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Twist-and-store entanglement in bimodal and spin-1 Bose-Einstein condensates

Artur Niezgoda ,1 Emilia Witkowska,2 and Safoura Sadat Mirkhalaf2

1Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland
2Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02-668 Warsaw, Poland

(Received 15 September 2020; accepted 30 October 2020; published 16 November 2020)

A scheme for dynamical stabilization of entanglement quantified by the quantum Fisher information is
analyzed numerically and analytically for bimodal and spin-1 Bose-Einstein condensates in the context of
atomic interferometry. The scheme consists of twisting dynamics followed by a single rotation of a state which
limits further evolution around stable center fixed points in the mean-field phase space. The resulting level
of entanglement is of the order or larger than at the moment of rotation. It is demonstrated that the readout
measurement of parity quantifies the level of entanglement during the entire evolution.
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I. INTRODUCTION

Entanglement is a fascinating concept of quantum physics
and, as already well established, a unique resource for
emerging quantum technologies. In metrology, for example,
entangled states such as squeezed states can improve the
sensitivity of interferometric measurements [1–3] because
they allow overcoming the standard quantum limit, where
sensitivity scales as ∼1/

√
N for N uncorrelated particles, ap-

proaching the ultimate Heisenberg limit with scaling as ∼1/N .
Initially, this concept emerged in terms of squeezing [4]
and very recently was applied [5–7] in the optical domain.
Lately, it was also successfully generated and characterized in
the system composed of massive particles, namely ultracold
atoms [8].

In general, a production of squeezed and entangled states
requires interatomic interaction which dynamically generates
nontrivial quantum correlations between atoms. The same
interaction might be undesirable after reaching the required
level of entanglement because it can still dynamically degrade
entanglement or interatomic correlations. The twisting types
of interaction [9,10] allow a uniform description of dynamical
entanglement generation for many setups composed of cold
atoms [8], e.g., for cavity induced spin squeezing [11–13] and
from spin-changing collisions in bimodal [14–16] and spin-1
Bose-Einstein condensates [17–21]. In particular, in the latter
setup the undesired effect of interaction is difficult to reduce.

In this paper, we propose a simple method for entangle-
ment stabilization and storage by a single rotation of a state
in bimodal and spin-1 Bose-Einstein condensates. The idea
is very simple and, as is illustrated in Fig. 1, it employs a
structure of the mean-field phase space of the system Hamil-
tonian. The structure is the same for both bimodal and spin-1
condensates as we demonstrate in Sec. II. The method consid-
ers a generalized Ramsey protocol with an additional rotation
of a state applied after twisting dynamics. Once the initial
spin coherent state, placed around a saddle point, is twisted
along constant energy lines, the single rotation puts the state
around two stable center points where further dynamics is
confined and stabilized. We provide details of the scheme in

Sec. III. We observe that the value of the quantum Fisher
information (QFI), which quantifies not only the level of the
sensitivity of interferometric measurements but also the level
of entanglement [22], remains at least as at the moment of
rotation; moreover, it can initially grow. We provide an ana-
lytical explanation of this feature of the QFI using a single
argument of an energy conservation in Sec. V. Therefore, we
conclude that the QFI can exhibit Heisenberg scaling with the
prefactor of the order of one during the entire evolution in the
idealized scheme considered in this paper.

The best sensitivity, and therefore the QFI value, can be
estimated using the signal-to-noise ratio [23] when appropri-
ate readout measurement is provided. In general, identification
of a good observable to measure that gives the highest preci-
sion is a difficult task, in particular for non-Gaussian states.
It might require measurements of higher-order correlation
functions [24]. Here, in Sec. VI, we define the parity op-
erators for both the bimodal and spin-1 systems. We show
analytically, and confirm numerically, that the measurement of
parity [25] allows the sensitivity to saturate the QFI value. We
prove this by using only the fact of parity conservation. The

FIG. 1. Illustration of the method for entanglement stabilization
and storage. The condensate is initialized at the unstable fixed point
(a). Initial evolution produces spin squeezing and entanglement along
the diverging manifold of the separatrix (b). The quantum state is
quickly rotated to locate it around the two stable fixed points (c).
Subsequent evolution of the rotated state (d) is confined around
stable fixed points leading to the stable value of the quantum Fisher
information with Heisenberg scaling.
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measurement can be robust against phase noise if the operator
representing the noise commutes with the parity operator [26].

II. MODEL AND STRUCTURE OF CLASSICAL
MEAN-FIELD PHASE SPACE

The desired structure of the mean-field phase space is com-
posed of two stable center fixed points located symmetrically
on both sides of an unstable saddle fixed point. We concentrate
here on the two systems widely explored theoretically and
experimentally in the ultracold atomic gases, namely bimodal
and spinor Bose-Einstein condensates.

A. Bimodal condensate

We consider here the twisting model enriched by a linear
coupling term between the two modes a and b turning the state
along an orthogonal direction of the form

ĤBI = h̄χ Ŝ2
z − h̄�Ŝx, (1)

where Ŝx = 1
2 (â†b̂ + b̂†â), Ŝy = 1

2i (â
†b̂ − b̂†â), and Ŝz =

1
2 (â†â − b̂†b̂) are pseudospin operators satisfying the cyclic
commutation relation [Ŝl , Ŝn] = i

∑
m εlnmŜm, where εlnm is

the Levi-Civita symbol and â(â†) and b̂(b̂†) are bosonic mode
annihilation (creation) operators of an atom in the mode a
(b). The above Hamiltonian describes two weakly coupled
Bose-Einstein condensates interacting with the strength χ in
the presence of an external field of the strength �. The model
can be realized experimentally employing either a double-
well trapping potential [15,27] or internal (e.g., two hyperfine
atomic states) degrees of freedom [14].

To obtain the mean-field phase space one can calculate an
average value of (1) over the spin coherent state

|ϕ, θ〉BI = e−iϕŜx e−iθ Ŝy |N, 0〉, (2)

where â†N√
N!

|0, 0〉 = |N, 0〉 and ϕ ∈ [0, 2π ], θ ∈ [0, π ]. The
spin coherent state is a double rotation of a maximally po-
larized state when all atoms are in the state a.1 This leads to

HBI = �

2
z2 −

√
1 − z2 cosϕ, (3)

where z = cosθ and � = χN/� [28], while keeping the lead-
ing terms. The parameters (z, ϕ) are conjugate coordinates
which draw trajectories in the mean-field phase space re-
sulting from the Hamilton equations ż = −√

1 − z2 sinϕ and
ϕ̇ = �z + z√

1−z2 cosϕ. The desired by our protocol feature of
the above mean-field phase-space trajectories is a presence of
suitable configuration of stable and unstable fixed points. The
position of fixed points is a solution of (ż = 0, ϕ̇ = 0). The
resulting structure of phase space is shown in Fig. 2. The three

1Alternatively, one can substitute the quantum-mechanical opera-
tors by complex numbers â → √

Naeiϕa (b̂ → √
Nbeiϕb ), where Nz =

Na − Nb and ϕ = ϕa − ϕb correspond to the relative phase between
the two internal states. This procedure is not obvious for the spinor
system as we will concentrate on the symmetric subspace of the
Hamiltonian.

FIG. 2. Structure of classical mean-field phase space for the bi-
modal system versus �. The upper panels show the view from the
positive side of the x axis, while the bottom panels show the view
from the negative side. The principal three regimes are distinguished
as indicated by a name above the � axis, and discussed in the main
text. In this paper, we consider � = 2 and the initial state located
around an unstable fixed point located along the x axis, at the negative
side of it.

principal regimes can be distinguished depending on the value
of � and characterized by different positions and number of
fixed points [29,30]. The first one is the “Rabi” regime for
� < 1 in which the linear term governs the time evolution
of the system. In the limit � → 0, the evolution is similar to
resonant Rabi oscillations with N independent particles. The
two stable center fixed points are localized at (z, ϕ) = (0, 0)
and (z, ϕ) = (0, π ). The second is the “Josephson” regime
appearing for � > 1. In this regime the fixed point localized at
(z, ϕ) = (0, π ) becomes unstable and the two new stable fixed

points form at (z, ϕ) = (±
√

1 − 1
�2 , π ). The change happens

just after the bifurcation point at � = 1. In this regime, the
characteristic “∞” shape is drawn up by trajectories centered
around an unstable fixed point at (z, ϕ) = (0, π ); see Fig. 2.
The ∞ shape is the one that allows storing entanglement.
Finally, the third “Fock” regime occurs for � � 1, when the
phase portrait has the same structure as the one-axis twisting
(OAT) model [9]. It is composed of two stable fixed points at
(z, ϕ) = (±1, ϕ) and the unstable one at (z, ϕ) = (0, ϕ).

B. Spinor condensate

The same structure of the mean-field phase space can be
realized in spinor Bose-Einstein condensates with three in-
ternal levels instead of two, as discussed above. It can be
seen in the single mode approximation (SMA) where all
atoms from different Zeeman states occupy the same spatial
mode φ(r) which satisfies the Gross-Pitaevskii equation. The
many-body Hamiltonian is expressed in terms of annihilation
(creation) operators âmF (â†

mF
) of an atom in the mF Zeeman

state and spin-1 operators, which we collected in the vec-
tor 	� = {Ĵx, Q̂yz, Ĵy, Q̂zx, D̂xy, Q̂xy, Ŷ , Ĵz} (see Appendix A for
definitions), and reads

ĤS

c′
2

= − 1

2N
Ĵ2 + qN̂s, (4)

after dropping constant terms [31,32]. Here, the en-
ergy unit c′

2 = N |c2|
2

∫
d3r|φ(r)|4 is associated to the spin
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interaction energy, Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z and N̂s = â†

1â1 +
â†

−1â−1 [10,33,34]. The last term in (4) is due to the quadratic
Zeeman effect which can have contribution from the ex-
ternal magnetic field or microwave light field [35]. The
value of q can be either positive or negative. The Hamilto-
nian (4) conserves the z component of the collective angular
momentum operator [ĤS, Ĵz] = 0; hence the linear Zeeman
energy term is irrelevant and is omitted here. The magneti-
zation M ∈ [−N, N], being the eigenvalue of the Ĵz operator,
is a conserved quantity. The above Hamiltonian can be
engineered, e.g., in F = 1 hyperfine manifold using Rb87

atoms [17,19,36–38].
For our purposes it is convenient to introduce the symmet-

ric and antisymmetric bosonic annihilation operators, ĝs =
(â1 + â−1)/

√
2 and ĝa = (â1 − â−1)/

√
2, and the correspond-

ing pseudospin operators

Ĵx,σ = â†
0ĝσ + â0ĝ†

σ , (5)

Ĵy,σ = i(â†
0ĝσ − â0ĝ†

σ ), (6)

Ĵz,σ = ĝ†
σ ĝσ − â†

0â0, (7)

where indices σ = s and σ = a refer to symmetric
and antisymmetric subspace. The above operators have
cyclic commutation relations, e.g., [Ĵx,σ , Ĵy,σ ] = 2iĴz,σ . Note,
the symmetric subspace is spanned by {Ĵx,s, Ĵy,s, Ĵz,s} =
{Ĵx, Q̂yz,

1
2 (

√
3Ŷ + D̂xy)}, while the antisymmetric subspace

by {Ĵx,a, Ĵy,a, Ĵz,a} = {Q̂zx, Ĵy,
1
2 (

√
3Ŷ − D̂xy)}. The spin-1

Hamiltonian (4) can be expressed in terms of symmetric and
antisymmetric operators [39,40] as

ĤS

|c′
2|

= − 1

2N
Ĵ2

x,s + q

3
Ĵz,s − 1

2N
Ĵ2

y,a + q

3
Ĵz,a

− 1

2N
(ĝ†

s ĝa + ĝ†
aĝs)2 (8)

up to constant terms. The Hamiltonian (8) is a sum of two
(noncommuting) bimodal Hamiltonians for symmetric and
antisymmetric operators, as in (1), provided that they are
rotated in respect to each other, plus a mixing term which
comes from the Ĵ2

z operator. Therefore, the mean-field phase
space of the spinor system in each subspace is expected to
have the same structure as the bimodal condensate (1). The
mean-field phase space was already considered for spinor
condensate; see, e.g., Ref. [36]. Here we propose a slightly
different approach.

To show this, we concentrate here on the symmetric
subspace spanned by the symmetric pseudospin operators
Ĵx,s, Ĵy,s, Ĵz,s (the antisymmetric mean-field subspace is pro-
vided in Appendix B). The structure of mean-field phase space
can be obtained by calculating an average value of (4) over the
spin coherent state defined for the symmetric subspace as

|ϕ, θ〉S = e−iϕĴz,s/2e−iθ Ĵy,s/2|N0〉s, (9)

where |N0〉s = ĝ†
s

N
√

N!
|000〉 and once again ϕ ∈ (0, 2π ), θ ∈

(0, π ). The spin coherent state (9) can be interpreted as a
double rotation of maximally polarized state |N0〉s in the sym-
metric subspace, when all atoms are in the symmetric mode.
The state |N0〉s is an eigenstate of Ĵz,s such that Ĵz,s|N0〉s =

N |N0〉s, and is located on the north pole of the Bloch sphere
in the symmetric subspace. In terms of spin-1 operators it
reads |N0〉s = e−iπ/4Q̂xy |N00〉. On the contrary, the state with

N atoms in the mF = 0 mode, â†
0

N
√

N!
|000〉 = |0N0〉, lies on the

south pole of the same Bloch sphere. In addition, one can
show that

|ϕ, θ〉S = 1√
N!

[
ĝ†

scos
θ

2
+ â†

0sin
θ

2
eiϕ

]N

|000〉, (10)

up to the constant phase factor. We use the above expression
while illustrating an arbitrary state |�〉 on the Bloch sphere in
the symmetric subspace with the help of the Husimi function
QS (ϕ, θ ) = |〈�|ϕ, θ〉S|2.

An average value of the spin-1 Hamiltonian (4) over the
spin coherent state (9) leads to

HS = �

2
(1 − z2) cos2 ϕ + z + 1, (11)

by keeping the leading terms and omitting the constant ones,
and once again z = cosθ while � = −2/q. Note, the values
of � can be both negative and positive depending on the
value of q. The negative value of � does not change the
structure of the mean-field phase space as discussed in Fig. 3.
The three different regimes are also present in the case of the
symmetric (antisymmetric) subspace of the spinor system. To
find positions of fixed points one should start with Hamilton
equations for conjugate variables (z, ϕ) using (11); they are
ϕ̇ = −�z cos2 ϕ + 1 = 0 and ż = 2�(1 − z2) cos ϕ sin ϕ =
0. Next, one calculates solutions of (ż, ϕ̇) = (0, 0), which are
locations of fixed points. The three regimes can be distin-
guished and they are listed below for negative values of �.
The Rabi regime is in the limit � → 0 when the evolution
is governed by the linear term in the Hamiltonian. There are
two stable center fixed points located at both poles of the
Bloch sphere, i.e., z = ±1. It is true up to the bifurcation
which occurs at � = 1. On the other hand, in the Joseph-
son regime, just after bifurcation, the fixed point at z = −1
became unstable and the two new stable center fixed points
appear at (z, ϕ) = (1/�, 0) and (z, ϕ) = (1/�, π ). In addi-
tion, the Fock regime takes place when the interaction term
dominates over the linear one. This regime is characterized
by the two stable center fixed points at (z, ϕ) = (0, π/2) and
(z, ϕ) = (0, 3π/2) and the unstable along a meridian of the
Bloch sphere at ϕ = 0, π .

In our work we focus on the Josephson regime for |�| = 2.
The desired ∞ shape is drawn up by trajectories centered
around an unstable fixed point. Moreover, the angle among
constant energy lines incoming and outgoing from the saddle
fixed point equals π/2; see Figs. 2 and 3. This means that
the level of entanglement generated is the largest and the
fastest; see [41] and Fig. 5(c). The phase portrait consists of
one unstable and three stable fixed points among which two
are symmetrically located around the unstable one. These two
stable center fixed points serve to our protocol as we will use
them to stabilize entanglement dynamics by locating the state
around them.
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FIG. 3. Structure of phase portraits of the spinor system versus � in the symmetric subspace. The upper panels show a view of the north
poles of the Bloch sphere, while the bottom panels show a view of south poles. The structure is the same as the one for the bimodal system,
provided that the latter is rotated by π/2 around the y axis. The three different regimes appear as well and are indicated above the � axis. In
this paper, we focus on � = −2 and the initial state located around the unstable saddle fixed point on the south pole of the Bloch sphere.

III. TWIST-AND-STORE PROTOCOL

The interferometric protocol we consider consists of four
steps in general; see Fig. 4. The scheme starts with the dy-
namical state preparation by the unitary evolution determined
by the system Hamiltonian followed by the state rotation at
a given moment of time. The unitary evolution continues
and eventually leads to the stabilization of dynamics around
the two stable fixed points located symmetrically around the
unstable saddle fixed point. This state can further be used in
quantum interferometry protocol, which consists of the phase
θ accumulation during an interrogation time T under the
generalized generator �̂n of interferometric rotation e−iθ�̂n .
In particular, this is the phase encoding step in which the
unitary transformation e−iθ�̂n describes our interferometer in
the language of the quantum mechanics. The phase θ depends
on the physical parameter to be measured, e.g., a magnetic
field, and we assume that it is imprinted onto the state in the

FIG. 4. Protocol for entanglement storage for linear
entanglement-enhanced quantum interferometry. (a) An entangled
state is dynamically prepared by unitary evolution. (b) At the given
moment of time, the state is rotated to location around stable fixed
points and stabilization due to unitary evolution takes place. (c) The
unitary evolution is followed by the phase θ accumulation during an
interrogation time T under generalized generator of interferometric
rotation e−iθ�̂n . Finally, a readout measurement (RM) is performed.

most general way. At the end, a readout measurement (RM) is
performed.

In this paper, we consider the system at zero temperature
and therefore its unitary evolution is given by the ÛBI =
e−it ĤBI operator for the bimodal and by ÛS = e−it ĤS for the
spin-1 systems. The initial state is the spin coherent state
located around the unstable saddle fixed point; |ψ (0)〉BI =
|0, π/2〉BI for the bimodal system and |ψ (0)〉S = |0, π〉S for
the spin-1 system. Note, in the latter case the state is located
on the south pole of the symmetric Bloch sphere and it is
the polar state |0, N, 0〉. The corresponding Schrödinger equa-
tions are solved numerically in the Fock state basis where
operators are represented by matrices and states are repre-
sented by vectors.

IV. QUANTIFYING ENTANGLEMENT

We measure the level of entanglement using the quantum
Fisher information (QFI) because we consider the protocol in
the context of quantum interferometry, as illustrated in Fig. 4.
It is already well established that the QFI is a good certifica-
tion of entanglement useful for quantum interferometry [22].

In a general linear quantum interferometer, the output
state |ψ (θ )〉 can be considered as the action of the rota-
tion performed on the input state |ψ (t )〉, namely |ψ (θ )〉 =
e−iθ�̂n |ψ (t )〉. The QFI quantifies the minimal possible pre-
cision of estimating the imprinted phase θ in quantum
interferometry [23]. The minimal precision is given by the
inverse of the quantum Fisher information FQ, θ � 1/

√
FQ.

In general, the QFI value depends on the input state and
generator of an interferometric rotation. The generator can be
considered as the scalar product �̂n = 	� · n. The vector 	�
is composed of bosonic Lie algebra generators describing a
given system. Specifically, it is 	�BI = {Ŝx, Ŝy, Ŝy} for bimodal
and 	�S = {Ĵx, Q̂yz, Ĵy, Q̂zx, D̂xy, Q̂xy, Ŷ , Ĵz} for spinor conden-
sates. The unit vector n determines the direction of rotation in
the generalized Bloch sphere.

The QFI value is given by the variance

FQ = 42�̂n (12)
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(a) (b) (c)

FIG. 5. Scaling of the quantum Fisher information with N vs time for the bimodal (a) and spinor (b) systems with |�| = 2. The values of
N are given in the legend. (c) The maximal value of the QFI for spinor system, F max

Q,S , versus � for N = 100 demonstrating that the maximal
value of entanglement is generated for � � −2.

for pure states [42]. It is possible to find the generator �̂n,
for which the QFI reaches its maximum value [2]. For pure
states, this problem can be solved by noticing that the variance
in (12) can be written in terms of the covariance matrix

�i j[|ψ (t )〉] = 1
2 〈�̂i�̂ j + �̂ j�̂i〉 − 〈�̂i〉〈�̂ j〉, (13)

and then

FQ = 4nT · �[|ψ (t )〉] · n. (14)

Therefore, one concludes that the maximal value of the QFI
is given by the largest eigenvalue λmax of (13). while the
direction of rotation nmax by the eigenvector corresponding
to λmax.

There are two characteristic limits for the QFI value. The
first one is the standard quantum limit (SQL) typical for co-
herent states where the QFI is equal to N for bimodal system
and to 4N for spinor system [42]. Whenever the QFI value is
larger than the SQL, the state is entangled [1]. The second is
the Heisenberg limit which bounds the value of the QFI from
above, and it is equal to N2 for bimodal system and 4N2 for
spinor system [42].

Here, we focus on the maximal value of (12) optimized
over n at a given moment of time t and the given input state
|ψ (t )〉BI/S. In the case of bimodal system, the maximal QFI is

FQ,BI = 4λmax,BI, (15)

where λmax,BI is the maximal eigenvalue of the 3 × 3 co-
variance matrix when �̂i in (13) is replaced by �̂BI,i. In
Appendix C we discuss the direction of interferometric ro-
tation leading to the maximal value of the QFI. In the case of
spinor condensate, the QFI reads

FQ,S = 4λmax,S, (16)

where this time λmax,S is the maximal eigenvalue of 8 × 8
matrix (13) when �̂i is replaced by �̂S,i. Although there are
eight possible eigenvalues, only a few of them contribute to
the maximal QFI value. This is because of the additional
constant of motion, namely magnetization, which introduces
symmetry of covariance matrix, simplifies its form, and di-
minishes the number of various values of λS and directions
of interferometric rotations n; see Appendix C for details of
calculations.

In Fig. 5 we show an example of the QFI evolution
in the Josephson regime for |�| = 2 when |ψ (t )〉BI/S =
ÛBI/S|ψ (0)〉BI/S (without optional rotation discussed in Fig. 4

and in Sec. V). It was shown for bimodal condensates that
for |�| = 2 the unitary evolution generates the fastest speed
and amount of entanglement [41]. This is because of the char-
acteristic ∞ shape in the mean-field phase portrait with the
angle between in- and outgoing constant energy lines equal to
π/2 [41,43]. It is expected that this also holds true for spinor
condensate due to the same characteristic shape drawn up by
constant energy lines in the mean-field phase space.

It is interesting to note that the short time dynamics of
the QFI exhibit a scaling behavior for a different number of
particles, provided that the time axis is properly rescaled as
Nt/ln(2N ) for bimodal system and as t/ln(8N/3) for spinor
system (the difference in N comes from the energy unit chosen
for both systems). This can be interpreted as the appear-
ance of the first maximum of FQ with Heisenberg scaling at
t � ln(2N )

N [t � ln(8N/3)] for the bimodal (spinor) conden-
sate. The scaling is demonstrated in Fig. 5. Indeed, curves
corresponding to different number of atoms overlap for both
bimodal and spinor systems. The scaling can be explained
using a theory developed in [44] under two approximations.
The first is the truncation of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy of equations of motion
for expectation values of spin operators’ products. We trun-
cate the hierarchy by keeping the first- and the second-order
moments, which is equivalent to the Gaussian approximation.
The second approximation is the short-time expansion. The
details of calculations are presented in Appendix D for the
bimodal and in Appendix E for the spinor systems.

V. ENTANGLEMENT STABILIZATION AND STORAGE
AROUND STABLE FIXED POINTS

The regular part of the initial evolution and structure of
the mean-field phase space give a possibility of a stabilization
scheme with nearly stationary value of the QFI at a relatively
high level. The scheme consists of three steps, as discussed in
Fig. 4. The first step is unitary evolution until the QFI reaches
the value close to the first maximum. Then, an instantaneous
pulse rotates the state through αBI around the Ŝx axis,

|ψ (t+
1 )〉BI = e−iαBI Ŝx |ψ (t−

1 )〉BI (17)

for the bimodal system, and through αS around the Ĵzs axis,

|ψ (t+
1 )〉S = e−iαS Ĵzs |ψ (t−

1 )〉S (18)
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(a)

(d) (e) (f)

(b) (c)

FIG. 6. QFI without (black lines) and with optional rotation at t1 = 2.37 (a), 3.08 (b) for bimodal and t1 = 1 (d), 1.6 (e) spinor systems
for N = 600 and N = 100, respectively. The two different values of rotation angle are considered αBI/S = π/4 (green dash-dotted lines) and
αBI/S = π/6 (red dashed lines). Initially, for spin squeezed and a bit oversqueezed states the rotation of π/4 gives higher value of the QFI.
However, for later times when the tails of the state start to turn around the two fixed points, just before the QFI maximum, the optimal
rotation angle changes and we observe that for the angle of π/6 the QFI stabilizes quicker on higher values. Panels (c) and (f) show the QFI
without (black lines) and with optional rotation of π/6 (color lines) after maximum for N = 600 and N = 100 for bimodal and spinor systems,
respectively.

for the spin-1 system, where t−
1 denotes the time just be-

fore and t+
1 after the rotation. Shortly before the rotation

the Husimi function of the state is highly stretched. Rota-
tion throws the most stretched part of the state around stable
regions of the phase space. Later on, for t > t+

1 , the state
dynamics is governed by the unitary evolution without any
manipulations. However, it is trapped around the two stable
fixed points.

An example of the QFI is presented in Fig. 6. An animation
for time evolution of the Husimi function is shown in the
Supplemental Material [45] for the spinor system. A roughly
stationary value of the QFI is obtained in the long-time limit.
More interestingly, the twofold increase of the QFI value can
be observed just after the rotation. One might expect that the
best rotation angle is π/4 as it is the intersection angle of
the in- and outgoing constant energy lines at the saddle fixed
point. This is true if the rotation takes place much before the
QFI reaches its maximum; see Fig. 6(a). The rotation of π/4
is optimal for the states in the early evolution and provides the
highest gain of quantum Fisher information immediately after
rotation. At later times, a higher QFI value can be obtained
for smaller values of the rotation angle; i.e., π/6 is optimal
for the states rotated at the time corresponding to the area
around the first maximum and results in the stabilization of
the quantum Fisher information at the higher level, as demon-
strated in Fig. 6(c). This result does not depend much on the
number of atoms, while deviation from the optimal rotation
time t1 up to 20% does not spoil the scheme, but rather lowers
the QFI value. We observed that the optimal moments for
rotation are around Ntχ/(� ln [2N]) ≈ 0.4 for the bimodal

and tc′
2/(h̄ ln [8N/3]) ≈ 0.5 for spinor condensates and sym-

metrically on the other side of the first maximum. Finally,
we note that the rotation can also be performed after the QFI
reaches the maximum. The slight increase of the QFI value is
observed as well. This is illustrated in Fig. 6. All in all, we
conclude that it is advantageous to rotate the state in shorter
times because of the fast gain in the QFI value.

It is intuitive that the QFI value stabilizes in the long time
limit. When the state is located around the stable fixed point,
the further dynamics are limited in this area of phase space and
are approximately “frozen.” However, from the mathematical
point of view it is nontrivial to show that indeed the value of
the QFI, and therefore the entanglement, does not decrease in
time. Below, we prove this for the bimodal condensate.

We assume that the direction of interferometric rotation
just before the rotation is �̂BI,nmax (t−

1 ) ≈ 1√
2
(Ŝz − Ŝy) and

therefore FQ,BI(t−
1 ) = 42( Ŝz−Ŝy√

2
), while after the rotation for

t � t+
1 one has �̂BI,nmax (t ) ≈ Ŝz and FQ,BI(t ) = 42Ŝz. This is

a fairly good approximation, as one can see in Appendix C 1.
The QFI after rotation can be also written as

FQ,BI(t ) = 4

h̄χ
[〈ĤBI(t )〉 + h̄�〈Ŝx(t )〉], (19)

where we used the relation h̄χ〈Ŝ2
z 〉 = ĤBI + h̄�Ŝx employ-

ing (1) and 〈Ŝz〉 = 0. Next, we note that an average energy
is conserved after rotation, 〈ĤBI(t )〉 = 〈ĤBI(t+

1 )〉, while an
average value of the Ŝx operator is bounded from below and
above, namely N

2 � 〈Ŝx〉 � −N
2 . These two properties lead to
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the inequality

FQ,BI(t ) � 4

h̄χ

[
〈ĤBI(t

+
1 )〉 − h̄�

N

2

]
. (20)

The energy of the bimodal system after the rotation (17)
reads 〈ĤBI(t+

1 )〉 = h̄χ〈[Ŝz(t−
1 )cosαBI + Ŝy(t−

1 )sinαBI]2〉 −
h̄�〈Ŝx(t−

1 )〉, and for αBI = π/4, it equals 〈ĤBI(t+
1 )〉 =

FQ,BI(t−
1 ) − h̄�〈Ŝx(t−

1 )〉. Finally, one considers the latter term
in (20) to show that

FQ,BI(t ) � FQ,BI(t
−
1 ), (21)

for t � t+
1 as 〈Ŝx(t−

1 )〉 � −N
2 as well.

The same reasoning can be used to demonstrate FQ,S(t ) �
FQ,S(t−

1 ) for spinor system, and we provide the calculation in
Appendix F.

VI. PARITY OPERATOR AS AN EFFICIENT READOUT
MEASUREMENT

The precision of estimation of the unknown phase θ can be
estimated using the signal-to-noise ratio as

δθ2 = 2Ŝ
|∂θ 〈Ŝ〉|2 , (22)

with 2Ŝ = 〈Ŝ2〉 − 〈Ŝ〉2 representing the variance of the sig-
nal Ŝ of which an average value is to be measured. Generally
speaking, the precision in the θ estimation fulfills

1

δθ2
� FQ. (23)

As mentioned before, the QFI gives the highest possible
precision on estimation of θ , but its measurement requires
extracting the whole state tomography [8]. On the other hand,
the inverse of the signal-to-noise ratio gives the lowest pre-
cision while it needs measurement of the first and second
moments of the observable Ŝ , which is a bonus from the
experimental point of view.

On the one hand, in general Ŝ is unknown. On the
other hand, in some cases it is known as, for example, the
parity operator for the Greenberger-Horne-Zeilinger (GHZ)
state [46,47] or Ĵ2

z for the spinor system [48]. Instead, the
nonlinear squeezing parameter was recently proposed [24] to
saturate the QFI value at short times for bimodal condensates.
However, the measurement of the nonlinear squeezing param-
eter is related to the measurements of higher-order moments
and correlations.

Here, we show that the inverse of signal-to-noise ratio with
the parity operator in the place of Ŝ in (22) when θ → 0 satu-
rates the QFI value, for both the bimodal and spinor systems.
The parity operator is a well-defined quantum-mechanical
observable, but, unlike other quantum observables, it has no
classical counterpart. However, it was understood that its
measurement would be useful in quantum metrology [8,49]
in both the optical and atomic domains when using non-
Gaussian quantum states. The measurement of parity remains
an experimental challenge as it requires a resolution at the
level of a single particle, although it has been partially demon-
strated experimentally [50–57].

Let us first concentrate on the bimodal system. The par-
ity operator we consider ŜBI = (−1)Ŝx−N/2 commutes with
the bimodal Hamiltonian, [ŜBI, ĤBI] = 0, and also with the
rotation operator (17), [ŜBI, e−iαBI Ŝx ] = 0. When the initial
state |ψ (0)〉BI is the eigenstate of ŜBI, we have ŜBI|ψ (0)〉BI =
|ψ (0)〉BI, and consequently ŜBI|ψ (t )〉BI = |ψ (t )〉BI. Finally, it
is easy to show the relation �̂BI,nmax ŜBI = −ŜBI�̂BI,nmax even
if one considers a general form of the generator of interfer-
ometric rotation �̂BI,nmax = aŜz + bŜy with any a2 + b2 = 1;
see Appendix C 1.

We use all the above-mentioned properties of the state
and parity operator to calculate (22). To do this we ex-
pand an average value of the parity operator up to the
leading terms in θ , obtaining BI〈ψ (θ )|ŜBI|ψ (θ )〉BI = 1 −
2θ2

BI〈ψ (t )|�̂2
BI,nmax

|ψ (t )〉BI + O(θ3). Having that, the vari-
ance in (22) can be expressed as

2ŜBI = 4θ2
〈
�̂2

BI,nmax

〉 + O(θ3), (24)

because 〈Ŝ2
BI〉 = 1. The leading terms of the derivative in

respect to θ of an average value of the parity are simply

∂θ 〈ŜBI〉 = −4θ
〈
�̂2

BI,nmax

〉 + O(θ2). (25)

Therefore, by inserting (24) and (25) into (22) it is possible to
show that the leading terms in θ of the inverse of the signal-
to-noise ratio,

δθ−2|θ=0 = 42�̂BI,nmax , (26)

saturate the QFI value according to (12) due to the fact that
〈�̂BI,nmax〉 = 0. Note, the above derivation holds also with
optional rotation of the state because the parity and rotation
operators commute.

In Fig. 7 we demonstrate our finding for the most optimal
interferometer �̂BI,nmax given numerically in Appendix C 1
(yellow dotted line) and simpler �̂BI = Ŝz operator (blue
dashed line) without (a) and with (b) optional rotation that
locates the state around stable fixed points. The perfect agree-
ment can be noticed.

Exactly the same reasoning can be applied for the spinor
system but this time we define the parity as ŜS = (−1)Ĵz,s−N .
One can show, by simple algebra, that parity commutes with
the spinor Hamiltonian, [ŜS, ĤS] = 0, and the optional ro-
tation operator (18), [ŜS, e−iαS Ĵz,s ] = 0. The initial state is
the eigenstate of the parity operator, ŜS|ψ (0)〉S = |ψ (0)〉S,
and also any other state produced by the unitary evolu-
tion, ŜS|ψ (t )〉S = |ψ (t )〉S. A general form of the generator
of interferometric rotation for the spinor system should be
�̂S,nmax = aĴx,s + bĴy,s with a2 + b2 = 1; see Appendix C.
One can follow the same calculations as for the bimodal
system and consider the leading terms in θ of the inverse
of the signal-to-noise ratio obtaining δθ−2|θ=0 = 42�̂S,nmax .
The latter saturates the QFI value according to (12) because
〈�̂BI,nmax〉 = 0. The derivation also holds true with optional
rotation of the state (18) as the parity and rotation operators
do commute. We illustrate our finding in Fig. 7 without (c)
and with (d) the optional rotation that locates the state around
stable fixed points using various interferometers. In addition,
we also illustrate that the simple signal ŜS = Ĵ2

z saturates
the QFI value when the optional rotation is not taken into
account [see dashed green lines in Figs. 7(c) and 7(d)]. The
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(a)

(c) (d)

(b)

FIG. 7. (a),(b) QFI (black solid) from the maximal eigenvalue of
the covariance matrix (13) in bimodal system. The error from the
inverse of the signal to noise ratio when Ŝ = (−1)Ŝx−N/2 the parity
measurement with the generator of interferometric rotation given by
the eigenvector of the maximal eigenvalue of the covariance ma-
trix (yellow dotted line) and when �̂BI,nmax = Ŝz (blue dashed line).
Numerical results without rotation (a), and with rotation (17) when
αBI = π/6 and Nχt1/� = 2.36 (b) for N = 600. (c),(d) QFI (black
solid) from the maximal eigenvalue of the covariance matrix (13) in
the spinor system for N = 100. Here, �̂S,nmax = Ĵy,a and the inverse
of the signal-to-noise ratio is shown by the orange dashed line in the
case without optional rotation (c), and with the optional rotation (18)
by αS at t1c′

2/h̄ = 1.6 (d). The green dotted line stands for Ŝ = Ĵ2
z

with the same �̂S,nmax = Ĵy,a.

latter readout measurement is effective because the variance of
magnetization is a constant of motion. Therefore, one can use
the same treatment as in the case of parity to see that indeed
the inverse of signal-to-noise ratio with Ĵ2

z in the place of Ŝ
in (22) saturates the QFI value.

Finally, note that the sensitivity from the inverse of signal-
to-noise ratio might be resistance against phase noise. This
is the case when the operator describing the phase noise
does commute with the parity operator. Then, the sensitiv-
ity from (22) does not change even for a convex mixture
of quantum states; see calculation in [26]. This fact is not
in contradiction with the convexity of the QFI [58], which
states that a convex mixture of quantum states contains fewer
quantum correlations than the ensemble average.

VII. DISCUSSION AND CONCLUSION

In this work we have investigated theoretically the possi-
bility of the entanglement stabilization in bimodal and spin-1
condensates. Our method utilizes the structure of the mean-
field phase space. In particular, twisting dynamics of the spin
coherent state initiated around an unstable saddle fixed point
is enriched by a single rotation which locates the state around
stable center fixed points. This allows for the generation of
non-Gaussian states with the stable value of the QFI which ex-
hibits Heisenberg scaling with a prefactor of the order of one.
We analyzed the method numerically and analytically proving
(i) the scaling of the QFI and time with total atoms number,

(ii) the lower bound of the QFI after optional rotation, and
(iii) the optimal parity enhanced readout measurement. The
schemes for spin-squeezing storage were already proposed
in [59] and [60], where the storage was achieved either by
rapidly turning off the external field or by several pulses. In
our method the Hamiltonian remains unchanged for the whole
evolution; moreover, the state is stored through rotation by a
single pulse.

In this paper, we have ignored the effects arising from any
source of decoherence, such as a dissipative interaction with a
heat reservoir or atomic losses. The decoherence effects will
degrade the sensitivity in the θ estimation. If minimized, the
entangled state stabilized by the scheme proposed here yields
a higher resolution. However, we must stress that decoherence
effects will degrade all schemes proposed to enhance inter-
ferometric measurements. Therefore, it might be necessary to
make detailed comparisons of schemes with the incorporation
of decoherence.

There is one other source of decoherence other than en-
vironmental, namely detection noise, which we would like to
address in the context of the parity measurement. In the signal-
to-noise ratio (22), the effect of detection noise on moments of
the operator Ŝ in the large atoms number limit is the same as

if it was replaced by ˆ̃S = Ŝ + δ̂S , where δ̂S is an independent
Gaussian operator satisfying 〈δ̂S〉 = 0 and 〈δ̂2

S〉 = σ 2 [61].
Therefore, it is clear that the detection resolution σ 2 � 1 is re-
quired to keep high sensitivity. Recent experiments with cold
atoms demonstrated that the single atom imaging resolution
has been achieved in the context of single trapped atoms and
optical lattices using fluorescence imaging [62,63], and also
in the context of mesoscopic ensembles in a cavity, where the
number of atoms is determined from the shift in the cavity
frequency [64]. More recently, near single atom resolution has
been achieved in bimodal and spinor systems [21,65] with the
prospect of having higher resolution. That should be enough
for a proof-of-principle demonstration of the measurement
scheme proposed by us.

The scheme we propose demonstrates yet another possi-
bility for enhancement and storage of entanglement making
use of the abstract nature of the mean-field phase space
without turning off interaction among atoms. Moreover, the
interatomic interaction is desirable for the entanglement sta-
bilization and storage. We argued possibility of the scheme
resistance against phase noise. However, due to the nonideal
structure of the states stored, they might lead to robust in-
terferometric application [66], which provides an interesting
direction for further work.
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APPENDIX A: SPIN-1 OPERATORS

Here we define the operators spanning SU(3) algebra used
for the description of spinor Bose-Einstein condensates. The
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spin-1 operators are as follows:

Ĵx = 1√
2

(â†
−1â0 + â†

0 â−1 + â†
0 â+1 + â†

+1â0 ), (A1)

Q̂zx = 1√
2

(−â†
−1â0 − â†

0 â−1 + â†
0 â+1 + â†

+1â0 ), (A2)

Ĵy = i√
2

(â†
−1â0 − â†

0 â−1 + â†
0 â+1 − â†

+1â0 ), (A3)

Q̂yz = i√
2

(−â†
−1â0 + â†

0 â−1 + â†
0 â+1 − â†

+1â0 ), (A4)

D̂xy = â†
−1â+1 + â†

+1â−1, (A5)

Q̂xy = i(â†
−1â+1 − â†

+1â−1 ), (A6)

Ŷ = 1√
3

(â†
−1â−1 − 2â†

0 â0 + â†
+1â+1 ), (A7)

Ĵz = â†
+1â+1 − â†

−1â−1, (A8)

where âmF is the annihilation operator of the particle in the mF

Zeeman component.

APPENDIX B: ANTISYMMETRIC MEAN-FIELD
PHASE SPACE

We will now address the equivalence of the antisymmetric
subspace. Similar to the symmetric case, we are calculating
an average value of (4) over the spin coherent state defined for
the antisymmetric subspace as

|ϕ, θ〉a = e−iϕĴz,a/2e−iθ Ĵy,a/2|N0〉a, (B1)

where |N0〉a = ĝ†
a

N
√

N!
|000〉 with ϕ ∈ (0, 2π ), θ ∈ (0, π ). The

spin coherent state (9) can be interpreted as a double rotation
of the maximally polarized state |N0〉a in the antisymmetric
subspace and is an eigenstate of Ĵz,a with the eigenvalue N .
Similar to symmetric sphere, it is located on the north pole
of the Bloch sphere. In terms of spin-1 operators it reads
|N0〉a = e−iπ/4Q̂xy |00N〉. Just as in the symmetric case the
state with N atoms in the mF = 0 mode is located on the
south pole of the same Bloch sphere. To illustrate an arbi-
trary state |�〉 on the Bloch sphere we use Husimi function
Qa(ϕ, θ ) = |〈�|ϕ, θ〉a|2.

An average value of the spin-1 Hamiltonian (4) over the
spin coherent state (B1) leads to

Ha = �

2
(1 − z2) sin2 ϕ + z − 1, (B2)

by keeping the leading and omitting the constant terms, and
once again z = cosθ , while � = −2/q. Based on the differ-
ence between (B2) and (11), as well as the form of (8), one
can see that the phase portrait for antisymmetrical subspace
will be rotated by π/2 around the z axis.

APPENDIX C: STRUCTURE OF COVARIANCE MATRIX

It is interesting to find eigenvalues and eigenvectors for
covariance matrix in the case of both systems. It is 3 × 3 real
matrix for the bimodal and 8 × 8 real matrix for the spinor
system, in general. However, in the latter case the structure of
the matrix can be simplified significantly due to the constraint
of fixed magnetization by the evolution. We distinguish here
two cases of zero and nonzero fluctuation of the magnetization
value.

(a)

(c) (d)

(b)

FIG. 8. (a),(b) QFI (black solid line) from the maximal eigen-
value of the covariance matrix (13), the QFI from (12) when �̂n =
(Ŝz − Ŝy )/

√
2 (purple dash-dotted line), �̂n = (Ŝz + Ŝy )/

√
2 (green

dash-double-dotted line), and �̂n = Ŝz (blue dashed line). (c),(d) An
illustration of the best direction of interferometric rotation nmax,
i.e., ith component of the covariance matrix eigenvector (13) cor-
responding to the highest eigenvalue. The x component is plotted
with black dashed line, y by the dark gray solid line, and z with
the light gray dot-dashed line. Left panels: without optional rotation
of the state (17). Right panels: when optional rotation is applied
at t1 = 2.36 with αBI = −π/6. The calculations are performed for
N = 600.

1. Bimodal system

In the case of the bimodal system the optimal generator
interferometric rotation can be found analytically when � =
0; see [67,68]. In the general case, the only analysis can be
done numerically and, therefore, we present it below.

In Fig. 8(a) the black solid line shows the QFI (12) given
by the maximal eigenvalue of the covariance matrix (13), and
variances of various generators of interferometric rotation �̂n
in direction n as indicated in the figure caption. Indeed one
can see that, in the case without optional rotation, Fig. 8(c),
initially the generator of interferometric rotation is a super-
position of Ŝy and Ŝz [purple dot-dashed line in (a)], which
saturates the QFI value. On the other hand, we also observe
that the variance of Ŝz estimates well overall variation of the
QFI in time. When the optional rotation (17) is applied, see
Fig. 8(b), the optimal rotation axis is also given by Ŝz (dashed
line). Therefore, we conclude that the QFI is well estimated
by 42Ŝz while the optimal interferometric rotation is the z
axis of the Bloch sphere.

2. Spinor system: Fixed magnetization

The Hamiltonian (4) conserves the magnetization which
means that we have [Ĥ , Ĵz] = 0. Thus the following occurs
for an arbitrary state

|�ϕ〉 = e−iϕĴz e−iĤt |�〉 = e−iĤt e−iϕM |�〉. (C1)

An action of the rotation operator e−iϕĴz results in the phase
factor given by the product of rotation angle and magnetiza-
tion. On the other hand, the QFI has the same value for both
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|�〉 and |�ϕ〉, and therefore one has the condition

4nT · �[|�〉] · n = 4nT · �[|�ϕ〉] · n,

and so �[|�〉] = �[|�ϕ〉]. From the definition of covariance
matrix (13) one can see that

�[|�ϕ〉]i j =〈�| 1
2 ( ˆ̃�i

ˆ̃� j + ˆ̃� j
ˆ̃�i )|�〉 − 〈�| ˆ̃�i|�〉〈�| ˆ̃� j |�〉,

(C2)

where ˆ̃�i = eiϕĴz�̂ie−iϕĴz . The rotation of the vector 	�S com-
ponents gives

eiϕĴz Ĵxe−iϕĴz = Ĵx cos ϕ − Ĵy sin ϕ, (C3a)

eiϕĴz Ĵye−iϕĴz = Ĵy cos ϕ + Ĵx sin ϕ, (C3b)

eiϕĴz Ĵze
−iϕĴz = Ĵz, (C3c)

eiϕĴz Q̂xye−iϕĴz = Q̂xy cos 2ϕ + D̂xy sin 2ϕ, (C3d)

eiϕĴz D̂xye−iϕĴz = D̂xy cos 2ϕ − D̂xy sin 2ϕ, (C3e)

eiϕĴz Q̂yze
−iϕĴz = Q̂yz cos ϕ + Q̂zx sin ϕ, (C3f)

eiϕĴz Q̂zxe−iϕĴz = Q̂zx cos ϕ − Q̂yz sin ϕ, (C3g)

eiϕĴzŶ e−iϕĴz = Ŷ . (C3h)

Therefore, one can distinguish the following groups of
operators: {Ĵx, Ĵy}, {D̂xy, Q̂xy}, {Q̂zx, Q̂yz}, and {Ĵz}, {Ŷ }, the
rotations of which can be described with the operator

R̂ϕ =
(

cos φ − sin φ

sin φ cos φ

)
.

In fact, we can see that

�[|�ϕ〉] = Mϕ · �[|�〉] · MT
ϕ , (C4)

where the rotation matrix Mϕ is equal to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos φ 0 − sin φ 0 0 0 0 0

0 cos φ 0 sin φ 0 0 0 0

sin φ 0 cos φ 0 0 0 0 0

0 − cos φ 0 sin φ 0 0 0 0

0 0 0 0 cos 2φ − sin 2φ 0 0

0 0 0 0 sin 2φ cos 2φ 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From the relation (C4) and � = �T , one obtains a set of equa-
tions that determines the possible zero values of covariance
matrix elements, for example,

�11 cos φ + �13 sin ϕ = �11 cos φ − �13 sin ϕ,

�13 cos φ − �11 sin ϕ = �13 cos φ − �33 sin ϕ,

which shows that �33 = �11 and �13 = 0. Solving all possible
remaining equations will give conditions for all the elements
of the covariance matrix, namely �44 = �22, �66 = �55, and
�34 = −�12. Except for �77, �88, and elements listed in (C5),
all the remaining elements are zero. On the other hand, �88

is defined by variance of Ĵz, which stands for fluctuations of
magnetization; thus this element is zero as well. In the sub-
space of zero magnetization we arrive at the block diagonal
structure of the covariance matrix:

� = �s ⊕ �a ⊕ [�55] ⊕ [�55] ⊕ [�77] ⊕ [0], (C5)

where

�s =
(

�11 �12

�12 �22

)
, �a =

(
�11 −�12

−�12 �22

)
. (C6)

A diagonalization of the above matrix gives four possible
generators of interferometric rotation [69],

�̂S,12 = �̂1 − γ12�̂2√
1 + γ 2

12

, (C7)

�̂S,55 = �̂5, (C8)

�̂S,77 = �̂7, (C9)

where γi j = [� j j − �ii − √
(�ii − � j j )2 + 4�i j]/(2�i j ). The

corresponding values of the QFI are given by the variance

FQ,S = 42�̂S,i j . (C10)

There are three possible values which depend on time. It is
worth noting that, in the short-times dynamics, it is �̂S,12 (or
�̂S,34 as they are equivalent) that determines the QFI value.
Moreover, we observe that it can be approximated by �̂1

without significant change in the QFI value, namely �̂S,12 �
�̂1 = Ĵx. This is illustrated in Fig. 9.

3. Spinor system: Nonzero fluctuations of magnetization

We consider here the more general case of the rotated state

|�ϕ〉 = e−iϕĴz,s e−iĤt |�〉,
used by us in the main text to locate dynamics around sta-
ble fixed points. Here, Ĵz,s = 1

2 (D̂xy + √
3Ŷ ). The analysis

presented in the previous subsection is not valid because
[Ĵz,s, Ĥ ] �= 0. Moreover, the state after rotation is no longer
in the subspace of zero magnetization but it is spread over all
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FIG. 9. Illustration of optimal generators of interferometric ro-
tation �̂S,i j for spinor system with fixed magnetization given
by (C7)–(C9) calculated for N = 100 atoms. The QFI optimalized
over all directions n is shown by the black solid line. The correspond-
ing values of the QFI for a given generator derived in the main text
are as follows: FQ,S = 42�̂S,12 (which equals to 4�̂S,34) is marked
by the yellow dashed line, FQ,S = 42�̂S,55 by the dashed brown
thin line, and FQ,S = 42�̂S,77 by the thin blue line. The case with
�̂S,i j = Ĵx is also shown for comparison by the dashed red line. In ad-
dition, the QFI with �̂S,i j = 1√

2
(Ĵxs − Ĵys ) and �̂S,i j = 1√

2
(Ĵxa + Ĵya)

are shown by the purple dot-dashed and green dashed-double-dotted
lines. The latter illustrates that the QFI value before the first maxi-

mum is given by FQ,S = 42( Ĵxs−Ĵys√
2

).

subspaces of even magnetization. Therefore, it has nonzero
fluctuations of magnetization.

To calculate elements of the covariance matrix we used
Eq. (13), where an average is taken over a general state
|k〉 = ∑

M,n CM,n|n, M + N − 2n, n − M〉, the coefficients of
decomposition of which in the Fock state basis are CM,n ≡
Cn,M+N−2n,n−M resulting from the symmetry of rotation
around Ĵz,s. The summation over n depends on the sign of
the M: from max(0, M/2, M ) to min(M, N+M

2 , M + N ), while
−N < M < N . Due to the rotation, the system has nonzero
variance of magnetization Ĵz, which is constant in time.
In addition, the possible eigenvalues of Ĵz can only be even,
i.e., M ∈ {−N,−N + 2, . . . , N − 2, N} assuming N is even
as well due to symmetry of rotation operator Ĵz,s. Therefore,
CM,n = C−M,n−M .

We can distinguish operators that change magnetization
by ±1; they are {Ĵx, Q̂yz, Ĵy, Q̂zx}, by ±2 : {D̂xy, Q̂xy} and
by 0: {Ŷ , Ĵz}. The mean value of operators from the group
{Ĵx, Q̂yz, Ĵy, Q̂zx} is zero since the state is spread over sub-
spaces of even magnetization. Moreover, a mean value of the
product of operators that change magnetization by odd value
are zero. We use this fact while calculating the covariance
matrix elements �i j : with subscript i for the operator from
the group {Ĵx, Q̂yz, Ĵy, Q̂zx} and j from {D̂xy, Q̂xy, Ŷ , Ĵz}. The
second property that should be taken into account is the sym-
metry of the state, namely CM,n = C−M,n−M , which sets the
elements like �14 or �58 to zero.

After careful consideration of all covariance matrix ele-
ments, one can show that it simplifies to

�S = �s ⊕ �a ⊕ �r, (C11)

FIG. 10. Illustration of optimal generators of interferometric ro-
tation �̂S,i j for spinor system with fluctuating magnetization given
in (C13) calculated for N = 100 atoms. The relevant example dis-
cussed in the main text for states after the rotation around Ĵzs by π/6
at t1 = 1.6. The QFI optimized over all n is shown by the black solid
line. The corresponding values of the QFI for particular generators
are shown with �̂S,12 (light pink dash-dotted line), �̂S,34 (yellow
dotted line), �̂S,57 (green dash-double-dotted line), and �̂S,68 (purple
dashed line). Finally, the QFI with �̂S,i j = Ĵxs and �̂S,i j = Ĵya are
shown by the red and orange solid lines, respectively. The latter
demonstrates that the QFI value after the rotation can be approxi-
mated well by FQ,S = 42Ĵya.

for the spinor system, where

�s =
(

�11 �12

�12 �22

)
, �a =

(
�33 �34

�34 �44

)
,

�r =

⎛
⎜⎜⎜⎝

�55 0 �57 0

0 �66 0 �68

�57 0 �77 0

0 �68 0 �88

⎞
⎟⎟⎟⎠.

Diagonalization of (C11) gives the following eigenvalues:

λ
(±)
S,i j =

�S,ii + �S, j j ±
√

(�S,ii − �S, j j )2 + 4�2
S,i j

2
, (C12)

where the pairs of indexes (i, j) are one of
(1, 2), (3, 4), (5, 7), (6, 8). The contribution to the maximal
value of the QFI can be from λ

(+)
S,i j for which the four possible

generators of interferometric rotation are

�̂S,i j = �̂ j − γi j�̂ j√
1 + γ 2

i j

, (C13)

where γi j = [� j j − �ii − √
(�ii − � j j )2 + 4�i j]/(2�i j ). The

corresponding values of the QFI determined by (C13), namely

FQ, S = 42�̂S,i j, (C14)

are demonstrated in Fig. 10.

APPENDIX D: SCALING OF THE QFI FOR
BIMODAL SYSTEM

In order to analyze scaling of the QFI with the system size,
we use a general theory developed in [44]. One starts with
equations of motion for operators of spin components which
involve terms that depend on the first-order and second-order

053315-11
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moments. Then, the time evolution of the second-order mo-
ments depends on second- and third-order moments, and so
on. It leads to the Bogoliubov-Born-Green-Kirkwood-Yvon
hierarchy of equations of motion for expectation values of
operator products. We truncate the hierarchy by keeping the
first- and the second-order moments:

〈ŜiŜ j Ŝk〉 � 〈ŜiŜ j〉〈Ŝk〉 + 〈Ŝ j Ŝk〉〈Ŝi〉 + 〈Ŝk Ŝi〉〈Ŝ j〉
− 2〈Ŝi〉〈Ŝ j〉〈Ŝk〉. (D1)

Let us first rotate the Hamiltonian (1) around the x axis of
the Bloch sphere through π/4. The reason is as follows: there
is nonzero angle between the constant energy line outgoing
from the saddle fixed point and the z axis. This angle is close
to π/4 for � = 2. Rotation of the Hamiltonian corresponds to
the same rotation of the mean-field phase portrait. It results in
location of the constant energy line outgoing from the saddle
fixed point along the y axis; see Fig. 2. Note, the largest fluc-
tuations that determine the QFI value are now located along
the y axis. Next, we introduce a small parameter ε = 1/N
and transform spin components into ĥ j = √

εŜ j while the
commutation relations transform to [ĥi, ĥ j] = i

√
εĥkεi jk . The

rotated Hamiltonian (1) is

Ĥ = 1√
ε

(
ĥ2

z + ĥ2
y + ĥzĥy + ĥyĥz − aĥx

)
, (D2)

where a = 2ε�/χ , the energy unit is set to h̄χ/(2
√

ε), and
we introduced dimensionless time τ = χt/(2

√
ε).

Equations of motion for expectation values s j = 〈ĥ j〉 and
second-order moments δ jk = 〈ĥ j ĥk + ĥk ĥ j〉 − 2〈ĥ j〉〈ĥk〉 rele-
vant for our purposes are

ṡx = (δzz − δyy), (D3)

δ̇zz = −4δzzsx − 2aδyz, (D4)

δ̇yy = 4δyysx + 2aδyz. (D5)

The initial spin coherent state |0, π/2〉BI gives the follow-
ing initial conditions: sx(0) = 1/(2

√
ε) and δzz(0) = δyy(0) =

1/2.
Equation (D4) is a nonhomogeneous differential equation.

The solution of its homogeneous part [a → 0 in Eq. (D4)]
is δzz(τ ) = δzz(0)e− f (τ ) with f (τ ) = 4

∫ τ

0 sx(t )dt . The analy-
sis of the nonhomogeneous equation can be done by setting
δzz(τ ) = C(τ )e− f (τ ) with C(τ ) = C(0) − a

∫ τ

0 δyz(t )e f (t )dt =
δzz(0) + �(τ ). The part �(τ ) is very small and it can be
omitted because of two reasons. First, �(τ ) is of the order
of small parameter ε. Secondly, in the short-time expansion
(up to the second order) one can indeed see that �(τ ) �
�(0) + �̇(0)τ = 0 due to δyz(0) = 0. Therefore, we conclude
that the solution of (D4) can be well approximated by the
solution of its homogeneous part. The same analysis can be
performed on Eq. (D5) leading to δyy(τ ) = δyy(0)e f (τ ). Equa-
tion (D3) takes the form ṡx(τ ) = −sinh[ f (τ )], that has an
analytical solution when one expands the function f (τ ) up
to the first order in Taylor series f (τ ) � f (0) + ḟ (0)τ . The
self-consistency condition gives f (0) = 0 and ḟ (0) = 4sx(0).

The approximated solution for sx takes the form [43]

sx(τ ) = sx(0) − cosh[4sx(0)τ ] − 1

4sx(0)
, (D6)

while the variance in the y direction reads

δyy = δyy(0)e4sx (0)τ− sinh[4sx (0)τ ]−4sx (0)τ
[4sx (0)]2 . (D7)

It can be shown by maximization of the QFI over the
time resolves in the scaling of the first maximum as χtmax �
ln(2N )/N . The leading term of the QFI maximum at the best
time gives FQ,BI � 42Ŝy � 2

ε
δyy � 2

e
1
ε2 ≈ 0.7N2.

APPENDIX E: SCALING OF THE QFI FOR SPINOR
SYSTEM

In the case of spinor system we follow the same track
of calculations as presented in the previous Appendix. First
we rotate the spin-1 Hamiltonian (4) around the Ĵz,s by π/8
angle. It is to locate the constant energy lines outgoing from a
saddle fixed point along the Ĵy,s axis of the Bloch sphere in the
symmetric subspace. However, this time the angle is two times
smaller because commutation relations [Ĵi,s, Ĵ j,s] = i2Ĵk,sεi jk

contain the factor 2. After the rotation of the Hamiltonian,
one introduces the small parameter ε = 1/N , transforming
spin components into ĥ j = √

εĴ j , q̂ j = √
εQ̂ j . The rotated

and rescaled Hamiltonian reads

Ĥ = − 1√
ε

[
1

2
(ĥx,s + ĥy,s)2 +

(
ĥy,acos

π

8
+ ĥz,asin

π

8

)2

+
(

ĥzcos
π

8
+ q̂xysin

π

8

)2
+ an̂0 − an̂

]
, (E1)

where n̂0 = √
εN̂0, n̂ = √

εN̂ , and a = 2q/ε, while the energy
unit is

√
ε|c′

2|/2 and we introduced dimensionless time τ =√
εt |c′

2|/2h̄.
Equations of motion for expectation values s j = 〈ĥ j〉 and

second-order moments δ j,k = 〈ĥ j ĥk + ĥk ĥ j〉 − 2〈ĥ j〉〈ĥk〉 are
much more complex as for bimodal condensates, but one can
find the general structure quite similar. Those relevant for our
purposes are

ṡzs = −(δys,ys − δxs,xs) −
√

2

4
(δya,ya − δxa,xa), (E2)

δ̇xs,xs = −2δxs,xsszs − aδxs,ys, (E3)

δ̇ys,ys = 2δys,ysszs + aδxs,ys, (E4)

for symmetric operators, and

ṡza = −1

2
(δys,ys − δxs,xs) −

√
2

2
(δya,ya − δxa,xa), (E5)

δ̇xa,xa = −
√

2δxa,xasza − aδxa,ya, (E6)

δ̇ya,ya =
√

2δya,yasza + aδxa,ya, (E7)

for antisymmetric operators. In Table I we listed commutation
relations useful to obtain (E2)–(E7).

The initial spin coherent state |0, π〉S gives the following
nonzero initial values for szσ (0) = −1/

√
ε and δxσ,xσ (0) =

δyσ,yσ (0) = 1 for σ = s, a. Equations for expectation values
for first and second moments in the short-time expansion
show that some terms appearing in the above equations are
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TABLE I. List of commutation relations among SU(3) algebra generators and spin components in the symmetric and antisymmetric
subspace used in this paper.

Ti
Tj Ĵx (Ĵx,s ) Q̂yz(Ĵy,s) Q̂zx (Ĵx,a) Ĵy(Ĵy,a ) Ĵz D̂xy Q̂xy Ŷ Ĵz,s Ĵz,a

Ĵx (Ĵx,s ) 0 2iĴz,s −iQ̂xy iĴz −iĴy −iQ̂yz iQ̂zx −i
√

3Q̂yz −2iQ̂yz −iQ̂yz

Q̂yz(Ĵy,s ) −2iĴz,s 0 −iĴz −iQ̂xy iQ̂zx iĴx iĴy i
√

3Ĵx i2Ĵx iĴx

Q̂zx (Ĵx,a ) iQ̂xy iĴz 0 2iĴz,a −iQ̂yz iĴy −iĴx −i
√

3Ĵy −iĴy −2iĴy

Ĵy(Ĵy,a ) −iĴz iQ̂xy −2iĴz,a 0 iĴx −iQ̂zx −iQ̂yz i
√

3Q̂zx iQ̂zx 2iQ̂zx

Ĵz iĴy −iQ̂zx iQ̂yz −iĴx 0 2iQ̂xy −2iD̂xy 0 iQ̂xy −iQ̂xy

D̂xy iĴy,s −iĴx −iĴy iQ̂zx −2iQ̂xy 0 2iĴz 0 0 0
Q̂xy −iQ̂zx −iĴy iĴx iQ̂yz 2iD̂xy −2iĴz 0 0 −iĴz iĴz

Ŷ i
√

3Ĵy,s −i
√

3Ĵx i
√

3Ĵy −i
√

3Q̂zx 0 0 0 0 0 0
Ĵz,s 2iĴy,s −i2Ĵx iĴy −iQ̂zx −iQ̂xy 0 iĴz 0 0 0
Ĵz,a iĴy,s −iĴx 2iĴy −2iQ̂zx iQ̂xy 0 −iĴz 0 0 0

zero if their average values are initially zero, e.g., δz,z =
0, δ

q
xy,xy � 0. We did not put such terms in the final forms

of Eqs. (D3)–(D5). The equations for symmetric and anti-
symmetric operators are very similar to the one obtained for
the bimodal system. There are two differences: (i) szσ (with
σ = s, a) in (E2) and (E5) play the role of sx in (D3) and
(ii) symmetric and antisymmetric subspaces are coupled to
each other in (E2) and (E5). The coupling makes the scaling
analysis a little more intricate. Taking both into account, one
can use solutions from the previous Appendix and find

szs(τ ) = szs(0)

− cosh[2szs(0)τ ] − 1

2szs(0)
−

√
2

4

cosh[
√

2sza(0)τ ] − 1√
2sza(0)

,

(E8)

sza(τ ) = sza(0)

− 1

2

cosh[2szs(0)τ ] − 1

2szs(0)
−

√
2

2

cosh[
√

2sza(0)τ ]−1√
2sza(0)

.

(E9)

Note, the symmetric and antisymmetric subspaces are coupled
to each other and this has to be taken into account while
explaining the scaling of δxσ,xσ .

In order to explain the scaling of the first maximum, one
needs to find a derivative of the variances in respect to time.
Now, there are two equations for σ = s and σ = a that help to
express relations among cosh having different arguments. The
maximization of the QFI over the time provides the scaling of
the maximum to be |c′

2|tmax/h̄ = ln(8N/3) by keeping leading
terms in ε. Finally, the value of the maximum of the QFI

gives FQ,S � 42Ĵxs � 16
3 e−2/3N2 ≈ 2.8N2 when considering

the leading terms in ε.

APPENDIX F: EXPLANATION OF THE QFI
STABILIZATION AFTER ROTATION IN THE LONG-TIMES

LIMIT FOR SPINOR SYSTEM

Here we use the same reasoning as presented in the main
text concerning the bimodal system at the end of Sec. V.
We assume that the direction of interferometric rotation just

before the rotation for spinor system is �̂S,nmax (t−
1 ) ≈ Ĵxσ ±Ĵyσ√

2
,

with sign “+” for σ = s and sign “−” for σ = a, and therefore

FQ,S(t−
1 ) = 42( Ĵxσ ±Ĵyσ√

2
), while after the rotation for t � t+

1

one has �̂S,nmax (t ) ≈ Ĵya and FQ,BI(t ) = 42Ĵya. It is a fairly
good approximation, as demonstrated in Appendix C and in
Figs. 9 and 10.

The QFI after rotation for t � t+
1 can be also written as

FQ,S(t ) = 4

[
−2N

〈ĤS(t )〉
c′

2

− 〈
Ĵ2

xs(t )
〉 − 〈

Ĵ2
z (t )

〉 + q〈N̂0(t )〉
]
,

(F1)
where we used (4). Next, we note that the average energy is
conserved after rotation, 〈ĤS(t )〉 = 〈ĤS(t+

1 )〉, while the aver-
age values of Ĵ2

xs(t ), Ĵ2
z (t ), N̂0(t ) are bounded from below by

zero. These two properties lead to the inequality

FQ,S(t ) � −8N〈ĤS(t+
1 )〉. (F2)

The energy of the spinor system after the ro-
tation (18) with αS = π/4 reads 〈ĤS(t+

1 )〉 =
− 1

2N [〈Ĵ2
xs(t

−
1 )〉 + 〈[Ĵya(t−

1 )−Ĵxa(t−
1 )]

2〉
2 + 〈Q2

xy〉
2 ]. Finally, one

considers the latter in (F2) to show that

FQ,S(t ) � FQ,S(t−
1 ), (F3)

for t � t+
1 as 〈Ĵ2

xs(t
−
1 )〉 � 0 and 〈Q2

xy〉 � 0 as well.
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