle-imbalanced BF mixture particularly
focusing on the emergent correlation patterns and unveil-
ing, for instance, phase-separation processes as well as
identify impurity-impurity induced interactions for varying
boson-boson and impurity-medium interaction strengths (see
Sec. III). Recall that in the absence of an external con-
finement the two species are miscible by means that they
spatially overlap when g2

BF < gBB, otherwise they phase sep-
arate [35,63,64,76,77]. In the presence of an external trap and
also away from the thermodynamic limit the above-mentioned
relation is modified, i.e., gBF should become substantially
larger than gBB in order to achieve the phase separation. Sub-
sequently, we trigger the nonequilibrium dynamics of the BF
mixture by applying a quench of the impurity-medium inter-
action strength (gBF ) from zero to either repulsive (Sec. IV A)
or attractive (Sec. IV B) couplings. Importantly, within these
latter postquench interaction regimes impurity-impurity cor-
relations are finite while they vanish for the initial state.
Thus, the system is driven towards regions of finite impurity-
impurity interactions aiming at exploring their dynamical fate,
the consequent pattern formation, and the associated buildup
of correlations.

B. Variational wave-function ansatz and the quantum
dynamical approach

To investigate the ground-state and most importantly the
quench dynamics of the particle-imbalanced BF mixture we
solve the underlying MB Schrödinger equation using the
variational ML-MCTDHX approach [62]. It is based on ex-
panding the MB wave function in terms of a time-dependent
and variationally optimized basis. This asset enables us to
capture both the inter- and the intraspecies correlations of the
binary system in a computationally efficient manner compared
to methods relying on a time-independent basis set.

The MB wave function, �MB, is initially expressed in the
form of a truncated Schmidt decomposition of rank D [78].
Namely,

�MB(�xB, �xF ; t ) =
D∑

k=1

√
λk (t )�B

k (�xB; t )�F
k (�xF ; t ). (2)

The values of the Schmidt coefficients, λk (t ), characterize the
degree of entanglement of the binary system. In decreasing
order they are also known as natural species populations of
the kth species function. Evidently, the system is entangled
[76,78,79] in the case that multiple coefficients λk (t ) exhibit
a nonzero population. Then, the many-body state [Eq. (2)]
is a superposition of the respective species states instead
of being a direct product of only two states (nonentangled
case).

As a next step, each of the above-mentioned species
functions is expanded in terms of the determinants and per-
manents of dσ distinct time-dependent fermionic and bosonic
single-particle functions (SPFs), respectively. Therefore, each

�σ
k (�xσ ; t ) reads

�σ
k (�xσ ; t ) =

∑
l1, . . . , ldσ∑

li = N

Ck,(l1,...,ldσ )(t )
Nσ !∑
i=1

[sign(Pi)]
ζ

× Pi

[
l1∏

j=1

ϕσ
1 (x j ; t ) · · ·

ldσ∏
j=1

ϕσ
dσ

(xK (dσ )+ j ; t )

]
.

(3)

In this expression, Ck,(l1,...,ldσ )(t ) denote the time-dependent
expansion coefficients of a particular determinant for fermions
or permanent for bosons and ni(t ) is the occupation num-
ber of the SPF, ϕi(x; t ). The index ζ = 0, 1 for bosons and
fermions, respectively, and P is the permutation operator ex-
changing the particle configuration xσ

ν , ν = 1, . . . , Nσ within
the SPFs. Also, sign(Pi ) is the sign of the corresponding
permutation and K (r) ≡ l1 + l2 + · · · + lr−1, where lr is the
occupation of the rth SPF and r ∈ {1, 2, . . . , dσ }. We remark
that the bosonic subsystem is termed intraspecies correlated
if more than one SPF is occupied; otherwise it is fully coher-
ent [80] (see also the discussion below). On the other hand,
the fermionic species exhibit beyond nontrivial Hartree-Fock
correlations when more than NF eigenvalues possess a macro-
scopic population [35,81].

The time evolution of the (NB + NF )-body wave function
obeying the MB Hamiltonian of Eq. (1) is determined by
calculating the corresponding ML-MCTDHX equations of
motion [62]. The latter are found by performing, e.g., the
Dirac-Frenkel variational principle [82,83] for the MB ansatz
provided by Eqs. (2) and (3). As a result we obtain a set of
D2 linear differential equations of motion for the coefficients
λk (t ) being coupled to D[

(NB+dB−1
dB−1

) + (dF

NF

)
] nonlinear integro-

differential equations for the species functions and dF + dB

integro-differential equations for the SPFs. Finally, let us
mention in passing that the variational ML-MCTDHX ansatz
can be easily reduced to different levels of approximation. As
a case example, the corresponding mean-field wave-function
ansatz of the BF mixture corresponds to the case of D = dB =
1 and dF = NF while the respective mean-field equations of
motion are retrieved by following a variational principle (see,
e.g., Ref. [80] for details).

C. Observables and analysis

In the following, we briefly introduce the basic observ-
ables that will be employed in the remainder of our work
in order to characterize both the stationary properties and
the nonequilibrium dynamics of the BF mixture. A particular
emphasis is paid to the impurities subsystem. To visualize the
spatial distribution of the σ = B, F species, i.e., the impurities
and the medium, respectively, on the single-particle level we
invoke the corresponding one-body reduced density matrix:

ρ (1)
σ (x, x′; t ) = 〈�MB(t )|�̂†

σ (x)�̂σ (x′)|�MB(t )〉. (4)

Here, �̂B(x) [�̂F (x)] is the so-called bosonic [fermionic]
field operator acting on position x and satisfying the stan-
dard commutation [anticommutation] relations [71,72]. The
diagonal of ρ (1)

σ (x, x′; t ) is the well-known one-body density
of the σ species, i.e., ρ (1)

σ (x; t ) = ρ (1)
σ (x, x′ = x; t ) [80]. The
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latter is accessible in ultracold atom experiments using the
single-shot absorption imaging technique [1,84] and espe-
cially for few atoms can be retrieved by averaging over a
sample of single shots [36,76]. We remark that the eigen-
functions of the σ -species one-body reduced density matrix
are known as the σ -species natural orbitals, namely, φσ

i . In
this sense, when more than NF (one) fermionic (bosonic)
natural orbitals are significantly populated the correspond-
ing subsystem is called fragmented or intraspecies correlated
[76,80]. Accordingly, the underlying degree of fragmentation
can be quantified via measuring FF (t ) = 1 − ∑NF

i=1 nF
i (t ) and

FB(t ) = 1 − nB
1 (t ) for the fermionic and the bosonic sub-

systems, respectively. Here we consider that the population
of the total number of orbitals is normalized to unity, i.e.,∑dF

i=1 nF
i (t ) = 1 and

∑dB
i=1 nB

i (t ) = 1. Recall that in the MF
limit of the BF mixture [35,72,85] where �MB(�xF , �xB; t ) →
�MF(�xF , �xB; t ) the natural populations of the fermionic and
the bosonic species satisfy the constraints

∑NF
i=1 nF

i (t ) = 1,
nF

i>NF
(t ) = 0, and nB

1 (t ) = 1, nB
i>1(t ) = 0.

The emergence of impurity-medium entanglement can
be identified by calculating the Schmidt coefficients,
λk (t ), participating in the MB wave-function ansatz as
described by Eq. (2). Indeed, in the case that more than
one coefficient is populated, i.e., λk>1(t ) �= 0, then the MB
wave function is not a single product state and the system is
entangled [76,78]. The Schmidt coefficients are essentially
the eigenvalues of the species reduced density matrix, namely,
ρNσ (�xσ , �x′σ ; t ) = ∫

dNσ ′ xσ ′
�∗

MB(�xσ , �xσ ′
; t )�MB(�x′σ , �xσ ′

; t ),
with �xσ = (xσ

1 , · · · , xσ
Nσ−1

), and σ �= σ ′. Consequently, in
order to determine the degree of the impurity-medium
entanglement we use the von Neumann entropy [78,86]
given by

SVN(t ) = −
D∑

k=1

λk (t ) ln[λk (t )]. (5)

It becomes apparent that SVN(t ) � 0 only when λk>1(t ) �= 0,
meaning that entanglement is present. For instance, in the
mean-field limit where λ1(t ) = 1, λk>1(t ) = 0, and entangle-
ment is absent it holds that SVN(t ) = 0.

To infer the role of impurity-impurity and fermion-fermion
two-body correlation processes in the ground state as well as
in the dynamics of the BF mixture in a spatially resolved
manner we resort to the diagonal of the two-body reduced
density matrix [76,80,87]:

ρ (2)
σσ (x, x′; t ) = 〈�MB(t )|�̂†

σ (x′)�̂†
σ (x)�̂σ (x′)

× �̂σ (x)|�MB(t )〉. (6)

This measure refers to the probability of detecting simul-
taneously one impurity σ = B (fermionic, σ = F ) particle
located at x and another one at x′. In that light, it reveals
the occurrence of impurity-impurity (fermion-fermion) two-
body correlations and thus provides insights on how the
two bosons (fermions) behave with respect to one another
[25,35,42,81].

To estimate the strength of the effective interactions be-
tween the two bosonic impurities we utilize their relative

distance [25,26,35] defined as

Drel(t ) =
∫

dx1dx2|x1 − x2|ρ (2)
BB (x1, x2; t )

〈�MB(t )|N̂B(N̂B − 1)|�MB(t )〉 . (7)

Here, N̂B is the bosonic number operator and ρ
(2)
BB (x1, x2; t )

denotes the two-body density matrix [Eq. (6)] of the bosonic
impurities subsystem. The relative distance can be exper-
imentally accessed using in situ spin-resolved single-shot
measurements [88], where in particular the actual shape of
Drel(t ) can be retrieved by averaging over a sample of the
individually obtained images.

III. GROUND-STATE PROPERTIES OF TWO BOSONIC
IMPURITIES IN A FERMIONIC ENVIRONMENT

We consider NB = 2 bosonic impurities in a fermionic
finite-sized medium composed of NF = 6 spin-polarized
fermions. Recall that a 1D Fermi sea with NF > 5 atoms ap-
proaches the behavior of a many-body fermionic environment
(see, for instance, Ref. [9] for a corresponding experimental
verification). In our setting we have checked that our results,
to be presented below, regarding both the ground state and
the dynamics remain qualitatively the same also for NF = 8
(not shown here for brevity). The system is mass balanced
and both species are trapped in the same harmonic oscillator
of frequency ω = 0.1, unless it is stated otherwise. Below,
we examine the ground-state characteristics of the composite
system with a particular focus on the impurities properties
for attractive and repulsive impurity-medium interactions. In
order to discriminate between direct and effective impurity-
impurity interaction effects we analyze both the cases of
noninteracting and interacting impurities. The impact of the
impurities mass on their induced interactions mediated by
the fermionic environment is also discussed. Another objec-
tive of our analysis is to unveil the spatial distributions of
each species and discuss possibly emerging phases of the BF
mixture as well as their associated correlation properties for
varying impurity-medium interactions. To obtain the ground
state of the BF mixture governed by Eq. (1) we employ either
the imaginary-time propagation or the improved relaxation
method within ML-MCTDHX [62].

A. Single-particle density distribution

Let us first inspect the spatial configuration of the ground
state of the bosonic impurities and the fermionic sea for vary-
ing impurity-medium interaction strength gBF . For this reason,
we employ the corresponding single-particle densities ρ

(1)
F (x)

and ρ
(1)
B (x) with respect to gBF (Fig. 1) for both the cases of

two noninteracting gBB = 0 [Figs. 1(a1) and 1(b1)] and two
repulsively interacting with gBB = 1 [Figs. 1(a2) and 1(b2)]
bosonic impurities. Overall, we observe that the behavior of
both the impurities and the medium depends strongly on the
value of gBF . Also ρ

(1)
F (x) exhibits six shallow local density

maxima [Figs. 1(c)–1(h)] almost irrespectively of gBF , which
indicates the presence of six fermions [41] (see also the re-
mark in Ref. [89]). Interestingly, the shape of ρ

(1)
F (x) for fixed

gBF remains almost unchanged between the gBB = 0 and the
gBB = 1 cases [see Figs. 1(a1), 1(a2), and 1(c)–1(h)]. On the
other hand, ρ

(1)
B (x) at a certain value of gBF is affected by
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FIG. 1. Ground-state single-particle density of (a1, a2) the six
fermions and (b1, b2) the two bosons for varying impurity-medium
interaction strength gBF when (a1, b1) gBB = 0 and (a2, b2) gBB = 1.
(c–h) Density profiles ρ

(1)
B (x) and ρ

(1)
F (x) at specific gBF values and

for both noninteracting and repulsively interacting impurities (see
legend). The BF mixture consists of NB = 2 bosonic impurities and
NF = 6 fermions both trapped in a harmonic oscillator with ω = 0.1.

the direct impurity-impurity interactions since for gBB = 1 it
becomes slightly broader than for gBB = 0 especially when
−1.5 < gBF < 1.5 [see Figs. 1(d)–1(g)]. As we shall argue
below, this difference is caused by the presence of attractive
induced impurity-impurity interactions mediated by the Fermi
sea and becomes more pronounced when gBB = 0. A similar
effect has also been discussed in the context of two bosonic
impurities in a Bose-Einstein condensate (BEC) bath [25,43].
The impact of gBB on the behavior of the impurities and
the interplay between direct and attractive impurity-impurity
induced interactions will be discussed in detail in Sec. III B.

In particular, for −1.5 < gBF < 1.5 the Fermi sea exhibits
a broad spatial distribution as identified by ρ

(1)
F (x) enclos-

ing the bosonic impurities the ρ
(1)
B (x) of which is located

around the trap center [Figs. 1(d)–1(f)]. Therefore, for these
impurity-medium interactions the bosons and the Fermi sea
show a miscible behavior [35] independently of gBB [see
Figs. 1(a1) and 1(a2)]. Turning to attractive gBF < −1.5 we
observe a drastically altered behavior of both the impurities
and the fermionic ensemble. More specifically, the impuri-
ties are strongly localized in the vicinity of the trap center
since ρ

(1)
B (x) shows a peaked structure at −1 < x < 1 hav-

ing a sech-like shape [Figs. 1(b1) and 1(b2)]. This spatial

localization tendency of the impurities signals the formation
of an attractively bound pair [25,43] as a consequence of
the presence of strong attractive induced impurity-impurity
interactions [25,42] (see Sec. III B for more details). Simul-
taneously ρ

(1)
F (x) majorly accumulates at the same location

by developing a density hump [see, for instance, Figs. 1(a1),
1(a2), and 1(c)], while its background is significantly reduced
when compared to smaller gBF values. The latter behavior of
ρ

(1)
F (x) indicates that the fermions of the medium lie very

close to the impurities, suggesting that for even larger at-
tractions a bound state between an impurity and an atom of
the Fermi sea may be formed [36], a phenomenon which is
not further examined herein. Of course, the fermions of the
medium cannot reside exactly at the same location due to the
Pauli exclusion principle [71,72] (see also the discussion in
Sec. III B).

On the other hand, for strong repulsive impurity-bath in-
teractions such that gBF > 1.5 the spatial configuration of the
system and especially of the Fermi sea is significantly changed
compared to smaller values of gBF . Indeed, a local density dip
builds upon ρ

(1)
F (x) around x ≈ 0 [Fig. 1(g)] which becomes

more pronounced for increasing gBF and for gBF > 2 ρ
(1)
F (x)

is segregated into two fragments residing in the left and right
side with respect to x = 0 [Figs. 1(a1) and 1(h)]. Note that
each of the fragments has three local density maxima, in-
dicating that predominantly three fermions populate each of
them and also reflecting the fact that the first six lowest-lying
single-particle eigenstates of the harmonic trap majorly con-
tribute to the fermionic MB wave function. The impurities
density ρ

(1)
B (x) lies in between the two fragments of ρ

(1)
F (x)

and therefore an impurity-medium phase-separation process
takes place [76] [see, e.g., Figs. 1(a1), 1(a2), and 1(h)]. This
procedure is identified by the small spatial overlap among the
components [76] which becomes suppressed for increasing
gBF . We remark that the phase-separation region is shifted to
larger gBF values when gBB is finite [compare, in particular,
Figs. 1(a1) and 1(a2)]. Indeed, phase separation occurs when
the interspecies interaction energy overcomes the intraspecies
one and thus a larger gBF is required for increasing gBB [76] in
order to accomplish this process. It is also worth mentioning at
this point that a system of two fermionic impurities immersed
in a bosonic bath exhibits a similar phase-separation behavior
at repulsive gBF but in this case the impurities reside at the
edges of the bosonic medium [35].

The above-described phase-separation process as well as
the localization tendency of the components taking place
at large repulsive and attractive impurity-medium interac-
tions, respectively, can be intuitively understood in terms
of an effective potential approach [25,33,66]. For this
picture one can consider an effective potential for the
impurities [Fermi sea] constructed by superimposing the
single-particle density of the Fermi sea [impurities] to the ex-
ternal harmonic trap, namely, V B

eff (x) = 1
2 mω2x2 + gBF ρ

(1)
F (x)

[V F
eff (x) = 1

2 mω2x2 + gBF ρ
(1)
B (x)]. Referring to the impurities

subsystem at strong repulsive gBF their effective potential
V B

eff (x) corresponds to a deformed harmonic trap due to ρ
(1)
F (x)

[see, e.g., Fig. 1(h)]. In this sense the impurities reside around
the trap center possessing a Gaussian-like spatial distribution
[Fig. 1(h)]. On the other hand, for gBF > 0 the corresponding
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FIG. 2. Relative distance Drel between the two bosonic impu-
rities in the ground state of the BF mixture with respect to the
impurity-medium interaction strength gBF . The relative distance is
presented for the cases of two noninteracting (gBB = 0) and in-
teracting (gBB = 1) impurities in a mass-balanced as well as a
mass-imbalanced system (see legend). The medium consists of NF =
6 fermions, while the BF mixture is confined in a harmonic trap with
frequency ω = 0.1.

V F
eff (x) has a double-well-like structure where the role of the

potential barrier at x = 0 is played by ρ
(1)
B (x). In turn, this

V F
eff (x) enforces the splitting of ρ

(1)
F (x) into two fragments

[see, e.g., Fig. 1(h)]. Note also here that for gBB = 1 the
maximum of ρ

(1)
B (x) is smaller compared to the gBB = 0 case

[Fig. 1(g)]. This gives rise to a shallower double-well effective
potential for fixed gBF and thus the barrier height that allows
for phase separation is achieved for larger values of gBF when
gBB is finite. A similar argumentation can also be applied
for attractive gBF where, for instance, the aforementioned
localization tendency of ρ

(1)
B (x) is essentially determined by

the hump structure building upon ρ
(1)
F (x) [Fig. 1(c)] and vice

versa due to back-action. For more details on the range of
applicability of this effective potential picture we refer the
interested reader to Refs. [25,33,36,66].

B. Impurity-impurity induced interactions

The impurities being immersed in the Fermi sea are dressed
by its excitations forming quasiparticles, herein Fermi po-
larons [12,13,26]. An intriguing property of the generated
quasiparticles is the emergence of attractive induced interac-
tions among them mediated by their host [24–26] and that
they can possibly form a bound pair for strong impurity-
medium attractions [12,13]. To identify such quasiparticle
related mechanisms in the ground state of the BF mixture
we subsequently inspect the relative distance Drel [Eq. (7)]
and the spatially resolved two-body reduced density ma-
trix ρ

(2)
BB (x1, x2) of the bosonic impurities [42] for different

impurity-medium interaction strengths (see Figs. 2–4). Recall
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FIG. 3. Reduced two-body (a1–a5) boson-boson ρ
(2)
BB (x1, x2) and

(b1–b5) fermion-fermion ρ
(2)
FF (x1, x2) density in the ground state of

the BF mixture for selective impurity-medium interaction strengths
(see legend). The system contains NB = 2 noninteracting (gBB = 0)
bosonic impurities and NF = 6 fermions. It is further confined in a
harmonic trap of ω = 0.1.

that ρ
(2)
BB (x1, x2) measures the probability of finding a boson at

position x1 while the second one is located at x2.
Importantly, the combination of the behavior of Drel and

ρ
(2)
BB (x1, x2) enables us to infer the presence and strength of

the attractive induced interactions as well as the spatial con-
figuration of the impurities [25]. Indeed, a decreasing trend
of Drel for varying gBF and comparing to the zero impurity-
medium coupling scenario testifies the existence of attractive
impurity-impurity induced interactions, while the value of
Drel(gBF �= 0)/Drel(gBF = 0) serves as an indicator of their
strength [25]. Apparently, the most clear signature of the pres-
ence of attractive boson-boson interactions mediated by the
Fermi sea is provided in the case of noninteracting impurities.
Of course, by solely relying on Drel it is not possible to ex-
tract information regarding the range of induced interactions.
For such an investigation an effective single-particle polaron
model should be constructed as it has been demonstrated,
for instance, in Refs. [27,59,90,91] for a homogeneous BEC
environment where the induced interaction has been modeled
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FIG. 4. Reduced two-body (a1–a5) impurity-impurity
ρ

(2)
BB (x1, x2) and (b1–b5) fermion-fermion ρ

(2)
FF (x1, x2) density

in the ground state of the BF mixture for different values of the
boson-medium coupling constant gBF (see legend). The system
consists of NB = 2 interacting with gBB = 1 bosonic impurities and
NF = 6 fermions while it is trapped in a harmonic oscillator with
frequency ω = 0.1.
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by a Yukawa-type potential. Generalizations of this approach
to the trapped case but restricted to weak impurity-medium
couplings have been recently derived [42], a discussion that
lies beyond the scope of our analysis. We should emphasize at
this point that our approach to tackle the impurity dynamics
lies beyond such a single-particle polaron model and allows
us to monitor observables that are experimentally accessible.
Let us also note in passing that in cold-atomic experiments the
presence of an external trapping potential is almost inevitable.
Below, we discuss the cases of both noninteracting (gBB = 0)
and repulsively interacting (gBB = 1.0) impurities as well as
the effect of a mass imbalance between the impurities and
their bath.

The corresponding relative distance Drel between the
impurities and their two-body density ρ

(2)
BB (x1, x2) for a mass-

balanced BF system containing noninteracting impurities are
presented in Figs. 2 and 3(a1)–3(a5), respectively, as a func-
tion of the impurity-medium interaction strength gBF ranging
from attractive to repulsive values. It becomes apparent that
Drel gradually decreases, when compared to its value for
gBF = 0, as |gBF | is increased towards the attractive or the
repulsive interaction regime. This overall decreasing behavior
of Drel for larger |gBF | indicates that for finite attractive or
repulsive impurity-medium interactions the impurities move
close to each other as compared to the gBF = 0 scenario.
The latter tendency suggests the emergence of attractive
impurity-impurity induced interactions [25,59]. Their strength
is enhanced for increasing |gBF | as testified by the decreasing
trend of Drel, and they are more pronounced for an attrac-
tive gBF since Drel is smaller (larger) for a specific negative
(positive) value of gBF . Interestingly, Drel tends to approach a
constant value which is different for strong repulsions (gBF >

3) and attractions (gBF < −3). Indeed, the saturation value of
Drel for strong repulsions is somewhat larger when compared
to the corresponding value for strong attractions. This means
that for attractive gBF the impurities are substantially closer
with respect to one another than in the repulsive case, a be-
havior that signals a larger strength of induced interactions
in the former case. Concluding, Drel signals the presence and
strength of induced impurity-impurity interactions, which are
manifested to be attractive in general, irrespectively of the sign
of the impurity-medium coupling [25,59].

To confirm the existence of attractive impurity-impurity
induced interactions when gBB = 0 we next rely on the impu-
rities two-particle density ρ

(2)
BB (x1, x2) [see Figs. 3(a1)–3(a5)].

This quantity allows us to explicitly identify the spatial dis-
tribution of impurities. As it can be seen, irrespectively of
the value of gBF the two noninteracting bosons prefer to
reside together close to the trap center since ρ

(2)
BB (x1, x2)

shows a maximum value in the vicinity of x1 = 0, x2 = 0
[see Figs. 3(a1)–3(a5)]. In particular, for gBF = 0 [Fig. 3(a3)]
ρ

(2)
BB (x1, x2) has a circularly symmetric shape in the (x1, x2)

plane while showing a peak around x1 = x2 = 0. This can
be understood by the fact that in the absence of any correla-
tion with the majority species there is no induced interaction
among the bosons. Hence, the probability of finding the
two bosons together at x1 = x2 or one at x1 and the other
at x2 = −x1 is the same and becomes maximal at the trap
minimum, i.e., at x1 = x2 = 0. However, for a finite gBF

the shape of ρ
(2)
BB (x1, x2) is significantly altered when com-

pared to the gBF = 0 case since predominantly the diagonal
ρ

(2)
BB (x1, x2 = x1) is populated. In fact, ρ

(2)
BB (x1, x2) becomes

more elongated along the diagonal (x1 = x2) with increas-
ing |gBF |, while it shrinks across its antidiagonal (x2 = −x1)
[see Figs. 3(a1), 3(a2), 3(a4), and 3(a5)]. This means that
the probability of detecting the two bosons at two different
positions is substantially smaller than that of being close to-
gether. Therefore, an effective attractive interaction between
the impurities is established and occurs for both attractive and
repulsive impurity-medium interactions. Importantly, within
the attractive gBF regime the shrinking of the antidiagonal
of ρ

(2)
BB (x1, x2) is much more pronounced than on the repul-

sive gBF side [compare, in particular, Figs. 3(a1) and 3(a2)
with Figs. 3(a4) and 3(a5)]. The latter observation supports
our previous statement in terms of Drel of a much stronger
effective attraction between the impurities for negative than
positive gBF , a result that also holds for Bose polarons as
it has been demonstrated in Ref. [25]. Moreover, the pro-
nounced elongation along the diagonal accompanied by the
strong suppression of the antidiagonal of ρ

(2)
BB (x1, x2), e.g.,

for gBF = −3, is indicative of a bound state being formed
between the impurities known as a bipolaron state [12,25,27].

Next, we turn our attention to repulsively interacting
bosonic impurities with gBB = 1 aiming to investigate the
competition between attractive induced interactions and direct
s-wave ones. To this end, we measure the impurities relative
distance (Fig. 2) and their two-particle density [Figs. 4(a1)–
4(a5)] for distinct values of gBF . As expected, in the absence
of direct impurity-impurity interactions, i.e., gBB = 0, the
impurities distance Drel is in general smaller than the cor-
responding distance for two repulsively interacting ones
with gBB = 1. This difference becomes maximal for zero
impurity-medium couplings, namely, gBF = 0, where induced
interactions are vanishing. Indeed, Drel decreases for a larger
positive or negative gBF manifesting the appearance of in-
duced interactions and tends to approach a constant value
which is smaller for attractive gBF interactions. The latter fact
indicates that the strength of the attractive induced interactions
is larger for negative values of gBF than for positive ones.
Consequently, also the difference Drel(gBB = 1) − Drel(gBB =
0) gradually decreases and becomes constant for increas-
ing |gBF |. A direct comparison between Drel(gBB = 1) and
Drel(gBB = 0) reveals that the distance saturates at relatively
larger (smaller) positive (negative) gBF values when gBB = 1.
For instance, the decreasing rate of Drel in the attractive gBF

regime is much larger in the gBB = 1 scenario before show-
casing a saturation tendency around gBF = −4 towards Drel ≈
0.5. The above-described overall behavior of Drel for varying
gBF suggests the occurrence of attractive induced interactions
for a finite gBF despite the existence of direct s-wave ones.
Nevertheless, as we shall explicate in the following the direct
interactions dominate the induced ones at least for repulsive
impurity-medium couplings, a result which reveals that the
strength of induced interactions is larger in the negative gBF

regime.
Indeed by inspecting the impurities two-body density

ρ
(2)
BB (x1, x2), illustrated in Figs. 4(a1)–4(a5), the following

conclusions can be immediately drawn. The circularly sym-
metric pattern of ρ

(2)
BB (x1, x2) occurring for gBB = 0 when

gBF = 0 [Fig. 3(a3)] is completely modified for repulsively
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interacting impurities [Fig. 4(a3)]. This modification favors
a pattern the diagonal of which is depleted, giving rise to a
correlation hole [41,81], while the antidiagonal develops two
symmetric lobes with respect to x1 = x2 and it is predom-
inantly populated. This is an explicit imprint of the direct
s-wave interaction among the impurities and means that the
probability of finding two bosons exactly at the same position
is vanishingly small in contrast to the situation where each
boson resides on a separate side in terms of the trap center.
Switching on |gBF | introduces deformations in the shape of
ρ

(2)
BB (x1, x2) and in particular in the position of its antidi-

agonal lobes which suggests that the induced interactions
set in. Referring to repulsive impurity-medium interactions
[Figs. 4(a4) and 4(a5)] it is apparent that for increasing gBF

the antidiagonal lobes of ρ
(2)
BB (x1, x2) approach the diagonal.

Therefore, the two bosons get closer due to the presence of
their attractive induced interactions mediated by the fermionic
environment. Notice, however, that the two-lobe structure of
ρ

(2)
BB (x1, x2) is maintained also at gBF = 3 [Fig. 4(a5)], indi-

cating that the s-wave interactions dominate the induced ones.
Turning to the attractive gBF regime we observe that for weak
gBF values the antidiagonal of ρ

(2)
BB (x1, x2) shrinks and thus

the bosons come closer when compared to the gBF = 0 case
due to the existence of attractive induced interactions. Impor-
tantly, this behavior of ρ

(2)
BB (x1, x2) is drastically changed for

large attractive impurity-medium interactions. More precisely,
the two-lobed antidiagonal structure related to the dominant
repulsive contact interaction is changed into a circularly sym-
metric pattern [see, e.g., ρ

(2)
BB (x1, x2) at gBF = −3 depicted in

Fig. 4(a1)]. Recall that the appearance of such a circularly
symmetric structure in ρ

(2)
BB (x1, x2) occurs in the case of zero

effective interactions between the two bosons when gBB =
0 and gBF = 0 [Fig. 3(a3)]. This observation suggests that
the attractive induced interactions nullify the direct repulsive
contact ones for large attractive impurity-medium couplings,
a phenomenon that is absent in the repulsive gBF regime.
Summarizing, attractive impurity-medium couplings lead to
stronger induced interactions than repulsive ones.

Subsequently, we study the impact of the impurities mass
on the strength of the induced interactions by invoking as an
appropriate measure the impurities relative distance (Fig. 2).
For this investigation we consider a harmonically trapped
mass-imbalanced BF mixture consisting of a 40K fermionic
environment and two 87Rb bosonic impurities [58]. Evidently,
the overall phenomenology of Drel for varying gBF is simi-
lar to the mass-balanced scenario for both the gBB = 0 and
the gBB = 1 cases. Moreover, Drel is always reduced when
compared to the mass-balanced system, thus suggesting that
heavier impurities prefer to stay closer to each other than
lighter ones [25,41]. Accordingly, we can deduce that an in-
creasing impurity mass allows for stronger attractive induced
interactions, i.e., their strength is enhanced.

C. Two-body correlations of the fermionic medium

Having explicated the existence of attractive induced
impurity-impurity correlations we then analyze the two-
particle distributions of the fermionic environment for dif-
ferent impurity-medium interactions. Our main objective here
is to expose the back-action of the impurities onto their host

[36,92]. Regarding the system with two noninteracting impu-
rities (gBB = 0) ρ

(2)
FF (x1, x2) is presented in Figs. 3(b1)–3(b5)

for specific values of gBF . A depleted diagonal is observed
irrespectively of gBF due to the Pauli exclusion principle,
namely, two fermions cannot occupy the same spatial region.
At gBF = 0 two fermions can be found at any two distinct
positions within the interval [−10, 10] [see Fig. 3(b3)] pos-
sessing a slightly larger probability to reside close to the trap
center either on the same side or at different ones with respect
to x = 0. Interestingly, even the presence of a very small
number of bosonic impurities is able to significantly alter the
properties of the Fermi sea if gBF �= 0. For repulsive gBF , the
fermions exhibit a tendency to stay away from the trap center,
e.g., ρ

(2)
FF (x1 = 5, x2 = −5) ≈ 0.14 at gBF = 1 in Fig. 3(b4).

This behavior is manifested by the appearance of relatively
low-density stripes along the lines x1 = 0 and x2 = 0, e.g., for
gBF = 1 [Fig. 3(a4)], which are transformed into completely
depleted density regions, e.g., for gBF = 3 [Fig. 3(a5)]. Turn-
ing to the attractive gBF regime [Figs. 3(b1) and 3(b2)], the
distribution of ρ

(2)
FF (x1, x2) is changed significantly. Indeed,

the probability of finding two fermions at different positions
in the vicinity of the trap center is the dominant contribution
to ρ

(2)
FF (x1, x2) especially for larger attractions. For instance,

at gBF = −1, the two-particle density shown in Fig. 3(b2) is
higher close to the trap center [e.g., ρ

(2)
FF (x1 = 1, x2 = −1) ≈

0.16] compared to the edges [e.g., ρ
(2)
FF (x1 = 5, x2 = −14) ≈

0.09]. Also, for gBF = −3, the spatial region apart from the
one close to the trap center is almost completely depleted
[see Fig. 3(b1)], as identified by the relevant crosslike pattern
building upon ρ

(2)
FF (x1, x2).

Comparing now ρ
(2)
FF (x1, x2) between the cases of gBB = 1

[Figs. 4(b1)–4(b5)] and gBB = 0 [Figs. 3(b1)–3(b5)] we can
easily deduce that their shapes at specific gBF values are to
a great extent similar. A slight difference occurs for moder-
ate repulsive interactions, e.g., gBF = 1, where the two-body
density stripes imprinted along the lines x1 = 0 and x2 =
0 for gBB = 0 [Fig. 3(b4)] are not noticeable for gBB = 1
[Fig. 4(b4)]. Also, for attractive impurity-medium interactions
gBF < 0 the regions away from the trap center are rela-
tively stronger populated for gBB = 1 [compare Figs. 4(b1)
and 4(b2) with Figs. 3(b1) and 3(b2)]. As a case example,
for gBF = −3 it holds that ρ

(2)
FF (x1 = 4, x2 = 4) ≈ 0.1 when

gBB = 0 while ρ
(2)
FF (x1 = 4, x2 = −4) ≈ 0.12 for gBB = 1 [see

Figs. 3(b1) and 4(b1), respectively].

IV. QUENCH DYNAMICS

Up to now we have discussed the ground-state properties of
the harmonically trapped particle imbalanced BF mixture with
NF = 6 and NB = 2 for different impurity-medium interaction
strengths ranging from attractive to repulsive values. Impor-
tantly, we have identified the presence of attractive induced
interactions for the noninteracting impurities and analyzed the
competition between the direct s-wave repulsive interactions
with the induced ones. Also, in all cases we have quantified
the back-action of the impurities to their fermionic environ-
ment.

Below, we explore the corresponding nonequilibrium dy-
namics of the impurities and the Fermi sea. The mixture
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FIG. 5. One-body density evolution of (a1, a2, a5, a6) the Fermi
sea ρ

(1)
F (x, t ) and (a3, a4, a7, a8) the bosonic impurities ρ

(1)
B (x, t )

upon considering an impurity-medium interaction quench from
gBF = 0 to a finite repulsive value (see legend). The impurities are
either (a1–a4) free, i.e., gBB = 0, or (a5–a8) repulsively interacting
with gBB = 1. The system is confined in a harmonic trap with ω =
0.1 and composed of NB = 2 bosons immersed in a Fermi sea of
NF = 6 fermions. It is initialized in its ground state with gBF = 0
and either gBB = 0 or gBB = 1.

is prepared in its ground-state configuration, as already dis-
cussed in Sec. III, with zero impurity-medium coupling
strength. The dynamics is triggered by applying a quench of
this coupling towards either the repulsive (Sec. IV A) or the
attractive (Sec. IV B) regime of interactions [60,61]. Our main
objective is to inspect the dynamical emergence of induced
impurity-impurity correlations and the pattern formation of
the fermionic environment as a result of the impurities motion.
In the subsequent analysis we first study the dynamics of two
noninteracting impurities and then contrast our findings to the
case of two repulsively interacting ones.

A. Quench to repulsive interactions

We focus first on the correlated dynamics of the BF mixture
induced by a quench from vanishing to repulsive impurity-
medium interactions. The emergent dynamics is first analyzed
by employing the corresponding single-particle density evo-
lution of the participating components (Sec. IV A 1) and then
by inspecting their two-body density matrix (Sec. IV A 2) in
the course of the evolution. These observables enable us to
gain an overview of the dynamical evolution and importantly
shed light on the existence of impurity-impurity and bath
correlations, respectively.

1. Single-particle density evolution

To gain an overview of the spatially resolved quench-
induced dynamics of the BF mixture we show the corre-
sponding single-particle density evolution of the impurities
ρ

(1)
B (x; t ) and the Fermi sea ρ

(1)
F (x; t ) in Fig. 5 for dif-

ferent impurity-medium and impurity-impurity interaction
strengths. Naturally, we commence our discussion on the
system containing noninteracting impurities, which provides
the most clear signatures of induced correlations. Refer-
ring to weak postquench interactions, namely, gBF = 0.8, the
fermionic environment performs an overall breathing motion
[65,93] manifested as a small amplitude periodic expansion
and contraction of its cloud [see Fig. 5(a1)]. The frequency
of this global breathing mode is ωbr

F ≈ 0.193 ≈ 2ω, which
is indeed in accordance with the corresponding theoretical
predictions [94,95]. Moreover ρ

(1)
F (x; t ) exhibits at each time

instant of the evolution six in total shallow local maxima,
namely, three on the left and the other three on the right
side with respect to x = 0, while a shallow density dip occurs
around the trap center x = 0. These local maxima are indica-
tive of the six fermions present in the system and also the fact
that majorly the first six single-particle eigenstates of the trap
participate in the dynamics. On the other hand, the shallow dip
of ρ

(1)
F (x = 0; t ) is caused by the presence of the impurities at

the same location. The impurities density ρ
(1)
B (x; t ) undergoes

a very weak amplitude breathing dynamics [see Fig. 5(a3)]
characterized by a predominant frequency ωbr

B ≈ 0.24. Notice
here that ωbr

B is slightly larger than ωbr
F since the impurities

experience an effective potential, created by the external trap
and the density of the Fermi sea, which possesses a frequency
larger than the harmonic trap frequency. Moreover, ρ

(1)
B (x; t )

completely overlaps with ρ
(1)
F (x; t ) throughout the time evo-

lution, thus indicating the miscible character of the dynamics.
Recall that the two components are also miscible in the ground
state of the system for gBF = 0.8 as discussed in Sec. III A and
demonstrated in Figs. 1(a1) and 1(b1).

Turning to repulsively interacting impurities with gBB =
1 for the same quench amplitude, i.e., from gBF = 0 to
gBF = 0.8, we observe that a qualitatively similar to the
above-described dynamics takes place when gBB = 1 for
both the fermionic environment [Fig. 5(a5)] and the bosons
[Fig. 5(a7)]. A notable difference is that ρ

(1)
B (x; t ) is broader

in the gBB = 1 case due to the presence of the direct s-wave
interaction [compare in particular Figs. 5(a3) and 5(a7)]. Note
that this broadening of ρ

(1)
B (x; t ) for finite gBB occurs also in

the ground state of the system [see Figs. 1(b1) and 1(b2)].
As expected, also the breathing amplitude of the impurities
is larger when gBB = 1 while the frequency of this motion
remains almost the same (ωbr

B ≈ 0.22) with the gBB = 0 case.
This small deviation in the value of ωbr

B is attributed to in-
teraction effects [66,96]. Consequently, due to the broader
ρ

(1)
B (x; t ) when gBB = 1 the central dip in ρ

(1)
F (x = 0; t ) occur-

ring for gBB = 0 [Fig. 5(a1)] becomes very shallow and almost
disappears for gBB = 1 [Fig. 5(a3)]. Otherwise, the inclusion
of direct s-wave impurity-impurity interactions does not alter
the characteristics of the system’s dynamics at least on the
single-particle level.

Increasing the postquench interaction strength, e.g., to
gBF = 2.5 gives rise to a much more intricate dynamics
for both the noninteracting impurities [Fig. 5(a4)] and the
fermionic medium [Fig. 5(a2)] when compared to the gBF =
0.8 quench amplitude. We remark that such a difference is al-
ready expected from the ground-state properties of the system
since for gBF = 0.8 the components are spatially overlapping
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(miscible) and become immiscible for gBF = 2.5 [see also
Figs. 1(a1) and 1(b1)]. In particular, the cloud of the Fermi
sea exhibits a breathing oscillation with almost the same fre-
quency ωbr

F ≈ 0.195 as for the quench to gBF = 0.8. However,
the amplitude of the contraction and expansion dynamics of
ρ

(1)
F (x; t ) [Fig. 5(a2)] is larger when compared to the smaller

gBF = 0.8 [Fig. 5(a1)] leading to a comparatively more ex-
cited medium in the former case. Accordingly, ρ

(1)
F (x; t )

appears to be in general wider for gBF = 2.5, a result that can
again be traced back to the ground-state density of the Fermi
sea [Fig. 1(a1)]. Moreover, the local-density humps building
upon ρ

(1)
F (x; t ) [Fig. 5(a2)] are found to be shallower (deeper)

during the expansion (contraction) of the fermionic cloud for
gBF = 2.5 than for gBF = 0.8. Importantly, the density dip of
ρ

(1)
F (x; t ) around the trap center is substantially deeper when

gBF = 2.5. This is a direct consequence of the emergent phase
separation being anticipated already from the ground state
of the system for such strongly repulsive impurity-medium
interactions [see also Figs. 1(a1) and 1(b1)].

Of course, most of the above-described features of
ρ

(1)
F (x; t ) are intimately connected with the corresponding be-

havior of the single-particle density of the bosons ρ
(1)
B (x; t )

[Fig. 5(a4)] since the two components are inevitably interde-
pendent due to their mutual finite coupling gBF . Specifically,
the impurities density ρ

(1)
B (x; t ) shows a relatively larger local-

ization tendency [Fig. 5(a4)] than for gBF = 0.8 [Fig. 5(a3)]
which is expected due to the aforementioned phase-separated
behavior among the components. Moreover, ρ (1)

B (x; t ) exhibits
a weaker amplitude and larger frequency ωbr

B ≈ 0.36 breathing
motion for gBF = 2.5 than for gBF = 0.8. The alteration of
the impurities breathing frequency for gBF = 2.5 can in turn
be explained within an effective potential picture. Indeed, as
already argued in the ground state of the system the impuri-
ties can be viewed as trapped in the potential formed by the
harmonic trap with a superimposed density of their Fermi sea.
Since ρ

(1)
F (x; t ) is wider for increasing gBF also the impurities

effective trapping frequency, being related to the breathing
one, is larger.

The dynamics of interacting impurities with gBB = 1 fol-
lowing a quench to gBF = 2.5 as captured by ρ

(1)
F (x; t )

[Fig. 5(a6)] and ρ
(1)
B (x; t ) [Fig. 5(a8)] is more involved than

the gBB = 0 case, especially for long evolution times t > 40.
Evidently, the impurities exhibit a significantly broader den-
sity distribution for gBB = 1 [Fig. 5(a8)] than for gBB = 0
[Fig. 5(a4)], while performing a breathing motion of a larger
amplitude and smaller frequency ωbr

B ≈ 0.33 in the former
case. Furthermore, ρ

(1)
B (x; t ) initially (t = 0) having a Gaus-

sian profile deforms already within the initial stages of the
dynamics (t > 5) by developing three shallow humps, being
more pronounced during expansion and coming very close at
the contraction points [Fig. 5(a8)]. This behavior of ρ

(1)
B (x; t )

essentially indicates that for t < 5 the interacting impurities
dominantly occupy the lowest-lying single-particle eigenstate
of their external potential while as time evolves the contri-
bution of higher-lying eigenstates becomes significant and
excitations are formed. This statement is also supported by
the population of the individual bosonic orbitals φB

i (x, t ) with
i = 1, 2, . . . , 12 [see also the discussion following Eq. (4)]
from which the first eight have a non-negligible population

during the evolution (results not shown). The above-
mentioned differences, regarding mainly the breathing mode
and the structure of ρ

(1)
B (x; t ) for gBB = 1 compared to the

gBB = 0 case, are attributed to the presence of the direct
s-wave repulsive interaction between the impurities. As ex-
pected, the features of ρ

(1)
B (x; t ) are also imprinted to a certain

extent in the density of the fermionic environment ρ
(1)
F (x; t )

[Fig. 5(a6)] due to the finite gBF . Notably, ρ
(1)
F (x; t ) shows an

arguably suppressed central dip compared to the gBB = 0 case
due to the broader distribution of the impurities for gBB = 1.
This in turn gives rise to an almost vanishing degree of phase
separation in the latter gBB = 1 case. Other properties, such
as the amplitude and the frequency of the breathing mode,
remain almost the same as in the gBB = 0 scenario.

Concluding this section, it is important to emphasize
that the quench dynamics of noninteracting and interacting
bosonic impurities differs noticeably already on the single-
particle level, especially for large postquench interaction
strengths. This impact of the direct s-wave interaction of
the impurities is also imprinted in the Fermi sea, leading to
changes in its pattern formation. As we shall explicate below,
the origin of the above-mentioned differences is the presence
of impurity-impurity induced interactions.

2. Dynamics of impurity-impurity correlations

To track the spatially resolved dynamics of the two bosonic
impurities with respect to one another we next invoke their
two-particle density, ρ

(2)
BB (x1, x2); t ) [Eq. (6)], which essen-

tially provides the probability of measuring simultaneously
one particle at position x1 and the other at x2. As a comple-
mentary measure of the impurities position we also calculate
their relative distance Drel(t ) [Eq. (7)] during the time evo-
lution. This observable will allow us to identify whether the
impurities interact among each other via induced correlations
mediated by their host or they move independently [25,35].
Snapshots of ρ

(2)
BB (x1, x2; t ) at specific time instants of the evo-

lution upon considering a quench from gBF = 0 to 2.5 for the
cases of gBB = 0 and 1 are presented in Figs. 6(a1)–6(a4) and
Figs. 6(c1)–6(c4), respectively. Moreover, the corresponding
Drel(t ) when gBB = 0 [Fig. 6(d)] and gBB = 1 [Fig. 6(e)] is
demonstrated for different postquench interactions, providing
an overview of the impurity-impurity correlations.

For noninteracting bosonic impurities, ρ
(2)
BB (x1, x2; t = 0)

has a circular shape in the (x1, x2) plane [Fig. 6(a1)] with a
peak around x1, x2 ∈ [−2, 2]. Therefore, the bosons are likely
to reside in this spatial region close to the trap center. How-
ever, in the course of the dynamics this shape of ρ

(2)
BB (x1, x2; t )

is drastically altered, exhibiting an elongated diagonal and
a suppressed antidiagonal [see Figs. 6(a2)–6(a4)]. Note that
the antidiagonal of the two-particle density of the impurities
dictates their relative distance Drel(t ) [Eq. (7)]. The latter is
illustrated in Fig. 6(d) for a variety of postquench gBF values.
As it can be seen, in all cases Drel(t ) undergoes a decaying
amplitude oscillatory motion characterized by two dominantly
participating frequencies which essentially correspond to the
center-of-mass and relative coordinate breathing modes [96],
e.g., ω1 ≈ 0.19, ω2 ≈ 0.24 for gBF = 0.8 and ω1 ≈ 0.19,
ω2 ≈ 0.36 when gBF = 2.5. Indeed, the oscillatory behavior
of Drel(t ) reflects the breathing motion of the impurities cloud
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FIG. 6. Snapshots of the two-body reduced density of (a1)-(a4)
two noninteracting bosons ρ

(2)
BB (x1, x2), (b1–b4) two fermions of the

medium ρ
(2)
FF (x1, x2), and (c1–c4) two repulsively interacting bosons

ρ
(2)
BB (x1, x2) at specific time instants of the evolution (see legends).

The system consists of NF = 6 fermions and NB = 2 bosons while
it is confined in a harmonic trap with ω = 0.1. It is initialized in its
ground state with gBF = 0 and either gBB = 0 or gBB = 1. To trigger
the dynamics an interaction quench is performed from gBF = 0 to
gBF = 2.5. Time evolution of the relative distance Drel (t ) between the
two bosonic impurities with (d) gBB = 0 and (e) gBB = 1 at distinct
postquench gBF values (see legend).

already identified in the dynamics of ρ
(1)
B (x; t ) [Fig. 5(a3)].

This is also imprinted in the modulated shape of ρ
(2)
BB (x1, x2; t )

[Figs. 6(a2)–6(a4)], e.g., the antidiagonal of ρ
(2)
BB (x1, x2; t ) is

more expanded at t = 55 compared to t = 130. Also, the
oscillation amplitude of Drel(t ) and as a consequence of the
breathing mode is enhanced for a larger postquench gBF [see
also Figs. 5(a3) and 5(a7)]. Importantly the decaying am-
plitude in time of Drel(t ), and thus the elongated shape of
ρ

(2)
BB (x1, x2; t ) across its diagonal, imply that the impurities

tend to approach each other during the dynamics and since
they are noninteracting (gBB = 0) they experience an effective
attraction mediated by the fermionic environment. In fact, the
progressively reduced (after each breathing cycle) oscillation
amplitude of Drel(t ) [Fig. 6(d)] is indicative of the gradual
buildup of induced boson-boson interactions. This behavior
is more evident for a larger postquench gBF , indicating that
the strength of induced interactions is accordingly enhanced.
Recall that their strength becomes more pronounced for in-
creasing gBF already in the ground state of the system [see
Figs. 2(a) and 3(a3)–3(a5)].

Proceeding we examine the role played by the direct s-
wave repulsive contact interaction between the impurities
and its competition with the induced interactions on the
quench dynamics. Due to the finite impurity-impurity re-
pulsion, herein gBB = 1, the bosons initially (t = 0) reside
one in the left (x < 0) and the other in the right (x > 0)
side of the trap [see the pronounced antidiagonal distribu-
tion of ρ

(2)
BB (x1, x2 = −x1; t = 0) in Fig. 6(c1)]. In contrast,

after the quench (t > 0) three distinct segments develop in
ρ

(2)
BB (x1, x2; t ) [Figs. 6(c2)–6(c4)]. Namely, the impurities are

either very close to each other around the trap center [see the
diagonal of ρ

(2)
BB (x1, x2; t )] or they remain spatially separated

with one of them located in the left and the other in the right
side of the trap with respect to x = 0 [see the antidiagonal of
ρ

(2)
BB (x1, x2; t )]. This two-body superposition is a consequence

of the competition between the direct repulsive and induced
attractive interactions [25,42].

Inspecting now Drel(t ) for different postquench values of
gBF [Fig. 6(d)] we can readily see that it performs oscilla-
tions possessing two predominant frequencies, for instance,
ω1 ≈ 0.22, ω2 ≈ 0.19 when gBF = 0.8 and ω1 ≈ 0.33, ω2 ≈
0.19 if gBF = 2.5. These frequencies are again related to the
center-of-mass and relative coordinate breathing modes, re-
spectively. More precisely, at the initial stages of the dynamics
(t < 30) we observe that the breathing amplitude is larger for
an increasing postquench repulsion [Fig. 6(e)]. However, as
time evolves a more involved dynamical response of Drel(t )
takes place. The oscillation amplitude of Drel(t ), e.g., for
gBF = 0.8 and gBF = 2.5, is almost constant while for gBF =
4 it shows a decaying tendency. Moreover, within this time
interval the instantaneous value of Drel(t ) is lower (higher) for
gBF = 4 (gBF = 2.5) as compared to the gBF = 0.8 case. The
almost constant amplitude of Drel(t ) suggests that the induced
attractive interactions are suppressed for these postquench
couplings and therefore Drel(t ) does not exhibit a decaying
tendency. On the other hand, the fact that Drel(t ) features
a decreasing trend in time for stronger repulsions, such as
gBF = 4.0, is ascribed to the role of the attractive induced
impurity interactions which become significant for these cou-
plings causing its decay. This means that in the latter case the
induced attraction tends to surpass the impurities direct repul-
sion. Finally, we remark that the oscillation amplitude (decay
rate) of Drel(t ) for fixed gBF is in general larger (smaller)
when gBB = 1 [Fig. 6(e)] compared to gBB = 0 [Fig. 6(d)],
thus evincing the presence of the direct repulsion among the
impurities.

3. Correlations of the fermionic environment

To complement our study we then investigate the corre-
lation patterns of the Fermi sea as encoded in its two-body
density ρ

(2)
FF (x1, x2; t ) shown in Figs. 6(b1)–6(b4) at specific

time instants after a quench from gBF = 0 to gBF = 2.5
for gBB = 0. A correlation hole occurs along the diagonal
of ρ

(2)
FF (x1, x2; t ) throughout the evolution due to the Pauli

exclusion principle. Also, an expansion [Fig. 6(b2)] and con-
traction [Fig. 6(b4)] of the antidiagonal of ρ

(2)
FF (x1, x2; t ) take

place which manifest the collective breathing motion of the
fermionic cloud [41] [see also Fig. 5(a2)]. Moreover, a deple-
tion along the x1 = 0 and x2 = 0 spatial regions is observed
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FIG. 7. Time evolution of the one-body density of (a1, a2, a5,
a6) the fermionic medium ρ

(1)
F (x, t ) and (a3, a4, a7, a8) the bosonic

impurities ρ
(1)
B (x, t ) after an interaction quench of the boson-fermion

coupling constant from gBF = 0 to different attractive values (see
legend). The impurities are considered to be (a1–a4) free, i.e., gBB =
0, and (a5–a8) repulsively interacting with gBB = 1. The harmoni-
cally trapped mixture with ω = 0.1 consists of NF = 6 fermions and
NB = 2 bosons while it is prepared in its ground state with gBF = 0
and either gBB = 0 or gBB = 1.

indicating that it is more likely for one fermion to be located
in the vicinity of a density hump at x < 0 and for the other
one to be symmetrically placed with respect to the trap center
[see also Fig. 5(a2)].

B. Quench to attractive interactions

In the following, we shall study the dynamical response
of the impurities and the fermionic bath after a quench from
gBF = 0 to the attractive (gBF < 0) impurity-medium inter-
action regime. To quantify the arising distinctive dynamical
features we analyze the single-particle density (Sec. IV B 1)
and the corresponding two-body density (Sec. IV B 2) evo-
lution of the participating components. As in the previous
section, we first discuss the time evolution of two noninter-
acting (gBB = 0) impurities and subsequently compare to the
case of two repulsively interacting (gBB = 1.0) ones.

1. Density evolution

The spatiotemporal evolution of ρ
(1)
F (x; t ) and ρ

(1)
B (x; t )

after a quench from gBF = 0 to gBF = −0.8 for gBB = 0 is
presented in Figs. 7(a1) and 7(a3), respectively. As a con-
sequence of the interaction quench both the impurities and
the fermionic clouds undergo a collective weak amplitude
breathing motion identified by their contraction and expansion
dynamics [35,93]. The breathing frequency of the fermionic
bath is ωbr

F ≈ 0.208 ≈ 2ω while for the impurities it cor-
responds to ωbr

B ≈ 0.251 since they experience a modified
external potential composed of the harmonic oscillator and
the density of their host (see for details Refs. [25,66]). Impor-

tantly, the attractive impurity-medium coupling results in the
formation of a shallow density hump in ρ

(1)
F (x; t ) [Fig. 7(a1)]

at the instantaneous location of the impurities [Fig. 7(a3)],
i.e., around the trap center. Turning to repulsively interact-
ing impurities where gBB = 1 we observe that a similar to
the above-described dynamics takes place [see Figs. 7(a5)
and 7(a7)]. However, the expansion amplitude of ρ

(1)
B (x; t )

is larger and the breathing frequency ωbr
B ≈ 0.226 is slightly

smaller compared to the gBB = 0 scenario due to the inclusion
of direct s-wave repulsive interactions. Also, since ρ

(1)
B (x; t ) is

relatively wider than for gBB = 0 the density hump developed
in ρ

(1)
F (x; t ) in the latter case almost disappears for gBB = 1.

Following a quench to stronger impurity-medium interac-
tions, e.g., gBF = −2.5, leads to a more intricate response
of both components than for gBF = −0.8 [see Figs. 7(a2),
7(a4), 7(a6), and 7(a8)]. Referring to the system containing
noninteracting impurities [Figs. 7(a2) and 7(a4)] we observe
that ρ

(1)
B (x; t ) has a pronounced spatial localization tendency

around the trap center while performing an “irregular” weak
amplitude breathing dynamics. The latter is characterized by
two dominant frequencies, namely, ωbr

B1
= 0.234 and ωbr

B2
=

0.263 corresponding to the center-of-mass and relative coor-
dinate breathing mode, respectively. Since these frequencies
are close the dynamics of ρ

(1)
B (x; t ) is reminiscent of a beat-

ing pattern. We remark that a similar time evolution takes
place also for bosonic impurities immersed in a bosonic back-
ground [25]. Accordingly, as a result of this sharply peaked
distribution of ρ

(1)
B (x; t ) in the vicinity of x = 0 there is an

accumulation of the fermionic density at the same location
due to the finite gBF . Indeed, a prominent density hump builds
upon ρ

(1)
F (x; t ) [Fig. 7(a2)] which otherwise exhibits collec-

tive breathing oscillations of a frequency ωbr
F ≈ 0.211. The

dynamical response is somewhat changed when considering
interacting impurities (gBB = 1) as depicted in Figs. 7(a6) and
7(a8). The impurities possess a comparatively wider density
distribution than for gBB = 0 as a consequence of their finite
repulsion, gBB = 1. Also, the amplitude of their breathing
motion is slightly larger compared to the one of gBB = 0 and
the participating frequencies ωbr

B1
= 0.355 and ωbr

B2
= 0.376

are very close, thereby producing a beating pattern [hardly
visible in Fig. 7(a8)] manifested by the periodic appearance
of sharp peaks in ρ

(1)
B (x; t ) as a result of its contraction. The

differences in the dynamics of noninteracting and interacting
impurities for fixed postquench gBF will be further analyzed
in the next section. This beating pattern is also imprinted
in ρ

(1)
F (x; t ), which as a back-action develops humps which

follow the location of the impurities. Otherwise, ρ
(1)
F (x; t )

performs a breathing mode of almost the same amplitude and
equal frequency ωbr

F ≈ 0.2 compared to the gBB = 0 case.

2. Evolution of impurity-impurity correlations

To identify and consequently characterize the nature of
the impurity-impurity correlations in the course of the dy-
namics we monitor the two-body density ρ

(2)
BB (x1, x2; t ) and

relative distance Drel(t ) of the impurities depicted in Fig. 8
for different quench amplitudes. Figures 8(a1)–8(a4) show
snapshots of ρ

(2)
BB (x1, x2; t ) upon considering a quench of two

noninteracting impurities from gBF = 0 to −2.5. Initially, t =
0, the impurities lie in the vicinity of the trap center since
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FIG. 8. Instantaneous profiles of the two-body reduced density of
(a1–a4) two noninteracting bosons ρ

(2)
BB (x1, x2), (b1–b4) two fermions

of the bath ρ
(2)
FF (x1, x2), and (c1–c4) two repulsively interacting

bosons ρ
(2)
BB (x1, x2). The BF mixture contains NF = 6 fermions and

NB = 2 bosons. It is confined in a harmonic trap with ω = 0.1 and
it is prepared in its ground state with gBF = 0 and either gBB = 0 or
1. The dynamics is triggered upon considering an impurity-medium
interaction quench from gBF = 0 to −2.5. Temporal evolution of the
boson-boson relative distance Drel (t ) for (d) gBB = 0 and (e) gBB = 1
at specific postquench gBF couplings (see legend).

ρ
(2)
BB (x1, x2; t ) is nonzero within the spatial region x1, x2 ∈

[−2, 2] [Fig. 8(a1)]. However, as time evolves, the two bosons
start to occupy a smaller spatial region and therefore approach
each other, a tendency that becomes evident by the gradual
shrinking of ρ

(2)
BB (x1, x2; t ) across its diagonal accompanied by

the depression of its antidiagonal [see Figs. 8(a2)–8(a4)].
As it has already been discussed in Sec. IV A 2 the shape of

the antidiagonal of ρ
(2)
BB (x1, x2; t ) is well captured by Drel(t ),

which is presented in Fig. 8(d) for distinct postquench val-
ues of gBF . Evidently Drel(t ) oscillates irrespectively of gBF ,
a behavior that corresponds to the breathing motion of the
impurities and can also be inferred from the weak expan-
sion [Fig. 8(a3)] and contraction [Fig. 8(a2)] of ρ

(2)
BB (x1, x2 =

−x1; t ). Its evolution contains a multitude of frequencies the
number and value of which depend on gBF and refer to
the underlying breathing motion; e.g., for gBF = −2.5 the
dominantly involved frequencies are ω1 = 0.234 and ω2 =
0.263, respectively. Also, the oscillation amplitude of Drel(t )
is smaller for a larger |gBF | which is in accordance to the lo-
calization tendency of the impurities for quenches to stronger
impurity-medium attractions. Importantly, Drel(t ) exhibits a

decaying tendency in time which is more pronounced for
increasing |gBF | and shows a saturation behavior for quite
strong attractions, e.g., gBF = −4 here, and long evolution
times t > 80. This latter decaying behavior is again a manifes-
tation of the presence of attractive induced impurity-impurity
interactions, the strength of which increases for more attrac-
tive impurity-medium couplings. It is also worth noting at this
point that the suppression of the antidiagonal of ρ

(2)
BB (x1, x2; t )

or equivalently the decay of Drel(t ) is significantly more
pronounced for quenches towards the attractive interaction
regime than in the repulsive one [e.g., compare Figs. 6(d)
and 8(d)]. Therefore, we can infer the generation of stronger
attractive induced interactions for quenches in the attractive
versus the repulsive impurity-medium interaction regime [42],
a result that also holds for the ground state of the system as
explicated in Sec. III B.

On the other hand, the two-body dynamics of two re-
pulsively interacting impurities, here gBB = 1, subjected to
a quench from gBF = 0 to gBF = −2.5 showcases quite dif-
ferent characteristics from the gBB = 0 case [compare, in
particular, Figs. 8(c1)–8(c4) with Figs. 6(c1)–6(c4)]. Indeed,
even for the ground state of the system (t = 0) the impurities,
since gBB is finite, are spatially separated with the one residing
at x < 0 and the other at x > 0 as can be inferred from the
correlation hole of ρ

(2)
BB (x1, x2 = x1; t = 0) in Fig. 8(c1). After

the quench, they oscillate between two distinct configura-
tions. Namely, they either stay separated [see the elongated
antidiagonal of ρ

(2)
BB (x1, x2; t ) in Figs. 8(c2) and 8(c3)] or they

move close to each other [see their bunching tendency in the
region x1, x2 ∈ [−2, 2] in Fig. 8(c4)]. This behavior is caused
by the competition of their inherent repulsive contact inter-
action and the induced attraction mediated by the fermionic
environment [59].

To understand better the aforementioned competing mech-
anism we present the time evolution of the impurities relative
distance Drel(t ) for a variety of postquench interactions gBF

in Fig. 8(e). As it can be directly seen, the response of Drel(t )
depends crucially on gBF . Indeed, for quenches to weak at-
tractions, e.g., gBF = −0.8, Drel(t ) oscillates with an almost
constant amplitude and a dominant frequency ω1 = 0.226.
However, by increasing the quench amplitude, e.g., to gBF =
−2.5, Drel(t ) performs “irregular” oscillations characterized
by multiple frequencies and importantly a decaying ampli-
tude. This decay is more pronounced for larger attractions,
e.g., gBF = −4, where Drel(t ) drops at the early stages of
the dynamics and saturates to a fixed value for t > 50. As a
consequence, we can deduce that the strength of the emergent
attractive induced interactions becomes larger for quenches
towards stronger impurity-medium attractions and gradually
dominates with respect to the impurities direct repulsion. Note
here that such a mechanism is also present for quenches to
repulsive impurity-medium interactions [see Fig. 6(e)], but
it is apparently less effective compared to the attractive gBF

quench scenario.

3. Correlations of the Fermi bath

Turning to the Fermi sea we observe the appear-
ance of completely different correlation patterns building
upon ρ

(2)
FF (x1, x2; t ) when compared to the repulsive quench

053317-13



K. MUKHERJEE et al. PHYSICAL REVIEW A 102, 053317 (2020)

0 50 100 150

t(units of 1/ω⊥)

0

0.5

1.0

1.5

2.0

S
V

N
(t

)

(a) gBB = 0

0 50 100 150

t(units of 1/ω⊥)

(b) gBB = 1

0 50 100 150

t(units of 1/ω⊥)

(c) gBB = 0

0 50 100 150

t(units of 1/ω⊥)

(d) gBB = 1

0 1 2 3

|gBF |(units of h̄3ω⊥/M)

0

0.5

1

1.5

2

S̄
V

N

(e) gBB = 0

FIG. 9. Temporal evolution of the von Neumann entropy SVN(t ) for different postquench (a, b) attractive and (c, d) repulsive impurity-
medium interaction strengths (see legends). The bosonic impurities are considered to be either (a, c) noninteracting gBB = 0 or (b, d) interacting
with gBB = 1. (e) Time-averaged von Neumann entropy S̄VN for distinct postquench |gBF | attractive and repulsive values (see legend) when
gBB = 0. The solid and dashed lines provide a guide to the eye. The BF mixture consists of NB = 2 bosons and NF = 6 fermions with equal
masses and is confined in the same harmonic trap with ω = 0.1.

scenario [Figs. 6(c1)–6(c4)] as demonstrated in Figs. 8(c1)–
8(c4) for a quench to gBF = −2.5 in the system with two
noninteracting (gBB = 0) impurities. As expected, a corre-
lation hole exists for the entire time evolution due to the
fermionic character of the bath [41,81]. Initially, t = 0, the
fermions are symmetrically placed with respect to x = 0 and
predominantly reside one at x > 0 and the other at x < 0
[see the bright spots close to the diagonal in Fig. 8(c1)].
Following the quench a crosslike correlation pattern appears
in ρ

(2)
BB (x1, x2; t ) which becomes more elongated across the

spatial regions lying in the vicinity of x1 = 0 and x2 = 0
[Figs. 8(c3) and 8(c4)]. This crosslike correlation pattern is
the two-body analog of the accumulation of the Fermi density
ρ

(1)
F (x; t ) [Fig. 5(a2)] around the trap center and more pre-

cisely in the vicinity of the position of the impurities due to
the attractive gBF . Thus it is a direct imprint of the impurities
motion into their host [see also the elongated diagonal of
ρ

(2)
BB (x1, x2; t ) in Figs. 8(a2)–8(a4)], evincing that for strong

attractive gBF the fermions move close to the trap center, a
mechanism that competes with their inherent Fermi pressure.

C. Entanglement dynamics

To further unveil the degree of impurity-medium corre-
lations during the quench dynamics of the BF mixture we
employ the time evolution of the von Neumann entropy SVN(t )
[Eq. (5)(5)]. This quantity provides a measure of the overall
buildup of the impurity-medium entanglement [41,47,92] and
also reveals the complexity of the time-evolved postquench
state of the system. The dynamics of SVN(t ) after a quench to
attractive (repulsive) interactions for the system of two nonin-
teracting and interacting impurities is shown in Figs. 9(a) and
9(b) [Figs. 9(c) and 9(d)], respectively.

Focusing on the attractive postquench interaction regime
[Figs. 9(a) and 9(b)] we observe that independently of
the inclusion of direct s-wave impurity-impurity interac-
tions SVN(t = 0) = 0 and hence the components are initially
nonentangled. However, directly after the quench an appre-
ciable impurity-medium entanglement generation takes place
in all cases since SVN(t ) �= 0 [33,35,92]. More precisely, an
almost ballistic linear growth of SVN(t ) is manifested at the
very early stages of the dynamics (t < 5) accompanied by a
fluctuating behavior of SVN(t ) around a fixed gBF -dependent

value at later evolution times. Notice that for both gBB = 0 and
gBB = 1 the response of SVN(t ) shows a hierarchy in terms of
gBF , namely, it acquires larger values for stronger attractions.
Also, the temporal fluctuations of SVN(t ) deep in the evolution
are suppressed for quenches to weak attractions [e.g., compare
SVN(t ) for gBF = −0.8 and −2.5 in Figs. 9(a) and 9(b)]. The
latter means that for larger postquench attractions the system
is in a more complicated many-body superposition involving
a larger amount of states [see also Eq. (2)] than for smaller
negative gBF values. This situation holds equal for fixed gBF

but increasing gBB. Indeed, it becomes apparent by inspecting
SVN(t ) for fixed gBF between the gBB = 0 and gBB = 1 cases
that in the latter case the temporal fluctuations of SVN(t ) are
enhanced, especially for a larger |gBF |. We remark that the
saturating tendency of SVN(t ) for long times can be attributed
to the finite size of the system [97], i.e., if the system would
have been infinite then SVN(t ) should increase linearly in time
throughout the time evolution.

A similar to the above-described phenomenology regard-
ing the entanglement dynamics takes place also during the
unitary evolution of the system for quenches towards the
repulsive impurity-medium interaction regime for both non-
interacting [Fig. 9(c)] and interacting [Fig. 9(d)] impurities.
Indeed, the sudden increase of gBF leads to entanglement
formation since SVN(t ) �= 0 while SVN(t = 0) = 0. As for
gBF < 0, here also SVN(t ) increases linearly for t < 5 and
subsequently oscillates around a mean value [see Figs. 9(c)
and 9(d)]. Interestingly, the degree of entanglement is larger
for quenches to the repulsive than the attractive interaction
regimes [e.g., compare Figs. 9(a) and 9(c)]. This fact evinces
that a larger amount of dynamical impurity-medium entan-
glement is established in the repulsive interaction regime.
To support our argument we exemplarily showcase the
time-averaged von Neumann entropy, defined as S̄VN =
(1/T )

∫ T
0 dtSVN(t ) with T being the considered evolution

time, in Fig. 9(e) for varying postquench repulsive (gBF > 0)
and attractive (gBF < 0) impurity-medium interactions in the
system containing the noninteracting impurities. As it can
be readily seen, irrespectively of the quench direction S̄VN

increases monotonously with increasing magnitude of gBF .
However, it is also apparent that S̄VN is in general slightly
larger for quenches to repulsive than to attractive interactions
at a specific postquench |gBF |.
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V. CONCLUSIONS

We have unraveled the role of induced correlations and
pattern formation in the ground state and the nonequilibrium
quantum dynamics of two bosonic impurities embedded in a
fermionic environment. The 1D Bose-Fermi mixture is har-
monically trapped and the time evolution is initiated upon
considering a quench of the impurity-medium coupling from
a vanishing towards the repulsive or the attractive interaction
regime. Inspecting both one- and two-body observables en-
ables us to expose correlation-induced phenomena mediated
by the host, and to analyze the competition of induced inter-
actions and direct s-wave ones, the emergent phase-separation
processes, and the underlying entanglement dynamics. Our
results provide insights into the nature and strength of the
impurity-impurity induced interactions mediated by the Fermi
sea over a broad range of attractive and repulsive impurity-
medium couplings but do not capture their range.

Referring to the ground state of two noninteracting bosonic
impurities it is shown that on the single-particle level they
phase separate with the Fermi sea for strong repulsions and
accumulate at the trap center together with their environment
for large attractions, otherwise they are miscible. In the system
of two repulsively interacting impurities the boundaries of
the aforementioned regions are shifted to larger interactions.
Importantly, we identify the presence of induced impurity-
impurity interactions mediated by the fermionic environment,
in the system with noninteracting bosons, for either increas-
ing impurity-medium repulsion or attraction. For repulsively
interacting impurities we elaborate on the competition of
induced and direct interactions with the latter (former) dom-
inating for repulsive (attractive) impurity-medium couplings,
evincing that the strength of induced interactions is larger for
attractive impurity-bath interactions. Inspecting the two-body
correlation function of the Fermi sea we showcase that two
fermions are likely to remain far apart (approach each other)
for larger impurity-medium repulsions (attractions).

We trigger the dynamics by suddenly changing the
impurity-medium interaction strength from zero to finite re-
pulsive or attractive values. A quench to repulsive interactions
induces in both components a collective breathing motion.
The impurities breathing frequency and amplitude depend on
the postquench coupling and their interacting nature. More-
over, a dynamical phase separation occurs for quenches to
large repulsions with the impurities residing at the origin
and the fermionic environment splitting into two symmetric
density branches with respect to the trap center. Here, two
fermions are likely to lie one on the left and the other on the
right density branch. Interestingly, induced impurity-impurity
correlations mediated by the host are manifested in the course
of the evolution of two noninteracting impurities and be-
come more pronounced for quenches to stronger repulsions.
On the other hand, monitoring the dynamics of repulsively
interacting impurities we showcase the competition of in-
duced and direct interactions with the latter prevailing and
enforcing the impurities to be in a two-body superposition.
The impact of induced interactions is also captured by the
decaying amplitude in time of the impurities relative distance,
which is clearly more prominent for noninteracting bosonic
impurities.

For quenches to attractive impurity-medium interactions
both components perform an overall breathing motion, the
amplitude and frequency of which regarding the impurities are
impacted by the considered impurity-impurity and postquench
impurity-medium couplings. Remarkably, a beating pattern
appears on the single-particle level stemming from the in-
volvement of two nearly resonant breathing frequencies in
the dynamics of the impurities due to the dominant nature of
their attractive induced interactions. Furthermore, the impu-
rities exhibit a spatial localization tendency around the trap
center causing a density accumulation of the Fermi sea at
their instantaneous location. This mechanism becomes more
pronounced for quenches to larger attractions, and it is im-
printed as a crosslike correlation pattern in the Fermi sea
and dictates the dominant presence of attractive induced in-
teractions the strength of which is enhanced for quenches
to larger attractions. Indeed they can even gradually surpass
the direct impurity-impurity repulsive coupling, a result that
is also evident by the prominent decaying amplitude of the
impurities relative distance during the time evolution.

Moreover, by measuring the von Neumann entropy we
explicate that in all cases the impurity-medium entanglement
rises in a linear manner at the initial stages of the dynamics
and afterwards it exhibits a fluctuating behavior around a
constant value. Also, the entanglement exhibits a hierarchy
by means that it is larger for fixed impurity (postquench
impurity-medium) interaction and increasing quench ampli-
tude (impurity coupling).

There are several research directions that can be pursued
in future endeavors. An intriguing perspective is to study the
robustness of the discussed phenomena in the presence of
finite temperature effects [98] and in particular their impact
on the impurities induced interactions. Certainly, the gener-
alization of our findings to higher dimensional settings as
well as to larger impurity concentrations is desirable. An-
other interesting direction would be to consider an additional
long-range interparticle interaction potential [99] and unravel
the corresponding quench induced dynamics. The emergent
quasiparticle properties [12,26] such as the lifetime, residue,
effective mass, and induced interactions are of particular in-
terest.
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APPENDIX: DETAILS OF THE MANY-BODY
SIMULATIONS AND THEIR CONVERGENCE

In this Appendix we provide a brief overview of the de-
ployed variational approach, i.e., the ML-MCTDHX method
utilized in the main text, and also argue about the conver-
gence of our results. ML-MCTDHX is an ab initio approach
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for solving the time-dependent MB Schrödinger equation of
multicomponent ultracold atom systems consisting of bosonic
[25,43,76] or fermionic [41,81] species which could also pos-
sess spin degrees of freedom [100]. An important facet of this
method is the expansion of the system’s MB wave function in
terms of a time-dependent and variationally optimized basis
set [see Eqs. (2) and (3)]. Such a treatment is tailored to
consider the basis states that are energetically favorable at
each time instant of the evolution and as a result to span the
relevant subspace of the Hilbert space more efficiently than
when using methods which rely on a time-independent basis.
Consequently, it is possible to capture all relevant intra- and
intercomponent correlations according to the system and driv-
ing protocol under investigation as well as to address setups
with mesoscopic particle numbers [35,76,101].

More specifically, the underlying Hilbert-space truncation
is dictated by the used orbital configuration space denoted
by C = (D; dB; dF ). Here, D ≡ DB = DF is the number of
species functions [Eq. (2)] and dB and dF refer to the amount
of single-particle functions [Eq. (3)] of the bosonic and the
fermionic species, respectively. Within our numerical im-
plementation, a primitive basis consisting of a sine discrete
variable representation with 600 grid points is utilized. This
sine discrete variable representation intrinsically introduces
hard-wall boundary conditions at both edges of the numerical
grid located here at x± = ±40. Note that the aforementioned
locations of the hard walls do not affect the discussed phe-
nomena and results since non-negligible portions of each
subsystem density are extended up to x± = ±15.

To testify the convergence of our MB variational calcula-
tions we systematically vary the employed orbital configura-
tion space C = (D; dB; dF ) until the observables of interest
reach a certain level of accuracy. All the MB calculations
presented in the main text are based on the configuration space
C = (10; 12; 6) which has been found to provide an adequate
level of numerical convergence. To explicitly demonstrate the
degree of convergence we invoke, as case examples, the time
evolution of the relative distance between the impurities, i.e.,
Drel(t ), and the von Neumann entropy SVN(t ). In particular,
we track their corresponding absolute deviations, namely,
DCC′

rel and SCC′
VN (t ), between the C = (10; 12; 6) and other

orbital configurations designated by C′ = (D′; d ′
B, d ′

F ). There-
fore, we inspect the following quantities:

DCC′
rel (t ) = DC

rel(t ) − DC′
rel(t )

DC
rel(t )

,

SCC′
VN (t ) = SC′

VN(t ) − SC′
VN(t )

SC
VN(t )

. (A1)

Figure 10 shows the dynamics of DCC′
rel [Figs. 10(a) and

10(b)] and SCC′
VN (t ) [Figs. 10(c) and 10(d)] for zero and finite

repulsive impurity-impurity interactions following a quench
of the impurity-medium coupling from gBF = 0 to 1. Appar-
ently, an adequate degree of convergence is achieved in all
cases. Referring to noninteracting impurities, i.e., gBB = 0,
we observe that the relative difference DCC′

rel [SCC′
VN (t )] be-

tween the C = (10; 12; 6) and C′ = (10; 10; 6) configurations
presented in Fig. 10(a) [Fig. 10(c)] lies below 2.5% [2%]
throughout the evolution. Also, DCC′

rel [SCC′
VN (t )] becomes
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FIG. 10. Time evolution of the absolute deviation of (a, b) the
relative distance DCC′

rel between the two bosonic impurities and
(c, d) the von Neumann entropy SCC′

VN (t ) among the bosonic and
the fermionic subsystems upon applying an interaction quench of
the impurity-medium coupling from gBF = 0 to 1. The cases of (a,
c) noninteracting gBB = 0 and (b, d) repulsively interacting with
gBB = 1 bosonic impurities are shown. In all panels C = (10; 12; 6)
is kept fixed and variations of the orbital configurations denoted by
C′ = (D′; d ′

B, ; d ′
F ) are considered (see legend).

at most of the order of 2.5% [3.5%] for C′ = (8; 10; 6) and
9% [5%] when C′ = (10; 12; 4). Turning to the case of repul-
sively interacting impurities we can infer a similar convergent
behavior with DCC′

rel and SCC′
VN (t ) exhibiting slightly larger

deviations as illustrated in Fig. 10(b) [Fig. 10(d)]. Indeed,
DCC′

rel [SCC′
VN (t )] reaches a maximum value of the order

of 5.1% [2.3%] for C′ = (10; 10; 6), 6.5% [4.2%] for C′ =
(8; 10; 6), and 10.3% [5%] for C′ = (10; 12; 4), respectively.
Finally, we should note that a similar analysis has also been
performed for all other postquench impurity-medium interac-
tion strengths and observables presented in the main text and
found to be adequately converged (results not shown).
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