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Flux ladders constitute the minimal setup enabling a systematic understanding of the rich physics of interacting
particles subjected simultaneously to strong magnetic fields and a lattice potential. In this paper, the ground-state
phase diagram of a flux-ladder model is mapped out using extensive density-matrix renormalization-group
simulations. The emphasis is put on parameters which can be experimentally realized exploiting the internal
states of potassium atoms as a synthetic dimension. The focus is on accessible observables such as the chiral
current and the leg-population imbalance. Considering a particle filling of one boson per rung, we report the
existence of a Mott-insulating Meissner phase as well as biased-ladder phases on top of superfluids and Mott
insulators. Furthermore, we demonstrate that quantum quenches from suitably chosen initial states can be used
to probe the equilibrium properties in the transient dynamics. Concretely, we consider the instantaneous turning
on of hopping matrix elements along the rungs or legs in the synthetic flux-ladder model, with different initial
particle distributions. We show that clear signatures of the biased-ladder phase can be observed in the transient
dynamics. Moreover, the behavior of the chiral current in the transient dynamics is discussed. The results
presented in this paper provide guidelines for future implementations of flux ladders in experimental setups
exploiting a synthetic dimension.
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I. INTRODUCTION

The last decade has witnessed tremendous progress in the
realization of artificial gauge fields in quantum engineered
systems [1–6]. In this context, magnetic fields have been
emulated in different types of artificial lattice systems, includ-
ing superconducting circuits [7,8], photonic setups [9–12],
and ultracold quantum gases [13–31]. In particular, for ul-
tracold quantum gases, effective Peierls phases have been
implemented by means of laser-assisted hopping [13,15,16]
or Floquet engineering [14,18,22,30]. Moreover, the coherent
coupling of the internal atomic states using optical transitions
represents a very promising approach, addressing quasi-one-
dimensional lattices. This method has been proposed in
Ref. [32] and successfully employed in several experiments
[19–21,25,28,29] for the emulation of charged particles in
ribbonlike lattices pierced by uniform magnetic fields, dubbed
flux ladders. In this context, the atoms are subjected to a
periodic real-space potential along the legs of the ladder,
while a coherent coupling between the internal atomic states
constitutes the rungs of the ladder, realizing a synthetic dimen-
sion. Alternative schemes for the experimental realization of
flux ladders include the use of other degrees of freedom to
implement a synthetic dimension [23,26,27], or the isolation
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of ribbons in real-space two-dimensional Hofstadter systems
using superlattice potentials [17], or digital micromirror de-
vices [24]. The wide range of available atomic species [33],
the existence of Feshbach resonances [34], and the promising
complementary approaches for implementing Abelian gauge
fields pursued in the quantum-gas community render cold
gases a promising platform for the realization of topology in
interacting quantum matter [1–6].

Flux ladders constitute a minimal setup allowing for the
interplay between effective magnetic fields and interparti-
cle interactions. Theoretical studies have shown that due to
this interplay, they host rich ground-state phase diagrams,
including vortex-liquid and Meissner phases inherited from
the weakly interacting regime [35,36], which can exist on
top of superfluids and Mott insulators [37,38]. Also, they
feature ground states breaking a discrete symmetry, such as
vortex-lattice [35,39–42], charge-density-wave [42,43], and
biased-ladder states [44]. Moreover, the possible existence
of Laughlin-like states has attracted great interest [45–50]
and the study of the Hall effect in flux ladders remains an
active line of research [51–54]. The ground-state phase di-
agram of the two-leg flux-ladder model has been discussed
in detail and mapped out to a large extent within previ-
ous theoretical studies [55–67]. In many of these studies
[56,58,60,62–64,66,67], the density-matrix renormalization
group method [68–70] has been the numerical method of
choice.
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FIG. 1. Two-leg flux-ladder model. In setups exploiting synthetic
dimensions, the legs of the ladder correspond to different internal
atomic states |↑〉 and |↓〉 as discussed in Sec. II A. The Hamiltonian
parameters J , J⊥, V , U↑, and φ are introduced in Eq. (1).

However, the exploration of the exact parameter regimes
that could be accessed in future experiments, including the
influence of nearest-neighbor rungwise interactions, which
are typically present in synthetic dimension implementations,
remains an important open question. The same applies to
the investigation of the role of finite energy densities and
temperatures [41,49,66,71,72] on the ground-state phase dia-
grams [42], and the development of optimal state-preparation
protocols [73] (based, for instance, on the dynamics induced
by quantum quenches in the flux-ladder model). At the same
time, proposing adequate methods to probe and detect the
different phases, i.e., via spectroscopic [74–76], transport
[77–80], or microscopic measurements, remains an outstand-
ing issue.

So far, experimental realizations of flux ladders have
mostly concentrated on the non- or weakly interacting regime.
The strongly interacting regime has remained elusive due to
the existence of detrimental heating processes associated to
most of the experimental methods used to emulate strong
magnetic fields [81]. A step towards exploring the many-
body case was the experimental study of the dynamics of
two repulsively interacting bosons on a real-space flux ladder
[24]. Synthetic-dimension implementations seem particularly
promising to extend these studies to a larger number of parti-
cles as we will discuss in detail in our work. In this paper, we
focus on bosonic two-leg synthetic flux ladders implemented
exploiting two particular internal states of 41K and on a value
of the magnetic flux that is particularly simple to obtain exper-
imentally. The envisioned setup using potassium will first be
described to motivate our choice of model parameters, particle
filling, and initial states based on the experimental feasibility.

Second, we map out the ground-state phase diagram of the
interacting flux-ladder model, which is illustrated in Fig. 1,
using extensive density-matrix renormalization-group simu-
lations. Putting the emphasis on a particle filling of one
boson per rung and on parameters which are particularly well
suited for the envisioned future experiments, we report on
the existence of a biased-ladder phase [44] for intermediate
interaction strengths (see Refs. [41,42] for previous numerical
studies of this phase). Most notably, the biased-ladder phase
exhibits a population imbalance between the legs of the sys-
tem, which is typically stabilized by rung-wise interactions.
Additionally, we show that the system undergoes a superfluid-
to-Mott insulator transition within the biased-ladder region
for increasing interaction strengths, which is revealed by the
opening of a charge gap. In the studied parameter range, the
biased-ladder phase neighbors a Meissner phase [35,37,38].
The Meissner state is typically found by increasing the rung
hopping amplitude and, in the limit of vanishing interac-

TABLE I. Overview over the three ground-state phases consid-
ered in this paper, listing characteristic values of the leg-population
imbalance �m, the charge gap �μ, and the central charge c, as dis-
cussed in the main text. Note that various ground states in the two-leg
flux ladder are comprehensively discussed in Ref. [42], which also
provides an extended tabular overview.

�m �μ c

Biased-ladder phase (superfluid) >0 0 1
Biased-ladder phase (Mott-insulating) >0 >0 0
Meissner phase (Mott-insulating) 0 >0 0

tions, corresponds to a single minimum in the one-particle
dispersion. The properties of the three ground-state phases
considered in this paper are summarized in Table I. Note
that their existence in flux-ladder models has been discussed
in previous works [35,37,38,42,44]. However, hitherto, the
regime of parameters relevant to ultracold potassium gases
has remained unexplored. In our analysis, we focus on ac-
cessible observables such as the chiral current and exemplify
typical particle-current patterns and momentum-distribution
functions in various ground-state phases.

Third, by time-evolving matrix-product states [82,83], we
investigate experimentally feasible quench protocols. They
allow us to probe characteristics of quantum phases that are
otherwise hardly accessible due to the notorious difficulty
of low-entropy state preparation at certain model parame-
ters. Noting that control over hopping matrix elements is
well established in synthetic flux ladders [19,20,29], we show
that for the instantaneous turning on of leg hopping in the
Meissner phase, chiral currents in the short-time dynamics
exhibit a similar dependence on the model parameters as the
corresponding ground-state currents. Moreover, we show that
clear signatures of the biased-ladder phase can be observed in
the time evolution of the density imbalance between the legs,
following the instantaneous turning on of rung hopping.

This paper is organized as follows. In Sec. II, we de-
scribe our proposed implementation of the flux-ladder model,
define the Hamiltonian of the system, and introduce sev-
eral observables of interest. Section III comments on the
matrix-product-state methods used in this paper. In Sec. IV,
we review properties of known ground-state phases in the
flux-ladder model. We map out the zero-temperature phase
diagram in Sec. V. Quantum quenches in the synthetic flux-
ladder model are discussed in Sec. VI. Finally, we summarize
our work in Sec. VII.

II. SYNTHETIC FLUX-LADDER MODEL

A. Experimental scheme

In this paper, we consider synthetic flux ladders, i.e., flux
ladders realized using one real dimension and one synthetic
dimension consisting of two internal atomic states, denoted
in the following by ↑ and ↓. Our proposal for an experi-
mental implementation is the following. We strongly confine
the atoms in two transverse directions, in order to realize
a one-dimensional Bose gas and subject them to a spin-
independent one-dimensional optical lattice potential. In this
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situation, each spin state realizes one leg of the ladder and
nearest-neighbor hopping along the legs is determined by the
leg hopping rate J , which can be tuned by the depth of the
optical lattice. In addition, we coherently couple the spins
via two-photon Raman transitions, effectively implementing
a rung hopping rate J⊥ along a synthetic spin dimension.
The momentum transferred to the atoms by the Raman lasers
during the spin flip generates Peierls phases for the motion
along the rungs, mimicking the effect of a magnetic field
piercing the ladder [32].

So far, a major limitation of the experimental study of flux
ladders with ultracold atoms has been the presence of detri-
mental heating processes associated to the periodic driving
methods used to generate an artificial magnetic field [81,84–
86]. Although synthetic flux ladders are also driven systems,
the driving frequency corresponds to the Zeeman splitting
between atomic sublevels and is several orders of magnitude
larger than in Floquet-based schemes. In this situation, one ex-
pects negligible heating caused by the coupling to the atomic
micromotion. Therefore, these systems constitute an appeal-
ing experimental platform for exploring the phase diagram of
interacting bosons on flux ladders.

For concreteness, we focus on the implementation of such
flux ladders exploiting two internal states of 41K. Further-
more, we consider the simplest experimental situation where
both the optical lattice and the Raman coupling are produced
by counterpropagating laser beams [19]. We set the wave-
length of the Raman lasers to the potassium tune-out value
λR = 769 nm, which maximizes the coupling strength and
does not produce any scalar potential on the atoms. For an
optical lattice created by a laser of wavelength λL = 1064 nm,
this yields a magnetic flux φ/(2π ) = λL/λR = 1064/769,
which will therefore be the value employed in the numerical
simulations.

The strong transverse confinement required to enter the
one-dimensional regime is realized with two additional op-
tical lattices of wavelength λL, which propagate along the
transverse directions. We select a large depth in the range
VL ∼ 40–55EL, where EL = h2/(2mλ2

L ) is the lattice recoil
energy, h is Planck’s constant, and m is the mass of 41K. This
leads to the creation of an array of one-dimensional systems
with negligible hopping between them during the timescales
considered in this work.

As internal atomic states, we select the Zeeman sublevels
mF = −1 and mF = 0 of the F = 1 hyperfine manifold of
41K, and use the notation |↑〉 ≡ |F = 1, mF = −1〉 and |↓〉 ≡
|F = 1, mF = 0〉. Our choice is motivated by the interac-
tion properties of these states. The ↑↑ and ↓↓ collisions
are described by very similar and positive scattering lengths,
resulting in nearly identical repulsive interactions in the legs
of the ladder. In contrast, interactions in the ↑↓ channel can be
controlled exploiting an interstate Feshbach resonance located
at a magnetic field ∼52 G [87,88]. In principle, it should be
possible to vary the sign and strength of the interactions along
the rungs, or even to completely cancel them. Achieving the
necessary magnetic field stability might, however, be chal-
lenging. Therefore, in this paper, we focus on a large magnetic
field limit (∼400 G), where the two-photon Raman transitions
are essentially immune against magnetic field fluctuations.
In this situation, small rung hopping rates J⊥ < h × 100 Hz

should be within reach, making the regime of both small
(J⊥/J < 1) and large (J⊥/J > 1) rung-to-leg hopping rate
ratios experimentally accessible. In the following, we consider
the full range J⊥/J = 0.2–30. In this magnetic field regime,
the 41K scattering lengths are essentially identical (a↑↑ =
60.89a0, a↓↓ = 60.85a0, and a↑↓ = 60.72a0, where a0 is the
Bohr radius) and the system is nearly SU(2) symmetric. This
is, therefore, the situation considered in the simulations. Con-
trolling the longitudinal optical lattice depth in the range VL ∼
4–10EL allows one to adjust the interparticle-interactions-to-
hopping ratio U/J , and to realize values U/J = 2.5–20. Note
that the second bosonic isotope of potassium, 39K, should also
allow one to explore situations where the interactions in each
leg are very different, or even have opposite signs [87,89–92].
Studying these configurations, which are expected to give rise
to density-dependent Peierls phases, goes beyond the scope of
this work.

Finally, in all simulations, we consider a filling of one parti-
cle per rung. This situation could be easily obtained by starting
with a system occupying a single leg of the ladder (i.e., a
single spin state), in a Mott-insulator state with one particle
per site, and with negligible leg hopping J . Then, activating
the rung hopping J⊥ by turning on the coupling between the
two spin states yields the desired filling of one particle per
rung. This preparation sequence also allows one to realize the
initial states of the quench protocols discussed in Sec. VI by
adjusting the initial values of the leg and rung hoppings before
the quench. The experimental ingredients described here for
this future experiment are therefore all readily available.

B. Hamiltonian

The Hamiltonian describing the synthetic flux-ladder
model is

H = − J
∑

σ=↑,↓

L−2∑
r=0

(a†
r,σ ar+1,σ + H.c.)

− J⊥
L−1∑
r=0

(e−irφa†
r,↑ar,↓ + H.c.)

+ 1

2

1∑
σ=↑,↓

Uσ

L−1∑
r=0

nr,σ (nr,σ − 1) + V
L−1∑
r=0

nr,↑nr,↓, (1)

with the parameters J and J⊥ corresponding to nearest-
neighbor hopping along the legs and rungs of the ladder,
respectively, as described in Sec. II A. The site-local oper-
ator a(†)

r,σ annihilates (creates) a boson on site (r, σ ). Note
that the internal atomic states σ = ↑,↓, also introduced in
Sec. II A, are identified with the legs of the ladder. Further,
nr,σ = a†

r,σ ar,σ accounts for the occupation of local lattice
sites. It is worth noting that we consider the so-called rung
gauge [42] in which the Peierls phase factors are aligned along
the rungs of the ladder. They are chosen in such a way that
whenever a particle encircles a single plaquette of the ladder,
its wave function gains a phase factor e±iφ , with the sign
depending on the direction of the circulation. The parame-
ters U↑ and U↓ determine site-local interparticle interactions
on the ↑ leg and ↓ leg, respectively, while V accounts for
rungwise interactions. In experimental implementations based
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on synthetic dimensions, the former are associated with the
a↑↑ and a↓↓ scattering lengths, while the latter is proportional
to the value of a↑↓. The total numbers of bosons and rungs
are denoted by N and L, respectively. We define the particle
filling as f = N/(2L). Further, we employ the abbreviation
Nσ = ∑L−1

r=0 a†
r,σ ar,σ for the total particle number in leg σ . We

emphasize that throughout this paper, we consider the value of
the flux φ/(2π ) = 1064/769 that will be most easily realized
in the experiment. In the following, we set h̄ = 1 and kB = 1
and employ the leg-hopping parameter J as our energetic unit
of reference.

C. Observables of interest

In the following, we give an account of the observables
considered in this paper. They have been chosen due to their
experimental relevance in synthetic dimension implementa-
tions.

1. Momentum-distribution functions

Experimentally, momentum-distribution functions are ac-
cessible via time-of-flight measurements. Moreover, Stern-
Gerlach separation allows for leg-resolved measurements
[19,32]. Thus, leg-resolved momentum-distribution functions
nσ (km) are given by means of momentum operators a(†)

km,σ
ob-

tained by Fourier transforming site-local operators a(†)
r,σ along

the spatial dimension,

nl (km) = 〈
a†

km,σ
akm,σ

〉
, (2)

akm,σ = 1√
L

L−1∑
r=0

eikmrar,σ . (3)

The corresponding quasimomenta read km = 2πm/L with
m = 0, 1, . . . , L − 1. Note that throughout this paper, angled
brackets denote ground-state expectation values.

2. Chiral current

Various ground-state phases found in the flux-ladder model
have been successfully distinguished by means of their
characteristic particle-current patterns (see Ref. [42] for an
overview). Particle currents 〈 j⊥r 〉 and 〈 j‖r,σ 〉, from site (r,↑) to
site (r,↓) and from site (r, σ ) to site (r + 1, σ ), respectively,
are obtained from the continuity equation for the occupation
of the local lattice sites,

− d

dt
〈nr,σ 〉 = i〈[a†

r,σ ar,σ , H]〉

= 〈 j‖r,σ 〉 − 〈 j‖r−1,σ 〉 ± 〈 j⊥r 〉, (4)

with ± for σ = ↑,↓. The corresponding operators read

j‖r,σ = iJa†
r,σ ar+1,σ + H.c., (5)

j⊥r = iJ⊥e−irφa†
r,↑ar,↓ + H.c. (6)

Moreover, the chiral current

〈 jc〉 = 1

L − 1

L−2∑
r=0

(〈 j‖r,↓〉 − 〈 j‖r,↑〉) (7)

represents the particle transport along the legs of the system
in opposite directions. The parameter dependence of 〈 jc〉 can
be used to study the vortex-to-Meisner-phase transition in
flux ladders [35,38]. Chiral currents have been experimentally
measured by projecting the system into isolated double wells
using an optical superlattice and studying its time-dependent
dynamics [17]. Such schemes become simpler to implement
in synthetic flux ladders, where the legs of the ladder corre-
spond to internal spin states that can be imaged independently
exploiting Stern-Gerlach separation during time-of-flight ex-
pansion [19,32].

3. Leg-population imbalance

As just mentioned above, in synthetic flux ladders the
occupation of the individual legs can be easily determined ex-
perimentally because these correspond to different spin states.
Here, we define the leg-population imbalance �m by means
of

�m = |〈N↑〉 − 〈N↓〉|
〈N↑〉 + 〈N↓〉 . (8)

Note that a finite leg-population imbalance, �m > 0, is the
key feature of the biased-ladder phase [44], which exhibits
unequal particle numbers 〈N↑〉 and 〈N↓〉 in the two legs.

III. NUMERICAL METHODS

In this section, we comment on the matrix-product-state
based computation of ground states and quench dynamics
in the synthetic flux-ladder model. The simulations are per-
formed by means of the SYTEN toolkit [93,94]. The reader
primarily interested in the physics may skip this part and jump
immediately to Sec. IV.

Throughout our work, the U (1) symmetry associated with
the particle-number conservation of the flux-ladder Hamilto-
nian (1) is exploited in the matrix-product-state formalism.
In particular, for the calculation of ground states, we employ
the single-site variant of the density-matrix renormalization-
group method [68–70], using subspace expansion [95].
Convergence of the variationally optimized states is en-
sured by comparing energy expectation values 〈H〉, variances
〈H2〉 − 〈H〉2, as well as all relevant observables, introduced in
Sec. II C, for different values of the site-local bosonic cutoff
and for different bond dimensions up to typically 3000. We
note that for the Hamiltonian model parameters considered in
this paper, a truncation to at most six bosons per lattice site is
sufficient.

The quench dynamics presented in Sec. VI are simulated
using the two-site variant of the time-dependent variational
principle algorithm [82,83]. Concerning time evolutions, we
typically employ bond dimensions of around 500 and ensure
convergence of all relevant observables by increasing the bond
dimension and decreasing the time step independently.

IV. PROPERTIES OF KNOWN GROUND-STATE PHASES
IN THE FLUX-LADDER MODEL

In the presence of interactions, bosonic flux ladders host a
panoply of emergent quantum phases [42], which have been
studied extensively in the theoretical literature. In the follow-
ing, without claiming completeness, we give an account of
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important ground-state phases of two-leg flux-ladder models.
Readers familiar with the literature on flux ladders might skip
this section.

Orignac and Giamarchi show, in a seminal study based
on a bosonization approach, that the minimal two-leg flux
ladder exhibits Meissner and vortex-lattice phases, which are
reminiscent of a type-II superconductor [35]. The Meissner
phase exhibits a homogeneous particle-density profile and
uniform particle currents encircling the ladder along its legs in
opposite directions. It is worth noting that the Meissner phase
can exist on top of Mott insulators [37,58] as well as on top
of superfluids [38]. Typically, the Mott-insulating Meissner
phase emerges at a commensurate particle filling per rung.
It exhibits a central charge c = 0. In the superfluid Meissner
phase, the charge gap vanishes and the central charge is given
by c = 1.

Vortex-lattice phases are regular crystals of localized vor-
tices [39–41]. In the limit of a vanishing rung hopping and
for a homogeneous particle density, a complete devil’s stair-
case of vortex-lattice phases at each commensurate vortex
density is predicted [35]. Interestingly, the breaking of the
translational symmetry of the underlying lattice model in the
vortex-lattice phases can lead to a reversal of the chiral cur-
rent [41]. As Meissner phases, vortex-lattice phases can exist
on top of superfluids and Mott insulators [42]. However, in
general, they are elusive in the strongly interacting regime,
requiring weak but finite interaction strengths. In contrast
to vortex-lattice phases, vortex-liquid phases do not exhibit
pinned vortices and rung-current correlations. They show ir-
regular leg-current patterns and can exist for any value of the
interaction strength [38].

Moreover, flux-ladder models host a biased-ladder phase,
which was first discussed by Wei and Mueller in 2014 [44].
The key characteristic of the biased-ladder phase is a fi-
nite leg-population imbalance, which spontaneously breaks
the leg-inversion symmetry. It exhibits Meissner-like currents
along the legs and vanishing rung currents. The stability of the
biased-ladder phase is typically enhanced by the presence of
rung-wise interactions.

Charge-density waves can be observed in the strongly in-
teracting regime for large values of the magnetic flux [38,58].
Their key feature are particle-density modulations along the
legs, while they exhibit homogeneous Meissner-like currents.

Finally, we note that precursors of fractional quantum Hall
states in bosonic flux ladders have attracted great interest
[43,45–50]. In general, they require a fine-tuned ratio between
the magnetic flux and the particle filling.

V. ZERO-TEMPERATURE PHASE DIAGRAM

In the following, we map out the ground-state phase di-
agram of the synthetic flux-ladder model at particle filling
one-half, f = 1/2, considering SU(2)-symmetric interactions,
U↑ = U↓ = V = U . We report on a superfluid as well as
a Mott-insulating biased-ladder phase and a Mott-insulating
Meissner phase.

A. Overview

Let us start with Fig. 2, which shows the phase diagram
as a function of the rung hopping strength J⊥ and the inter-

FIG. 2. Ground-state phase diagram for f = 1/2 and U↑ = U↓ =
V = U , featuring superfluid biased-ladder (BLP-SF), biased-ladder
Mott-insulating (BLP-MI), and Mott-insulating Meissner (M-MI)
phases. (a) Dark gray shading indicates the BLP-SF. Light gray
shading indicates the BLP-MI. Bright regions indicate the M-MI.
Actual ground states have been computed for the values of J⊥ and
U indicated by the red dots, considering ladders with L = 40, 60,
and 80 rungs. Note that for noninteracting bosons (U = 0), the crit-
ical value of J⊥ corresponding to the vortex-to-Meissner transition
is given by Jc

⊥/J = 4.88 [36,57]. (b) and (c) Local density profile
and current patterns in the BLP-SF (J⊥/J = 0.3, U/J = 2.5) and
M-MI (J⊥/J = 0.6, U/J = 6), respectively. The size of the dots and
the background shading indicate the local particle density. Note the
finite leg-population imbalance in (b). The red arrows show the local
current patterns. The data shown in (b) and (c) are for the six most
central rungs of a ladder comprising a total number of L = 80 rungs.

action strength U . Within the parameter region spanned by
U/J ∈ [2, 8] and J⊥/J ∈ [0.2, 0.7], extensive density-matrix
renormalization-group simulations clearly reveal three kinds
of phases, which are also summarized in Table I: (i) The
ground states in the Mott-insulating Meissner phase exhibit
uniform particle-density profiles and uniform local current
patterns with an effective unit cell comprising one plaque-
tte of the ladder. Moreover, as shown in Fig. 3, the central
charge of c = 0 of the Mott-insulating Meissner phase can
be well reproduced from the entanglement entropy in the
ground state. (ii) The Mott-insulating biased-ladder phase has
a central charge of c = 0, and, most importantly, it features a
finite leg-population imbalance, �m > 0. (iii) The superfluid
biased-ladder phase exhibits a finite leg-population imbalance
and a central charge of c = 1, which can also be reproduced
from the numerical data. Note that the local particle currents
and particle-density profiles in the superfluid biased-ladder
phase and in the Mott-insulating Meissner phase are exem-
plified in Figs. 2(b) and 2(c), respectively.

053314-5



MAXIMILIAN BUSER et al. PHYSICAL REVIEW A 102, 053314 (2020)

FIG. 3. Particle number 〈N〉 in the grand-canonical ground state
vs chemical potential μ and entanglement spectra, for J⊥ = 0.3J and
different values of U↑ = U↓ = V = U . U/J = 2.5 corresponds to the
superfluid biased-ladder phase (BLP-SF), U/J = 4.5 corresponds
to the Mott-insulating biased-ladder phase (BLP-MI), and U/J = 7
corresponds to the Mott-insulating Meissner phase (M-MI). (a) 〈N〉
vs μ, U = 2.5J , BLP-SF. Data are shown for L = 40, 60, and 80
rungs. (b) U = 4.5J , BLP-MI. (c) U = 7J , M-MI. The plateaus
in (b) and (c) indicate the appearance of Mott insulators at filling
f = 1/2; see also Fig. 6. (d) Entanglement entropy S(r) obtained
for bipartitions corresponding to cuts between rung (r − 1) and rung
r for U = 2.5J (BLP-SF, c = 1), U = 4.5J (BLP-MI, c = 0), and
U = 7J (M-MI, c = 1); considering f = 1/2. The red dashed line
has been obtained by fitting the parameter g in Eq. (10) to the
U = 2.5J data, considering c = 1.

B. Charge gap and entanglement entropy

For the purpose of distinguishing between the Mott-
insulating and the superfluid phases, we analyze the charge
gap

�μ = εN+1 + εN−1 − 2εN . (9)

Here, εN denotes the ground-state energy of a setup with N
particles and particle filling f = N/(2L). A vanishing charge
gap, �μ = 0, indicates a commensurate phase (indicative of
a superfluid), while a finite charge gap in the thermodynamic
limit, limL→∞ �μ > 0, reveals a Mott insulator. It should be
stressed that limL→∞ �μ is estimated by means of a linear
extrapolation of finite-size data in 1/L.

We emphasize that the presence of rungwise interactions,
V > 0, generally enhances the stability of the biased-ladder
phase. Interestingly, it has been shown in Refs. [96,97] that a
finite leg-population imbalance, �m > 0, can be found even in
the absence of a magnetic field, if the strength of the rungwise
interactions exceeds the site-local interaction strength, V >

U↑,U↓. However, one does not expect this—and we have not
found any evidence—for a finite population imbalance at zero
flux and close-to-SU(2)-symmetric interactions.

FIG. 4. Leg-resolved momentum-distribution function nσ (k),
f = 1/2, L = 80. (a) and (b) are for the ↑ and ↓ leg, respectively,
considering J⊥/J = 0.3 and U↑ = U↓ = V = 2.5J , corresponding to
the biased-ladder superfluid phase. (c) J⊥/J = 0.6 and U↑ = U↓ =
V = 6J , Mott-insulating Meissner phase. Note that in the Meiss-
ner phase, one finds n↑(k) = n↓(−k), which does not apply to the
biased-ladder phase. The current patterns and density profiles for the
parameters considered in this figure are shown in Figs. 2(b) and 2(c).

In Fig. 3, we present additional results underlining the
ground-state phase diagram for SU(2)-symmetric interactions
U↑ = U↓ = V = U and particle filling f = 1/2 presented in
Fig. 2. Figures 3(a)–3(c) show the particle number 〈N〉 in the
grand-canonical ground state as a function of the chemical
potential μ for U/J = 2.5, U/J = 4.5, and U/J = 7, respec-
tively, considering J⊥/J = 0.3. Note that these parameters are
also considered in Fig. 6. As discussed above, for U/J =
4.5 and U/J = 7, Mott-insulating ground states appear at
filling f = 1/2. The plateaus at 〈N〉 = L in the 〈N〉 vs μ

curves shown in Figs. 3(b) and 3(c) are indicative for these
Mott-insulating phases. Figure 3(d) shows the entanglement
entropy S(r) as obtained for bipartitions corresponding to cuts
between rung (r − 1) and rung r, U = 2.5J (biased-ladder
superfluid, c = 0), U = 4.5J (biased-ladder Mott-insulator,
c = 0), and U = 7J (Mott-insulating Meissner phase, c = 1),
considering a particle filling f = 1/2. Note that the ground-
state entanglement entropy is predicted to scale as [98,99]

S(r) = c

6
log

[
L

π
sin

(
πr

L

)]
+ g, (10)

with c being the central charge and g a nonuniversal constant.
The red line is obtained by least-square fitting the offset g
in the expression above to the U/J = 2.5 data, considering
a central charge c = 1, which is expected for the superfluid
biased-ladder phase.

C. Momentum-distribution functions

In Fig. 4, we exemplify leg-resolved (σ = ↑,↓)
momentum-distribution functions nσ (k), as defined in
Eq. (2), in the biased-ladder superfluid phase, and in the
Mott-insulating Meissner phase. Figures 4(a) and 4(b) show
n↑(k) and n↓(k) in the superfluid biased-ladder phase, for
J⊥/J = 0.3 and U/J = 2.5. Note that for the considered
parameters, 〈N↓〉 � 〈N↑〉 and the maximum values of
n↑(k) and n↓(k) differ by two orders of magnitude. Also,
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FIG. 5. Biased-ladder Mott insulator (BLP-MI) and Mott-
insulating Meissner phase (M-MI) for U↑ = U↓ = V = 4.5J , and
f = 1/2. (a) Leg-population imbalance �m vs J⊥ considering L =
40, 60, and 80 rungs. (b) Entanglement entropy S(L/2) for a bipar-
tition corresponding to a cut between the two most central rungs of
the ladder. Note that the legend from (a) also applies to (b). (c) Chiral
current 〈 jc〉 and slope of the chiral current ∂J⊥〈 jc〉 vs J⊥ for L = 80
rungs.

n↓(k) is sharply peaked around zero quasimomentum,
while the displaced peak in n↑(k) is a signature of the
superfluid biased-ladder phase. Figure 4(c) focuses on the
Mott-insulating Meissner phase and shows nσ (k) as obtained
for J⊥/J = 0.6 and U = 6J . Note that in the Meissner
phase, the leg-resolved momentum-distribution functions
fulfill the symmetry relation n↑(k) = n↓(−k). Moreover, both
momentum-distribution functions n↑(k) and n↓(k) exhibit
peaks in the immediate proximity to k = 0. Note that the
current patterns and density profiles for the parameters
considered in Fig. 4 are presented in Figs. 2(b) and 2(c).

D. Tuning the rung hopping strength

Next, we concentrate on a horizontal cut through the phase
diagram introduced in Fig. 2 at U/J = 4.5 and elucidate
the biased-ladder-Mott-insulator-to-Mott-insulating Meissner
phase transition in Fig. 5. Figure 5(a) shows the ground-state
leg-population imbalance �m as a function of J⊥ for systems
with L = 40, 60, and 80 rungs. The difference between the
L = 60 and L = 80 data is almost negligible on the scale
of the figure and the abrupt change of �m clearly reveals
the locus of the phase transition, which is also indicated
by the vertical gray line. The half-cut entanglement entropy
S(L/2), which corresponds to a bipartition between the two
most central rungs of the ladder, indicates the biased-ladder
to Meissner phase transition; see Fig. 5(b). Within the consid-
ered region J⊥/J ∈ [0.2, 0.6], the chiral current 〈 jc〉 increases
monotonically with the rung hopping strength J⊥, which can
also be seen in Fig. 5(c). However, a kink in 〈 jc〉 marks the

FIG. 6. Biased-ladder superfluid phase (BLP-SF), biased-ladder
Mott insulator (BLP-MI), and Mott-insulating Meissner phase
(M-MI) for U = U↑ = U↓ = V , J⊥/J = 0.3, and f = 1/2. (a) Leg-
population imbalance �m vs U considering L = 40, 60, and 80
rungs. The vertical gray lines indicate the estimated locus of the
quantum phase transitions. (b) Charge gap �μ vs U . The black solid
line shows the extrapolated value of �μ in the thermodynamic limit,
limL→∞ �μ. The inset (c) shows the charge gap in the thermody-
namic limit for U/J ∈ [2, 10]. (d) Entanglement entropy S(L/2) for
a bipartition corresponding to a cut between the two most central
rungs of the ladder. Note that the legend from (a) also applies to
(b) and (d). (e) Chiral current 〈 jc〉 and slope of the chiral current
∂U 〈 jc〉 vs U considering L = 80 rungs.

point of the biased-ladder to Meissner phase transition. This
kink is also evident in the derivative ∂J⊥〈 jc〉, as illustrated in
Fig. 5(c).

E. Tuning the interparticle interaction strength

Figure 6 focuses on a vertical cut through the phase dia-
gram presented in Fig. 2 at J⊥/J = 0.3. The abrupt change of
the population imbalance when increasing U above approx-
imately 5J , shown in Fig. 6(a), pinpoints the transition from
the Mott-insulating biased-ladder phase to the Mott-insulating
Meissner phase. Note that finite-size effects in the population
imbalance for systems with more than L = 60 rungs are negli-
gible on the scale of the figure. Most interestingly, the system
undergoes a superfluid to Mott-insulator transition within the
biased-ladder phase when increasing U above approximately
3.2J . This is revealed by the opening of a charge gap �μ,
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FIG. 7. Effect of a quadratic trapping potential. The figure shows
ground-state particle-density profiles 〈nr,σ 〉 [(a), (c)] and local leg
currents 〈 j‖r,σ 〉 [(b), (d)] in the central one-half of the ladder.
We consider a harmonic trapping potential as given in Eq. (11)
with μt/J = 60, L = 160, N = 40 bosons, and U = U↑ = U↓ = V .
(a) and (b) are for U/J = 6 and J⊥/J = 0.6, which corresponds to
the Mott-insulating Meissner phase (M-MI) in the absence of the
trapping potential and for a particle filling f = 1/2; see Fig. 2.
(c) and (d) are for U/J = 2.5 and J⊥/J = 0.3, corresponding to the
superfluid biased-ladder phase (BLP-SF). In all panels, the green
upper triangles and the red lower triangles are for the σ = ↑ leg and
the σ = ↓ leg, respectively. The dashed orange (σ = ↑) and blue
(σ = ↑) lines show results in the absence of the harmonic potential
and for a particle filling f = 1/2. Note that in (a), the data for σ = ↑
and σ = ↓ are on top of each other.

as shown in Fig. 6(b). In particular, in Fig. 6(b), we plot �μ

for systems with L = 40, 60, and 80 rungs (colored lines) as
well as limL→∞ �μ (black line), which has been obtained
using a linear extrapolation of the finite-size data in (1/L),
as discussed above. Figure 6(c) shows the extrapolated charge
gap limL→∞ �μ for U/J ∈ [2, 10]. The half-cut entanglement
entropy S(L/2) shown in Fig. 6(d) exhibits a discontinuity at
the transition from the Mott-insulating biased-ladder phase to
the Mott-insulating Meissner phase. Moreover, S(L/2) is in-
dependent of the system size L in the Mott-insulating phases,
while it shows a dependence on L in the superfluid biased-
ladder phase [42,100]. The chiral current 〈 jc〉 is shown in
Fig. 6(e) as a function of U . In analogy to results presented in
Fig. 5(c), a maximum in its slope ∂U 〈 jc〉 indicates the biased-
ladder to Meissner phase transition. Note that the vertical
gray lines show the estimated points of the quantum-phase
transitions.

F. Effect of an additional trapping potential

In the experimental implementation of the flux-ladder
model proposed in Sec. II A, the atoms are captured by
a harmonic trapping potential. Hence, in Fig. 7 we show
particle-density and leg-current profiles for ground states of
the flux-ladder Hamiltonian (1) in the presence of an addi-

tional quadratic potential given by

Vt = μt

∑
σ=↑,↓

L−1∑
r=0

[r − (L − 1)/2]2

[(L − 1)/2]2 nr,σ . (11)

Concretely, we consider a ladder with L = 160 rungs, N = 40
bosons, and μt/J = 60. Due to the effect of the quadratic
potential, the particles localize in the center of the system.
For U/J = 6 and J⊥/J = 0.6, one finds a Mott region in the
central one-quarter of the ladder with a homogeneous particle
density 〈nr,σ 〉 = 0.5 and homogeneous leg currents 〈 j‖r,σ 〉, as
can be seen by the triangle symbols in Figs. 7(a) and 7(b). It
is worth noting that in the absence of the trapping potential
and for a particle filling f = 1/2, the considered values of
J⊥ and U correspond to the Mott-insulating Meissner phase.
Also, Fig. 7(b) shows that the local leg currents in the Mott
region are in accordance with the leg currents observed in
the absence of a trapping potential for f = 1/2, which are
indicated by the dashed lines. For U/J = 2.5 and J⊥/J = 0.3,
one observes a finite population imbalance in the center of
the system, where the particles accumulate [see Fig. 7(c)].
This is in accordance with the superfluid biased-ladder phase,
which is found for the considered values of J⊥ and U in the
absence of a trapping potential and for a particle filling f =
1/2. Figure 7(d) shows that for U/J = 2.5 and J⊥/J = 0.3,
one finds symmetric Meissner-like leg currents in the center
of the system. The leg currents observed in the superfluid
biased-ladder ground state at f = 1/2 and in the absence of a
trapping potential are indicated by the dashed lines and shown
for comparison. We conclude that the relevant ground-state
phases discussed in this paper can be observed in the presence
of a strong trapping potential.

VI. QUENCH DYNAMICS

Preparing a system close to its ground state experimentally
can be notoriously difficult. Therefore, it is highly desirable
to develop practical schemes to explore the various phases
existing in the interacting flux-ladder model [42]. This is
underlined by recent experimental advances in noninteracting
ladders, where elaborate loading procedures enabled the ob-
servation of chiral edge states [19,20] and the estimation of
Chern numbers [29,79].

Here, we present feasible quench protocols which might al-
low one to probe the chiral current in the interacting Meissner
phase and to detect signatures of an underlying biased-ladder
phase in the transient dynamics of the leg-population imbal-
ance. In Sec. VI A, our focus is on the chiral current in the
Meissner phase. There, we study the instantaneous turning on
of leg hopping in the synthetic flux-ladder model, consider-
ing a rung-localized initial state, which is here denoted by
|R〉. Explicitly, for a vanishing leg hopping (J = 0), |R〉 is
the one-particle-per-rung ground state of the Hamiltonian H
introduced in Eq. (1). It is sketched in Fig. 8 and given by

|R〉 = 2−L/2
L−1∏
r=0

(e−irφ/2a†
r,↑ + eirφ/2a†

r,↓)|vac〉, (12)

where |vac〉 denotes the vacuum state with 〈N〉 = 0. In
Sec. VI B, we concentrate on the leg-population imbalance
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FIG. 8. Sketch of the initial states |R〉 and |L〉 considered in quan-
tum quenches. |R〉 represents the one-particle-per-rung ground state
of the ladder Hamiltonian H , introduced in Eq. (1), for vanishing
leg hopping, J = 0. Note that each rung is occupied by exactly one
particle. |L〉 represents the L-particles-on-one-leg ground state of H
for vanishing rung hopping, J⊥ = 0.

and investigate the instantaneous turning on of rung hopping
considering a leg-localized initial state |L〉. Here, |L〉 repre-
sents the L-particles-on-one-leg ground state of H , as obtained
for vanishing rung hopping (J⊥ = 0). We recall that both
initial states are experimentally accessible and the considered
quench schemes are realistic in current quantum-gas platforms
(see Sec. II A).

A. Probing the chiral current

Let us start with the presentation of quench results in
the presence of site-local interactions but without rungwise
interactions, U↑ = U↓ = U and V = 0. Figure 9(a) shows the
transient dynamics in the chiral current 〈 jc〉, which are in-
duced by the instantaneous turning on of leg hopping in the
rung-localized initial state |R〉. Explicitly, time evolutions
of 〈 jc〉 are shown for hard-core bosons (HCBs), consider-
ing J⊥/J = 4, 3, and 2, as well as for finite interaction
strengths, U/J = 20 and U/J = 10, considering J⊥/J = 4.
For the purpose of a clear presentation, the data correspond-
ing to different values of U and J⊥ are vertically offset by
m × 0.25, with m = 0, 1, . . . , 4. In order to neglect boundary
effects, 〈 jc〉 is computed in the central one third of the ladder.
A comparison of the L = 61 data (solid colored lines) and the
L = 41 data (black dotted lines) reveals that finite-size effects
are negligible within the considered time interval tJ ∈ [0, 10].
Most interestingly, Fig. 9(a) shows that after the instantaneous
turning on of leg hopping, 〈 jc〉 oscillates around a finite value.
The colored solid symbols represent the time averages of 〈 jc〉,
which are computed in the interval tJ ∈ [4, 10]. Remarkably,
for strong interactions, theses time averages exhibit a very
similar dependence on the model parameters as 〈 jc〉 in the
ground state of the postquench Hamiltonian, which are indi-
cated by the horizontal dashed gray lines.

Figure 9(b) gives an overview of the J⊥ dependence of 〈 jc〉
in the ground state for U/J = 10, 20 and hard-core bosons,
including the time averages from Fig. 9(a). We emphasize
that for U/J = 10 and U/J = 20 as well as for hard-core
bosons, the vortex-to-Meissner transition appears for values
of J⊥/J < 2 [38]. Thus, all of the parameters considered in
Fig. 9 correspond to the Meissner phase. The quench energy
�ε measures the difference between the energy in the flux
ladder after turning on the hopping elements and the ground-
state energy of the postquench Hamiltonian H introduced in
Eq. (1). Explicitly, it is given by

�ε = 〈ψ | H |ψ〉 − ε, (13)

FIG. 9. Transient dynamics in the chiral current 〈 jc〉 after the
instantaneous turning on of leg hopping for the initial state |R〉 and
V = 0, U↑ = U↓ = U , L = 61. (a) 〈 jc〉 vs time t . HCB refers to
hard-core bosons and the data corresponding to different parameters
(J⊥ and U ) are vertically offset by 0.25, 0.5, 0.75, and 1, for the
purpose of a clear presentation. The black dotted lines are for L = 41
rungs, showing the negligible role of finite-size effects. In order to
neglect boundary effects, 〈 jc〉 is computed in the central one third of
the ladder. Colored solid symbols show the time-averaged value of
〈 jc〉 for tJ ∈ [4, 10]. Gray dashed lines show 〈 jc〉 in the ground state
of the postquench Hamiltonian. (b) Overview over the J⊥ dependence
of 〈 jc〉 in the ground state of the postquench Hamiltonian (colored
solid lines). Colored symbols depict the time-averaged values of 〈 jc〉,
which are also shown in (a). (c) Quench energy �ε vs J⊥.

where ε is the ground-state energy and |ψ〉 = |R〉 , |L〉 is
the considered initial state. Figure 9(c) elucidates that �ε

decreases with increasing interaction strength and increasing
rung hopping strength J⊥. This is in accordance with our ob-
servation that the quench protocol discussed here reproduces
the chiral current in the ground state especially well in the
strongly interacting and large-J⊥ regime, which is deep in the
Meissner phase. Lastly, we note that even though the case
of vanishing rungwise interactions (V = 0) is not particularly
relevant in synthetic dimension implementations, it is still of
general interest as it represents a variant of the flux-ladder
model which has been extensively studied in previous works
(see, for instance, Refs. [35,38,42]).

Next, we concentrate on SU(2)-symmetric interactions,
which are especially relevant in ladders realized by means of
a synthetic dimension, such as the 41K system proposed in
Sec. II A. In Fig. 10, we consider the instantaneous turning
on of leg hopping for U↑ = U↓ = V = 8J in a system with
L = 61 rungs and for model parameters corresponding to the
Meissner phase. Figure 10(a) shows the transient dynamics
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FIG. 10. Transient dynamics in the chiral current 〈 jc〉 after the
instantaneous turning on of leg hopping for various values of J⊥, the
initial state |R〉, U↑ = U↓ = V = 8J , and L = 61. (a) 〈 jc〉 vs time
t for J⊥/J = 3, 6, 12, and 30. The black dotted lines are for L = 41
rungs, showing the negligible role of finite-size effects. (b) The black
solid line depicts 〈 jc〉 vs J⊥ in the ground state of the postquench
Hamiltonian. Gray symbols indicate the time-averaged values of 〈 jc〉
considering tJ ∈ [5, 10] after the quench. Note that the values of 〈 jc〉
for which the transient dynamics are shown in (a) are highlighted by
the corresponding colors. The inset (c) shows the quench energy �ε

vs J⊥. In order to neglect boundary effects, 〈 jc〉 is computed in the
central third of the ladder.

in 〈 jc〉, which are computed in the central third of the ladder,
for different values of the rung hopping strength J⊥/J = 3,
6, 12, and 30 (solid colored lines). In analogy to Fig. 9, it
can be seen that after an initial transient regime up to time
tJ ≈ 3, 〈 jc〉 oscillates around a finite value. Moreover, the
black dashed lines, which are for L = 41 and on top of the
L = 61 results, suggest a negligible influence of boundary
effects for tJ ∈ [0, 6].

We emphasize that the time-averaged values of 〈 jc〉 in the
interval tJ ∈ [3, 6] provide a good estimate for 〈 jc〉 in the
ground state of the postquench Hamiltonian, capturing the J⊥
dependence of the latter. This is elucidated in Fig. 10(b) for
various values of J⊥/J ∈ [3, 30], where the solid black line
corresponds to the ground state and the gray symbols depict
the time averages. Note that time-averaged chiral currents
for which the transient dynamics are shown in Fig. 10(a)
are highlighted by the corresponding colors in Fig. 10(b).
Additionally, Fig. 10(c) reveals that the quench energy �ε

decreases with increasing J⊥, suggesting that the quench pro-
tocol is especially useful in the regime of strongly coupled
legs, which is deep in the Meissner phase. Finally, we con-
clude that after the instantaneous turning on of leg hopping
in the Meissner phase, the chiral current in the short-time
dynamics exhibits a similar dependence on J⊥ as the chiral
current in the corresponding ground state.

B. Signatures of the biased-ladder phase

In Fig. 11, we focus on the instantaneous turning on of
rung hopping in the leg-localized initial state |L〉. It is shown
that signatures of an underlying biased-ladder phase of the

FIG. 11. Transient dynamics in the leg-population imbalance af-
ter the instantaneous turning on of rung hopping for the initial state
|L〉, U↑ = U↓ = V = 3.5J , L = 61, and J⊥/J ∈ [0.3, 0.7]. (a) Par-
ticle number 〈N↑〉/L in the ↑ leg vs time t . The gray dashed line
indicates a vanishing leg-population imbalance, corresponding to
〈N↑〉/L = 0.5 (note that there is a total number of 〈N〉 = L particles).
For values of J⊥ that show oscillations of 〈N↑〉 in tJ ∈ [0, 40], left
and right triangles indicate the time intervals for which the time-
averaged data (diamonds) shown in (b) are computed. Concerning
parameters, for which 〈 jc〉 does not show clear oscillations in the
considered time interval, we consider the values attained at tJ = 40
(solid and open circles). (b) 〈N↑〉/L vs J⊥ in the ground state of the
postquench Hamiltonian (black line), indicating the biased-ladder
phase (BLP) and the Meissner phase. Symbols depict the time-
averaged values of 〈N↑〉 (diamonds) or 〈N↑〉 at tJ = 40 (solid and
open circles).

postquench Hamiltonian can be observed in the transient
dynamics of the density imbalance between the legs of the
ladder. Here, the considered model parameters are U↑ = U↓ =
V = 3.5J and J⊥/J ∈ [0.3, 0.7]. We stress that for J⊥/J <

0.5, the ground state of the postquench Hamiltonian is in
the biased-ladder phase, while J⊥/J > 0.5 corresponds to the
Meissner phase (see Fig. 2). Figure 11(a) depicts the average
particle number 〈N↑〉/L in the ↑ leg versus the time t elapsed
after the quench. Most interestingly, for parameters which
clearly correspond to the biased-ladder phase, namely J⊥/J =
0.3, J⊥/J = 0.35, and J⊥/J = 0.4, a very stable density im-
balance is maintained throughout the considered time interval
tJ ∈ [0, 40]. On the other hand, for the parameters corre-
sponding to the Meissner phase, J⊥/J = 0.60, J⊥/J = 0.65,
and J⊥/J = 0.70, 〈N↑〉 quickly starts to decay and to oscillate
around L/2, which corresponds to a vanishing leg-population
imbalance characteristic of the Meissner phase. For values of
J⊥ which are in the immediate proximity to the biased-ladder
to Meissner phase transition, namely J⊥/J = 0.45, J⊥/J =
0.5, and J⊥/J = 0.55, 〈N↑〉 does not exhibit decaying oscilla-
tions in the considered time interval tJ ∈ [0, 40] but suggests
a possible decay towards L/2 on an intermediate timescale.

Figure 11(b) shows 〈N↑〉 in the ground state of the
postquench Hamiltonian (black line), which unambigu-
ously indicates the biased-ladder phase for J⊥/J < 0.5. The
diamond-shaped symbols depict time averages of 〈N↑〉, con-
sidering intervals as indicated by the left and right triangles
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in Fig. 11(a). They reveal that for model parameters cor-
responding to the Meissner phase, the density imbalance
between the legs quickly vanishes after the turning on of
rung hopping. However, for values of J⊥ corresponding to the
biased-ladder phase, the values of 〈N↑〉 attained at tJ = 40,
which are indicated by the solid circles, reveal a residual
finite-density imbalance between the legs on the timescales
simulated here. Since the quench puts the system at finite tem-
perature, we expect that the imbalance will ultimately decay
to zero, consistent with studies of order-parameter decays in
other one-dimensional systems [101–103]. Moreover, there is
a J⊥ dependence that is in accordance with the one of the
ground state in the postquench Hamiltonian. Similarly, for
values of J⊥ in the immediate proximity to the biased-ladder
to Meissner phase transition, the values of 〈N↑〉 attained at
tJ = 40 are indicated by the open circles. We conclude that
the underlying biased-ladder phase leaves signatures in the
short-time dynamics following the instantaneous turning on
of rung hopping in the leg-localized initial state |L〉.

VII. SUMMARY

In this paper, we studied the ground-state phases and
quench dynamics in an interacting bosonic flux-ladder model.
The focus was on model parameters and specifics that are re-
alistic in a 41K setup which exploits two internal atomic states
(↑,↓) as a synthetic dimension. Explicitly, we concentrated
on rungwise SU(2)-symmetric interactions U↑ = U↓ = V =
U , a particle filling of one boson per rung f = 1/2, and a
value of the magnetic flux φ/(2π ) = 1064/769.

Using extensive density-matrix renormalization-group
simulations, we mapped out the ground-state phase diagram
of the synthetic flux-ladder model as a function of the interac-
tion strength U and the rung hopping J⊥. For large values of U
and J⊥, the model is typically found to be in a Meissner phase.
Moreover, for intermediate values of U and J⊥, the model
hosts biased-ladder phases, which are generally stabilized by
the presence of rungwise interactions and can exist on top of
superfluids as well as Mott insulators.

By time-evolving matrix-product states, we studied how
the chiral current 〈 jc〉 and the leg-population imbalance �m,
which are key observables in the Meissner phase and in the
biased-ladder phase, respectively, can be probed in the frame-
work of feasible quantum-quench protocols. In particular, for
the Meissner phase, the instantaneous turning on of the leg
hopping J in the rung-localized initial state |R〉 induces a
transient chiral current. Interestingly, it exhibits a similar de-
pendence on the model parameters as the chiral current in the
ground state of the corresponding postquench Hamiltonian.
We showed that this protocol is especially promising for large
values of U and J⊥, which is deep in the Meissner phase.
Concentrating on the leg-population imbalance, we showed
that an underlying biased-ladder phase leaves signatures in
the short-time dynamics that are induced by the instantaneous
turning on of the rung hopping J⊥ in a leg-localized initial
state |L〉.

The results presented in this paper are expected to provide
useful guidance to future experimental implementations of
flux ladders exploiting synthetic dimensions.
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Spielman, G. Juzeliūnas, and M. Lewenstein, Phys. Rev. Lett.
112, 043001 (2014).

[33] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,
885 (2008).

[34] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.
Phys. 82, 1225 (2010).

[35] E. Orignac and T. Giamarchi, Phys. Rev. B 64, 144515 (2001).
[36] D. Hügel and B. Paredes, Phys. Rev. A 89, 023619 (2014).
[37] A. Petrescu and K. Le Hur, Phys. Rev. Lett. 111, 150601

(2013).
[38] M. Piraud, F. Heidrich-Meisner, I. P. McCulloch, S.

Greschner, T. Vekua, and U. Schollwöck, Phys. Rev. B 91,
140406(R) (2015).

[39] A. Dhar, M. Maji, T. Mishra, R. V. Pai, S. Mukerjee, and A.
Paramekanti, Phys. Rev. A 85, 041602(R) (2012).

[40] A. Dhar, T. Mishra, M. Maji, R. V. Pai, S. Mukerjee, and A.
Paramekanti, Phys. Rev. B 87, 174501 (2013).

[41] S. Greschner, M. Piraud, F. Heidrich-Meisner, I. P.
McCulloch, U. Schollwöck, and T. Vekua, Phys. Rev. Lett.
115, 190402 (2015).

[42] S. Greschner, M. Piraud, F. Heidrich-Meisner, I. P.
McCulloch, U. Schollwöck, and T. Vekua, Phys. Rev. A 94,
063628 (2016).

[43] S. Greschner and T. Vekua, Phys. Rev. Lett. 119, 073401
(2017).

[44] R. Wei and E. J. Mueller, Phys. Rev. A 89, 063617 (2014).
[45] F. Grusdt and M. Höning, Phys. Rev. A 90, 053623 (2014).
[46] A. Petrescu and K. Le Hur, Phys. Rev. B 91, 054520

(2015).
[47] E. Cornfeld and E. Sela, Phys. Rev. B 92, 115446 (2015).
[48] A. Petrescu, M. Piraud, G. Roux, I. P. McCulloch, and K. Le

Hur, Phys. Rev. B 96, 014524 (2017).
[49] M. Calvanese Strinati, E. Cornfeld, D. Rossini, S. Barbarino,

M. Dalmonte, R. Fazio, E. Sela, and L. Mazza, Phys. Rev. X
7, 021033 (2017).

[50] M. Calvanese Strinati, S. Sahoo, K. Shtengel, and E. Sela,
Phys. Rev. B 99, 245101 (2019).

[51] P. Prelovšek, M. Long, T. Markež, and X. Zotos, Phys. Rev.
Lett. 83, 2785 (1999).

[52] X. Zotos, F. Naef, M. Long, and P. Prelovšek, Phys. Rev. Lett.
85, 377 (2000).

[53] S. Greschner, M. Filippone, and T. Giamarchi, Phys. Rev. Lett.
122, 083402 (2019).

[54] M. Filippone, C.-E. Bardyn, S. Greschner, and T. Giamarchi,
Phys. Rev. Lett. 123, 086803 (2019).

[55] S. T. Carr, B. N. Narozhny, and A. A. Nersesyan, Phys. Rev.
B 73, 195114 (2006).

[56] G. Roux, E. Orignac, S. R. White, and D. Poilblanc, Phys. Rev.
B 76, 195105 (2007).

[57] A. Tokuno and A. Georges, New J. Phys. 16, 073005 (2014).
[58] M. Di Dio, S. De Palo, E. Orignac, R. Citro, and M.-L.

Chiofalo, Phys. Rev. B 92, 060506(R) (2015).
[59] S. Uchino and A. Tokuno, Phys. Rev. A 92, 013625 (2015).
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