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Spatial tomography of individual atoms in a quantum gas microscope
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We demonstrate a method to determine the position of single atoms in a three-dimensional optical lattice.
Atoms are sparsely loaded from a far-off-resonant optical tweezer into a few vertical planes of a cubic optical
lattice positioned near a high-resolution microscope objective. In a single realization of the experiment, we pin
the atoms in deep lattices and then acquire multiple fluorescence images with single-site resolution. The objective
is translated between images, bringing different vertical planes of the lattice into focus. The applicability of our
method is assessed using simulated fluorescence images where the atomic filling fraction in the lattice is varied.
This opens up the possibility of extending the domain of quantum simulation using quantum gas microscopes
from two to three dimensions.
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I. INTRODUCTION

It is becoming increasingly clear that a complete under-
standing of quantum materials requires an understanding of
phenomena like correlations, fluctuations, and entanglement
down to the single-particle level. Neutral atoms are among
the prime candidates for performing scalable quantum sim-
ulations. Within that category, there are currently two main
platforms that allow for measurements of quantum properties
down to the level of an individual atom.

The first of these relies on the usage of multiple tightly
focused optical tweezers directly loaded with atoms from a
magneto-optical trap [1,2]. As a result, the atoms are typically
not in the motional ground state, and the interatomic couplings
are mediated by Rydberg interactions. Tweezer-trapped atoms
can, however, be cooled to the ground state [3,4], and this
enables tunnel coupling between adjacent sites [5,6]. Large
arrays of ground-state cooled single atoms have recently been
realized, demonstrating the scalability of these systems [7,8].

A second platform studies ultracold atoms loaded into the
ground state of wavelength-scale optical lattices by means
of high-resolution microscopy in so-called quantum gas mi-
croscopes (QGMs) [9,10]. Atoms in adjacent lattice sites are
typically closer together than the corresponding resolution
limit of the imaging system, which renders their distinction
challenging but possible [11]. Both of these platforms offer a
high degree of control and tunability [12]. The work presented
here combines aspects of both methods.

Quantum gas microscopes operate in a regime where a
short lattice spacing allows for tunnel coupling between atoms
in adjacent potential wells. These systems have proven to
be especially useful for quantum simulation of many-body
systems [13]. Prominent applications in bosonic systems in-
clude the study of 1D Heisenberg spin-chains [14], quantum
random walks [15], the links between mixed quantum states
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and thermal ensembles [16], and the realization of many-
body localized states [17]. One of the biggest advantages of
QGMs is direct access to high-order particle-particle corre-
lations, which are essential for the description of many-body
quantum states. The construction of fermionic QGMs [18–20]
enabled the study of quantum magnetism which relies heav-
ily on such correlations. Measurements of correlations both
in the spin and charge sectors have revealed long-range
anti-ferromagnetic ordering in 2D systems [21], hidden anti-
ferromagnetic correlations in 1D Heisenberg spin-chains [22],
and have been central to the continued development of our
understanding of intriguing phenomena, such as superconduc-
tivity at high temperatures [23,24].

With the exception of two studies on bilayer Mott insula-
tors [25,26], investigations with QGMs have been constrained
to physics in one or two spatial dimensions due to imaging
limitations. Full three-dimensional (3D) tomography has only
been demonstrated in large-spacing lattices [27] and in 3D
arrays of optical tweezers [28] where the spacing between
atom layers is an order of magnitude larger than that of the
system reported on here.

In this article, we present a method for the tomographic
detection of ultracold 87Rb atoms sparsely populating a cubic
optical lattice potential with a lattice spacing of 532 nm in all
directions. Our experimental apparatus is a QGM of the type
presented in Refs. [9,10]. A schematic of the experiment is
shown in Fig. 1. The atoms are placed within the (dynamically
translatable) focus of a microscope objective with a numeri-
cal aperture (NA) of 0.69. By pinning the atoms in a deep
optical lattice, we can use high-contrast fluorescence imaging
to determine the atoms’ position to within a single site of the
lattice.

The microscope objective is mounted on a piezo driven
closed-loop objective scanner with a scan range of 400 μm,
which enables accurate control of its vertical position to
nanometer precision. It is this vertical control that allows us
to perform tomographic scans. Within a single realization of
the experiment, we acquire multiple fluorescence exposures
where the position of the microscope objective is translated
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FIG. 1. The experimental configuration. (a) A small BEC (violet)
is created in a digital-micro-mirror device (DMD)-generated optical
tweezer potential (blue) projected through a 0.69 NA microscope
objective. An optical lattice (green) is created along the vertical (z)
direction by retroreflection off of a viewport (light blue). The direc-
tion of the two horizontally propagating lattice beams is indicated
by the green arrows. The tweezer-trapped atoms are released into
the vertical lattice where they spread out before being pinned in
a deep cubic optical lattice and their fluorescence is imaged. The
objective (yellow) can be shifted between exposures, allowing for
consecutive images of single atoms at different focal positions (b).
(c) and (d) show images of two atoms loaded in different planes from
the same experimental realization, illustrating that one atom moves
into focus whereas the other is defocused as the objective moves.

between images. Thus, we can extract an atom’s position
not only in the two horizontal dimensions, but also along
the (vertical) line of sight. The methodology is similar to
the one discussed in Ref. [27]. However, in the presented
paper, the distance between adjacent lattice planes is an order
of magnitude smaller. As a result, the atoms in neighboring
planes do not simply contribute to an inhomogeneous back-
ground [26,27], and the knowledge of the axial behavior of the
imaging system’s point spread function (PSF) must be used to
determine the atoms’ position along the line of sight. Here lies
the novelty of our paper in the context of QGM studies, and
a successful application will enable spatially resolved studies
of many-body systems in three dimensions.

II. EXPERIMENTAL PROCEDURE

The full experimental sequence proceeds as follows: Ini-
tially, atoms are loaded in a magneto-optical trap and,
subsequently, transferred to a magnetic quadrupole potential.
The atoms are then cooled by forced evaporative cooling
methods as detailed in Refs. [29–31] and held in a crossed
optical dipole trap at a wavelength of 1064 nm. This results
in a cold cloud of about 106 atoms at an approximate tem-
perature of 800 nK. The atoms are then loaded into a 940-
nm optical tweezer potential generated by directly imaging
the pattern displayed on a DMD through the microscope
objective onto the atoms. The resulting tweezer has a 1/e2

waist of 780(20) nm. To sparsely load atoms into the lattice,
the tweezer depth is set to 20 nK such that the atoms are
merely levitated against gravity. The atoms are then loaded
into the vertical lattice and allowed to diffuse within their

FIG. 2. Fluorescence signals from single atoms. (a) An image of
about 40 atoms. From the atom in the inset, we collect approximately
8000 photons in total. (b) The 20 brightest signals in (a) are super-
imposed to create an averaged image. (c) A horizontal cut through
the averaged image is fit by a Gaussian function (blue, dashed).
The simulated PSF as provided by the manufacturer is also plotted
(orange, solid). (d) A series of five fluorescence images of a single
atom where the microscope objective was translated by 0.5 μm be-
tween consecutive shots. (Left column) Raw data. (Right column)
Data treated with a low-pass filter. The numbers to the right mark
the position of the objective, referenced to the center position of the
series of images.

respective lattice planes. Subsequently, the two horizontal lat-
tice axes are ramped on, and the atoms are frozen in a cubic
lattice with a depth of 2000 Er , where Er = h2/2mλ2 is the
recoil energy, m is the mass of the atom, and λ = 1064 nm
is the wavelength of the lattice light. Finally, the atoms are
exposed to molasses light configured as in Ref. [10], and
their fluorescence is captured by the objective and recorded on
an electron-multiplying CCD camera. A typical experimental
image is shown in Fig. 2(a).

To identify atoms, a peak-finding algorithm is applied to
all the images. In order to determine the resolution of our
imaging system, we superimpose 20 of the brightest signals
from the image shown in Fig. 2(a) where the atoms’ cen-
ters are determined by a two-dimensional (2D) Gaussian fit
applied, subsequently, to the peak finding. In this way, we
create an averaged image of an atom as shown in Fig. 2(b). A
horizontal cut through the image is fit with a one-dimensional
(1D) Gaussian as shown in Fig. 2(c) and used to determine
the resolution limit given by the Rayleigh criterion, resulting
in rmin = 713(14) nm, in accordance with the manufacturer’s
specifications.

III. TOMOGRAPHIC DETECTION

In this section, we present a proof-of-principle experiment
demonstrating how the position of an atom trapped in our
optical lattices can be determined to within a single lattice site
in all three dimensions as shown in Fig. 3.
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FIG. 3. Determination of an atom’s vertical lattice plane. (a)–(c) Fluorescence images of the atoms loaded in the three different planes.
(d) Measured normalized peak intensity plotted as a function of the relative position z and corresponding parabolic fits (solid lines). The three
traces correspond to atoms loaded in the k = −1 (purple squares), k = 0 (orange circles), and k = 1 (yellow triangles) planes. The error bars
represent the shot noise and have been normalized by the peak count.

In order to tomographically reconstruct the position of an
atom along the vertical lattice planes, we measure its intensity
as a function of the objective position. To obtain the data
presented here, the atoms were imaged in five 200-ms long
exposures separated by the same amount of time. During the
separation time, the objective was translated through a set
of positions {zk}, where k = {−2, . . . , 2}, spanning a total
range of 2 μm. Figure 2(d) shows raw and low-pass filtered
images of the same atom obtained in this manner. The light
intensity scattered by the atom increases up until the fourth
image where the atom is in focus, and then decreases in the
fifth image as the atom moves out of focus. This information
can be used to pinpoint into which plane along the line of sight
the particular atom was loaded. As a measure of this effect, we
use the peak count Npk which is the sum of the photon counts
from within a circle with a diameter of seven pixels around
the center of the atom (corresponding to the resolution limit
of our imaging system).

For each static atom, we calculate Npk using the filtered
image as a function of the objective position. The expected
axial intensity IPSF according to the PSF for an ideal imaging
system is [32]

IPSF(z) = I0 sinc2(ξz), (1)

where I0 is the peak intensity and ξ = π
2λ

NA2. A Taylor
expansion of IPSF around the origin yields an inverse parabola.

The experiments are subject to moderate heating effects.
The resulting atom loss (and thermal hopping) during the
imaging procedure mainly stems from one of the axes of the
optical lattice and the fact that our molasses beams do not
cover the entire atom cloud. Therefore, we lose approximately
25% of our atoms over the course of the experiment, and of
the remaining atoms, about 10% are detected in the same
horizontal location throughout the five images. As a result,
we constrain our analysis to a 20 μm-by-20 μm region of
interest where our molasses beams overlap. Additionally, we
only consider atoms that are visible in all five images within

the same lattice site for the total one second duration of the
imaging procedure. As such, our analysis largely considers
atoms trapped in the central three planes of our scan range.
Due to these constraints, we trace, on average, 1.2 atoms
per experimental run, and, thus, our experimental work pro-
vides a proof of principle at this stage. For a system with
reduced losses, this method can be extended to provide a
complete tomographic reconstruction of single atom positions
in a sparsely loaded optical lattice. Extensions beyond sparse
loading are discussed in Sec. IV.

We provide representative traces of atoms trapped in the
k = −1, 0, and +1 planes in Figs. 3(a)–3(c). Each measured
set of Npk is fitted with an inverse parabola as displayed
in Fig. 3(d) where the curvature of the fit is limited to the
theoretical value given by the Taylor expansion of Eq. (1).
From the quadratic fit, the vertical positions of the atoms are
determined as marked by the red square in Figs. 3(a)–3(c).

Our method requires that the image plane of the objective
scans through the vertical lattice plane where the atom is situ-
ated. For atomic clouds distributed over a larger extent along
the vertical direction, more images are needed. More images
or longer exposures will increase the accuracy of locating the
atoms, which will be explored further in future experiments.
The absolute limit, however, is set by the lifetime of the atoms
in the lattice and the efficiency of the molasses cooling used.
In future work, we will focus on realizing tomographic re-
construction of all imaged atoms by mitigating heating effects
(e.g., via improved lattice laser stabilization and the improved
homogeneity of the molasses) and improving our atom detec-
tion methods and imaging SNR, including a thorough analysis
of the relative stability of the microscope and the vertical
lattice.

IV. LIMITS AND EXTENSIONS OF OUR METHOD

In this section, we examine the limits of our tomographic
approach and its extension in two physically distinct cases.
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FIG. 4. Simulation of stacked atoms. (a) Simulated images of atoms placed in an optical lattice with 10% fluctuations in the collected
photon number from the individual atoms and shot noise. The white circles denote the atoms’ positions. (b) The peak intensity plotted as a
function of the lattice planes with the shaded area indicating the standard deviation of repeated realizations with fluctuations present. In the
legend, the positions of atoms and vacancies are marked with “x” and “-,” respectively. (c) The largest distance between the traces in terms of
the standard deviation shown on a logarithmic scale. The index number is defined in the first frame of (a).

The first case is that of a sparsely filled lattice, and the second
considers a Mott insulator at near-unity filling, that is, with
only few vacancies. Both cases are investigated by simulating
fluorescence images which are generated by propagating the
theoretical PSF of the imaging system along its line of sight
using the Rayleigh-Sommerfeld transfer function. Images are
generated for a series of lattice planes {zk}, separated by
532 nm. To obtain images with multiple atoms, we superim-
pose propagated PSFs for each individual atom in a given con-
figuration. For a system where the heating of atoms in the op-
tical lattice is minimized, additional exposures during the ex-
perimental sequence are possible. Here, we assume that seven
images can be taken in each experimental sequence. Further-
more, we assume that the lattice site positions are known.

In an experiment, the number of photons captured from
an atom will vary from atom to atom, e.g., due to spatial
inhomogeneities in the cooling light. This is included in the
simulation by adding normally distributed fluctuations of 10%
for each atom. Shot noise is also added to the images where
we assume a mean photon count of 2 × 104 from each atom
as has previously been achieved in a similar system [9].

A. Sparse loading

First, we consider the limit of sparse lattice loading. In
QGM experiments, atoms are distinguishable transversely due
to the high-NA imaging system, but we consider here whether
or not different atom configurations along the line of sight can
be distinguished using our tomographic method.

We create nine possible configurations of 2–5 atoms
stacked on different lattice planes. The atoms are distributed
across five planes k = −2, . . . , 2. A total of seven images are
created for the planes k = −2, . . . , 4 where the lattice planes
3 and 4 are always vacant. The chosen asymmetry will become
clear shortly.

Figure 4(a) shows the images of the nonvacant lattice
planes with the atom configurations denoted as 1–9. The
atoms’ true positions are marked with a white circle on the
image. As an example configuration 6 has an atom present
in the planes k = −1, 0, and 1, whereas the other planes are
vacant. We denote this configuration by (-x x x---).

To acquire statistics due to the two modeled noise sources
mentioned above, multiple realizations of the same atom con-
figuration are generated, and, from these, we extract the trace
of Npk as a function of lattice plane. Figure 4(b) shows the
average of the traces where atoms can be found, and the
shaded area denotes the standard deviation. We see that
the traces differ more when imaged further away from focus.
A higher distinguishability is achieved by increasing the num-
ber of images in this region and, hence, the chosen asymmetry
of the planes imaged.

To quantify the similarity of the traces, we determine the
distance between two traces i and j on plane k, �i, j,k =
|Npk,i,k − Npk, j,k|. The distance is calculated in terms of the
standard deviation of the peak count σi,k for trace i with the
mean value given as

Di, j = 1

Nplanes

∑

k

�i, j,k

σi,k
. (2)
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FIG. 5. Simulation of a three-dimensional Mott-insulating state close to unity filling. (a) The images show the central 5 × 5 × 5 region of
a 17 × 17 × 17 Mott insulator. The vacancies are marked with white circles. (b) The traces of the peak count for the vacancies in (a) plotted as
a function of the vertical lattice plane. (c) The efficiency and (d) error of the vacancy detection investigated as a function of the fluctuations in
the collected photon number for different number of vacancies.

The distances between each of the traces from Fig. 4(a)
are shown in Fig. 4(c). Here, we see that the configurations
(3) (-x--x--) and (4) (x---x--) are the closest with D3,4 = 1.3
with max(�3,4,k/σ3,k ) = 2.2. This underscores the fact that,
although two atom traces may overlap in certain planes, there
always exists a region where the �i, j,k is sufficiently large
such that any ambiguity can be resolved. Thus, all traces
shown in Fig. 4(b) can be distinguished in an experiment
with sufficiently mitigated losses and heating. Additionally,
to relax the requirements on the number of exposures needed
per experimental run, one can take images at a subset of the
planes considered here or make use of the advanced imaging
techniques considered briefly in Sec. V.

B. Finding holes in a Mott-insulating state

Now, we shift our focus to the case of a Mott-insulating
state with a filling fraction close to unity. With few vacan-
cies in the system, the dip in photon counts due to these
vacancies can be used to determine the atomic distribution.
In the following, we discuss a simple extension of our tomo-
graphic method for such vacancy detection and determine its
efficiency.

Figure 5(a) shows the simulated images with three vacant
sites in different planes. The vacant positions are limited to a
5 × 5 × 5 lattice centered within a 17 × 17 × 17 unity-filled
lattice to simulate the background signal of a large insulating
state. As edge effects are present due to the finite size of the
Mott insulator, the images are normalized to a background
created by averaging 400 realizations with different vacancy
positions.

In this case, we analyze seven images generated symmetri-
cally around the five planes in which vacancies can be present.

First, the images are filtered by a low-pass filter to limit
the effect of shot noise. They are then deconvolved with the
PSF of the system using the Lucy-Richardson method [33]
which increases the contrast of the images. A minimum-
finding algorithm is then used to localize the vacancies in each
deconvolved image.

In order to determine the lattice plane of the vacancy, we
analyze the Npk peak count as a function of the vertical lattice
plane k as in Sec. III. The vacancy position is then determined
by applying a quadratic fit and extracting the position of its
minimum. In this case, the curvature of the parabola is positive
as the vacant site gives rise to lower photon counts. To limit
the fit, the curvature is bounded such that it cannot vary by
more than 50% from the theoretical predicted curvature from
the expansion of Eq. (1). Since this Taylor expansion is only
valid close to the extremum, the fit is applied to ±3 planes
centered around the minimum of the trace, and any points
outside of this range are ignored. That is, some fits are made
to fewer than seven points, but all fits use at least four points.

As above, shot noise and fluctuations, normally distributed
around the mean photon number collected from each atom,
are added to the images. The tomographic method is then
applied to images generated with different levels of fluctua-
tions. To quantify the quality of the method, we look at the
efficiency and the error of vacancy detection. The efficiency
is taken to be the probability of detecting and locating a
vacancy correctly. The error gives the number of false posi-
tives (when the method detects a vacancy at a position where
there is none). This manifests itself both as the detection of a
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false vacancy due to the noise or an incorrectly located hole.
Figure 5(c) shows how the efficiency of the method decays at
large fluctuation levels, mainly due to the quadratic fit failing
to locate the vacancy in the correct lattice plane. The error
shown in Fig. 5(d) arises initially due to this same incorrect
plane determination, but as the fluctuations rise above 5%,
the peak-finding algorithm also starts to mistakenly detect
false vacancies in the noise. It should also be noted that the
efficiency of the method declines when inserting more holes
into the system as atoms next to or on top of each other are
hard to separate and locate.

V. CONCLUSION AND OUTLOOK

In this paper, we have experimentally demonstrated a to-
mographic approach to determining an atoms’ position within
a three-dimensional cubic lattice, given that the lattice is
sparsely loaded. In addition, simulations suggest that similar
methods can be used to detect holes in a unity-filled three-
dimensional Mott-insulating state.

Although the effectiveness of these methods in the inter-
mediate regime (e.g., 50% filling) is left for future study, their
utility in both of the investigated regimes opens up interest-
ing possibilities for further studies. Additionally, improved
imaging and image analysis techniques will likely expand
the regimes in which our methods are applicable and useful.
These techniques, like the tomographic methods discussed
in Ref. [34], draw largely on existing biological, geo-, and
astrophysical methods. Such possibilities include methods
based on principal component analysis [35], more advanced
deconvolutional [36,37], and optical coherence tomographic
methods [38]. One could even use a spatial light modulator to
shape the PSF of the microscope in the longitudinal plane as

in Ref. [39] to allow for easier recognition of an atom’s lattice
plane. Methods such as these could enable the determination
of an atom’s three-dimensional location with fewer images,
thus relaxing the requirements of long imaging times.

Our sparsely filled tomographic technique could be ap-
plied to study a broad class of transport problems in three
dimensions, including spintronics [40], light-harvesting sys-
tems [41–43], or the spreading of impurities in a spin system
[14,44]. One particular experiment that fulfills the condition
of sparse loading is the realization of quantum random walks
in 3D, which has been investigated before in 1D in QGMs
[15,45], solid-state qubits [46], and in photonic systems [47],
among others. To study interesting dynamics in this setting,
one could, for example, tilt the lattice (which is already a
nontrivial classical problem [48]) or modulate it to study the
diffusion of higher motional states.

In the bulk, our method allows for three-dimensional quan-
tum simulations that were hitherto inaccessible, for example,
a more precise determination of the superfluid-to-Mott-
insulator transition in three dimensions [49]. Such bulk meth-
ods also enable the study of dynamics, such as many-body
entanglement [50], localization [17,51], and quantum walks
of defects in Mott-insulating states [52]. In this new regime of
quantum simulation, the dimensionality of the system renders
numerical computation of the system difficult [53].
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