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The dynamics of systems with higher-order dispersion are rapidly advancing to the center of modern hy-
drodynamics research. From natural shallow water waves and nonlinear optics to manufactured microcavity
resonators, these systems offer many surprises that motivate both fundamental insights as well as new device
paradigms. An extreme regime of hydrodynamics is the formation of shock waves where nonlinearities of
the system further enhance the phenomenology. Higher-order dispersion can lead to novel dispersive shocks
structures whose precise modeling is challenging current mathematical concepts. Here we present a seminal
paper demonstrating, experimentally and numerically, the dynamics in an interacting superfluid with higher-
order dispersion. Raman dressing, a technique which over recent years has emerged as a flexible tool to modify
the dispersion, is used to induce spin-orbit coupling that features a region of negative effective mass. Intriguingly,
the breaking of Galilean invariance by the spin-orbit coupling allows two different types of shock structures to
emerge simultaneously in a single system. Furthermore, we describe an interplay between vortices and shock
fronts leading to a surprising stability of one shock, which we attribute to reduced turbulence in regions of
higher-order dispersion. Our paper suggests that spin-orbit coupling can be used as a powerful means to tune
the effective viscosity in cold-atom experiments serving as quantum simulators of turbulent hydrodynamics with
implications for quantum metrology, quantum information, photonic applications, and quantum simulations of
neutron stars.
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I. INTRODUCTION

Higher-order dispersions beyond the familiar parabolic
form bring surprising and peculiar effects to hydrodynamic
systems at the forefront of modern hydrodynamics research.
These effects have many applications, including to shallow
water waves, optical media, microcavity resonators, and pho-
tonic devices [1–6]. Nonlinearities can further enrich the
phenomenology, leading to the formation of new shock struc-
tures that are only beginning to be explored [7]. Due to the
complexity of the dynamics, these systems challenge existing
mathematical models and pose many open questions for fun-
damental and applied studies.

Dilute-gas Bose-Einstein condensates (BECs) provide a
powerful platform for studying these types of complex dy-
namics. By immersing a dilute-gas BEC into an appropriately
tuned laser field, spin-orbit coupling (SOC) can be induced
in the BEC [8–10]. This modifies the single-particle disper-
sion from a parabolic form E (p) = p2/2m to a double-well
structure with higher-order terms, similar in form to band
structures found in condensed-matter systems. Features of the
dispersion can be tailored in experiments; by changing the
intensity and relative detuning of the Raman beams, one can
finely tune and manipulate the curvature of the dispersion.

A BEC with SOC constitutes an exotic medium through
which topological defects, phonons, and shock waves can
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propagate. These features have characteristics that are
strongly correlated with the properties of the underlying
medium. For instance, in a conventional BEC, small-
amplitude phonons propagate near the speed of sound in the
medium at long wavelengths [11,12], and as the wavelength
decreases, the propagation speed increases slightly [13]. How-
ever, in a BEC with SOC, the dispersion can be modified
so that short-wavelength modes travel more slowly in spe-
cific directions. This has a profound impact on the shape of
dispersive shock waves (DSWs) that develop from nonlinear
interactions in the system. A prototypical example of this is
demonstrated in Fig. 1 showing the results of a 1D numerical
simulation using realistic SOC parameters which give rise to
the dispersion shown in Fig. 2. Although a BEC with parabolic
dispersion only supports shock structures akin to the left trav-
eling one [14–16], qualitatively different structures, such as
the right traveling one in Fig. 1, arise in the presence of a
higher-order dispersion, which in this case lowers the phonon
dispersion with positive momenta, slowing the speed of
high-frequency components which now lag behind the shock
front.

Directly imaging these features in situ in a realistic ex-
periment is extremely challenging due to their submicron
size. Here, we present alternative evidence, visible in current
experiments, that robustly detects the asymmetry introduced
by the SOC, looking at the macroscopic behavior of induced
shock waves. The final narrative describes a subtle connection
between the macroscopic hydrodynamic behavior and the mi-
croscopic dynamics of vortices.

2469-9926/2020/102(5)/053310(12) 053310-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3954-7831
https://orcid.org/0000-0002-2152-5303
https://orcid.org/0000-0002-8136-0336
https://orcid.org/0000-0002-1093-9471
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.053310&domain=pdf&date_stamp=2020-11-10
https://doi.org/10.1103/PhysRevA.102.053310


MOSSMAN, DELIKATNY, FORBES, AND ENGELS PHYSICAL REVIEW A 102, 053310 (2020)

FIG. 1. The development of dispersive shock waves in a SOC
BEC. At twait � 0 ms, this one-dimensional (1D) numerical simu-
lation shows an initial density perturbation formed by an attractive
Gaussian potential at the center of the system. The potential is sud-
denly switched off at twait = 0 ms and the initial density perturbation
spreads outwards (twait = 1 ms), forming two traveling peaks (twait =
2 ms) and developing into DSWs moving in opposite directions
(twait = 3 and 4 ms). The structure of a DSW is highly dependent on
the background dispersion. In a SOC BEC, the breaking of Galilean
invariance induces two distinct DSW structures in a single system:
To the right, the solitary wave train lags behind the solitary wave
edge (shock front), whereas to the left, the solitary wave train travels
faster than the large amplitude shock front.

Shock waves generated in a superfluid medium are typi-
cally considered to be dispersive (see Ref. [17] for a review):
Instead of becoming infinitely steep, the shock front is
smoothed by gradients in the kinetic energy (dispersion), and
the energy in the shock wave is conserved. In direct contrast
to this, classical shock waves are smoothed by dissipative
effects, such as viscosity, which removes energy from the
shock wave. Depending on the amplitude of the excitations
and the geometry of the system, shock waves in a superfluid
can decay into a variety of intricate structures determined
by the dimensionality of the system [18], in part, due to the
presence of snaking instabilities along transverse directions
[19–22]. In one-dimensional systems, effectively realized in
elongated trap geometries with tight radial confinement, su-
perfluid shock waves remain dispersive [13,23,24]. As the
dynamics probe additional dimensions, however, shock waves
can appear to be dissipative, despite a lack of dissipation in
the superfluid systems [25,26]. This effective viscosity arises
from the generation of quantized superfluid vortices through
snaking instabilities, resulting in a turbulent fluid that can
be modelled by one-dimensional viscous shock wave (VSW)
theory. We note that viscosity can appear in superfluids due
to interactions with the normal component (mutual friction)
and as intrinsic shear viscosity, but these effects are much
smaller than those discussed here which can be reproduced
with purely conservative simulations.

FIG. 2. Experimental setup. (a) An elongated BEC in a verti-
cal magnetic field is prepared with spin-orbit coupling using two
counter propagating Raman beams (green). An additional attractive
optical potential (red) is applied at the center of the SOC BEC.
(b) Raman beams couple the |↑〉 and |↓〉 pseudospin states in the
|F = 1〉 manifold of 87Rb. (c) The two-component excitation spec-
trum (black solid) and the single-particle dispersion (blue dashed)
for our experimental parameters: � = 1.5ER and δ = 0.54ER. The
phonon dispersion has been shifted in the plot along the quasimo-
mentum axis to line up with the single-particle dispersion minimum
for convenience. The bulk speed of sound is ≈√

gn/m with small
corrections from the SOC dispersion and mixing. To either side
of the minima near q = −1, however, these corrections are small
given the experimental parameters. The blue-shaded area indicates
quasimomenta with negative effective mass.

Here, we present a seminal study extending the realm of
existing hydrodynamic experiments into the regime of excita-
tion dynamics in the presence of higher-order dispersion. Our
key results include: the description of a shock structure in a
system with higher-order dispersion that presents many open
questions for nonlinear science; the observation that—based
on the breaking of Galilean symmetry—two different shock
structures coexist in one and the same system; the surpris-
ing observation of a shock feature with solitonlike stability
that forms in the region of higher-order dispersion; matching
numerical simulations showing the source of this unlikely
stability; and a study of excitation dynamics in the presence
of quantum turbulence in a dilute-gas BECs, describing the
intricate interplay between vortices and propagating shock
structures. Our results reveal that SOC offers a flexible way
to tune the effective viscosity of macroscopic hydrodynamics
realized in turbulent quantum fluids, providing unmatched
experimental control of turbulent hydrodynamics in cold-atom
quantum simulators.

II. RESULTS

A. Experimental setup

To investigate the excitation dynamics, we employ an elon-
gated BEC of 87Rb atoms, confined in an optical dipole trap
(see Appendix A for detailed experimental parameters). The
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BEC is cigar shaped with an aspect ratio of approximately
100:1, and the long axis of the BEC is oriented horizontally as
shown in Fig. 2(a). A uniform bias field in the z direction splits
the F = 1 hyperfine ground state according to the Zeeman
shift [Fig. 2(b)].

Spin-orbit coupling with its associated double-well disper-
sion, is induced by applying two counterpropagating Raman
beams that couple the |F, mF 〉 = |1,−1〉 and |1, 0〉 states,
which we designate as two spin orientations |↑〉 and |↓〉
of a pseudospin-1/2 system, respectively [see Fig. 2(b)
and Appendix A]. The height of the central hump in the
single-particle dispersion (near quasimomentum q = 0 [see
Fig. 2(c)]) depends on the Raman coupling strength �, which
can be adjusted in the experiment by the intensity of the
Raman beams IR. The energetic offset of the two local minima
of the dispersion depends on the detuning δ of the Raman
coupling, which can be set by the frequency difference be-
tween the two Raman beams. The experimentally realized
single-particle dispersion and the associated two-component
phonon dispersion are shown in Fig. 2(c) by the dashed blue
and solid black lines, respectively. See Appendix C for more
information. Energies and momenta are measured in units
of the recoil energy ER = h̄2k2

R/2m and recoil momentum
kR = 2π/λR, where λR is the Raman laser wavelength. The
BEC is prepared with SOC such that the majority amplitude
of atoms are in the |↑〉 spin state and the direction of the SOC
positive quasimomentum +q is in the +x direction as indi-
cated in Fig. 2(a). Preparing the BEC with SOC causes heating
in the system, reducing the the number of condensed atoms in
the majority component to approximately 2 × 105 atoms. The
atoms in the minority component |↓〉 are indiscernible in the
experimental images.

An additional dipole sheet aligned perpendicular to the
long axis of the BEC creates an attractive Gaussian potential
for the atoms at the center of the BEC. This vertical dipole
sheet is pulsed on for 10 ms after the system has been prepared
with SOC, resulting in excitations that propagate outwards
along the along axis towards the edges of the BEC. The
depth of this dipole potential Ub can be varied to generate
large or small initial excitations in the BEC. In this section,
Ub is on the order of the chemical potential of the majority
component state (|↑〉) in the SOC BEC μ = 95 nK. To an-
alyze the dynamics, absorption imaging is performed after
a 10.1-ms time-of-flight (TOF) expansion. A Stern-Gerlach
technique is used to vertically separate the spin states during
the imaging procedure. Representative images obtained this
way are presented in Fig. 3 where the |↓〉 state is not shown
due to low population of atoms in the minority component.

B. Experimental results

We have performed a systematic study of the dynamics
following the sudden switch-off of the dipole sheet as a
function of a subsequent in-trap evolution time twait and of
the initial potential strength Ub. To better match the exper-
imental results with numerics, we have introduced a wide
cross-dipole beam to anchor the position of the SOC BEC
in place during the experiment. This beam increases the ax-
ial trapping frequency to 2π × 3.49 Hz, leaving the radial
trap frequencies unaltered but changing the aspect ratio of

FIG. 3. Excitation dynamics with and without SOC. Absorption
images acquired after a 10.1-ms time-of-flight expansion show the
dynamics of outward moving excitations in a BEC prepared (a) with-
out and (b) with SOC at times t = 0, 5 10, 25, and 40 ms (top
to bottom) after a Ub = −110 nK ≈ −1.2μ attractive potential has
been applied to the center of the BEC for 10 ms. A Stern-Gerlach
technique is used during time of flight to vertically separate the spin
states in (b) where only the majority component is shown. The arrow
in the last panel of (b) indicates a highly reproducible solitonlike
peak propagating to the right, discussed in the main text.

the trap to approximately 80:1 and the chemical potential to
μ = 55 nK. A synopsis is presented in Fig. 4 and reveals the
following features, the interpretation of which is confirmed
by our matching numerical simulations: In the absence of
SOC, the left-traveling and right-traveling excitations qualita-
tively behave in the same way as they propagate to the edges
of the BEC, forming vortex rings and dark solitons. When
strong SOC is applied to the system, parity is broken, and an
asymmetric behavior is observed between the two directions.
This asymmetric behavior is highly dependent on the depth
of the initial potential with respect to μ and on the coupling
strength of the SOC. For a system where the SOC coupling
strength � and detuning δ are fixed, the following behavior is
found:

(1) When Ub < μ, excitations moving outwards from the
center of the BEC display no discernible difference between
the cases with and without SOC.

(2) When Ub � μ, the excitation propagating to the right
consistently forms a well-defined peak that becomes particu-
larly pronounced during the expansion dynamics and travels
outward from the center towards the right edge of the cloud
at a relatively constant velocity. For clarity, this peak is
indicated with a white arrow in the lower right image of
Fig. 3. Quantitative analysis of the right-traveling excitation
yield experimental speeds of 1.63 ± 0.04 mm/s for Ub =
−30 nK, 1.64 ± 0.05 mm/s for Ub = −60 nK, and 1.68 ±
0.06 mm/s for Ub = −90 nK. This excitation is highly re-
producible and observed to have a lifetime comparable to
small-amplitude excitations in past phonon excitation ex-
periments [12,13,24]. In addition, solitonlike excitations are
seen in the experimental images, and numerical simula-
tions of the Gross-Pitaevskii equation (GPE) identify the
generation of a collection of defects, including solitons, soli-
tonic vortices, and vortex rings, during the 10-ms pulse
of the attractive potential. The positions of these features
depend subtly on small details, such as a tiny tilt in the
dipole sheet or variations in the position of the potential,
which are expected to vary in the experiment from shot
to shot.
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FIG. 4. Experimental results and numerical simulations. Analysis and integrated cross sections of an expanded BEC prepared in an
elongated crossed-dipole trap with SOC after an attractive potential with (a) Ub = −30 nK, (b) Ub = −60 nK, or (c) Ub = −90 nK has been
pulsed on at the center of the cloud for 10 ms. The chemical potential in the trap used here is μ = 55 nK. After the potential is switched off, the
system is allowed to evolve for a time twait in the presence of SOC prior to 10.1-ms time-of-flight expansion. The top row shows the position
of the right moving excitation over time for GPE simulations (shaded region) and experiment (data points) for each potential depth, measured
using a Gaussian fit function. The error bars and bands for both experiment and numerical results show the 2σ waist of the fitted Gaussian to
the measured excitation. The experimental Gaussian waist presented here is comparable to the variation of the position of the shock feature shot
to shot for similar experimental parameters. Quantitative results for the experiment are stated in the main text. In the lower panels, integrated
cross sections for both GPE simulation (blue) and experiment (orange) are provided for each potential depth after twait = 2, 8, 14, 20, and 26 ms
where the shaded regions reflect the data presented in the top row. The GPE simulations presented here are performed using axial symmetry,
which forces topological defects to align along the imaging axis. This results in some imaging defects from the numerical simulations, such as
the slitting of the shock peak in the bottom two panels of the second column and corresponding kink in the top panel. For more information,
see Appendix C. The simulations have been modified to reflect the optical resolution of the experiment (∼2 μm) using a Gaussian convolution
method.

C. Numerical results

To understand the experimental results, numerical simula-
tions of a coupled set of GPEs are performed

ih̄
∂

∂t

(|↑〉
|↓〉

)
=

(
p̂2

2m + V↑ �
2 e2ikRx

�
2 e−2ikRx p̂2

2m + V↓

)
·
(| ↑〉

| ↓〉
)

, (1a)

V↑/↓ = −
(

μ ± δ

2

)
+ g↑↑/↑↓n↑ + g↑↓/↓↓n↓, (1b)

where p̂ = −ih̄ �∇ is the momentum operator, μ is the chem-
ical potential in the SOC system, gab = 4π h̄2aab/m, and
aab’s are the s-wave scattering lengths (with a, b =↑ or
↓). For 87Rb, a↑↑ = 100.40a0, a↓↓ = 100.86a0, and a↑↓ =
100.41a0 where a0 is the Bohr radius. The system is pre-
pared in the ground state with a Thomas-Fermi (TF) cloud
radius of xTF = 150 μm along the long axis, corresponding to
N↑ = 206 000 and N↓ = 6000 atoms in the condensate. The
SOC parameters are � = 1.5ER and δ = 0.54ER. To reduce
computational costs, cylindrical symmetry is employed about
the long axis of the trap. The system is evolved in real time
following the experimental protocol including the imaging
procedure, which we implement in an expanding coordinates
system as discussed in Ref. [27]. See Appendix D for details.

This introduces some significant artifacts by restricting vor-
tices to be vortex rings but allows us to fully simulate the
experimental procedure including the expansion and imaging.
Limited full three-dimensional (3D) simulations of the in situ
dynamics confirming the behavior discussed here are shown
in Fig. 5.

D. Interpretation of results

As demonstrated in the experimental absorption images of
Fig. 3, a striking effect of the modified dispersion is the appar-
ent stabilization of the right-moving shock wave, leading to a
highly reproducible peak seen in the expansion images that
is traveling to the right. The average Gaussian width of this
shock feature is ws = 1.74 ± 0.35 μm when averaged over
times {2, 4, 6, . . . , 46} ms for all potential depths. This feature
is reproduced by our numerical simulations, allowing us to
probe the microscopic mechanism for this stabilization. Our
numerics are summarized in Fig. 5. Details and animations
can be found in Appendix E.

The numerics show the following progression of events.
Shortly after turning on the attractive potential, fluid is drawn
into the central region of the trap where the potential is located
[Fig. 5(a)]. The subsequent flow induces a snaking instability
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FIG. 5. Numerical simulations with and without spatial tilt of attractive potential. Simulated in situ images (prior to the expansion) of the
four distinct stages of evolution from a simulation of the experiment with a −60-nK attractive potential. Here we compare axially symmetric
simulations to 3D simulations with a small 1% y-tilted Gaussian dipole beam VDB ∝ exp [(x + 0.01y)2/2σ ]. Upper frames are the integrated
line-density n1D(x) = ∫

dy dz n(x, y, z) with axially symmetric data (blue), and 3D tilted data (orange). Middle frames are slices n3D(x, y) =
n(x, y, 0) for axially symmetric simulations with streamlines of the current density n↑�v↑ + n↓�v↓. Bottom frames are slices n3D(x, y) = n(x, y, 0)
from the 3D tilted simulations. (a) Initial flow of the BEC into the region of the attractive potential. (b) Formation of several vortex rings due
to snaking instabilities induced by this flow. The pattern of rings here is quite symmetric even in the tilted case. Vortex rings appear as reduced
density in the 1D plots with mild dependence on the ring radius. (c) Formation of outgoing DSWs after the attractive potential is removed at
t = 10 ms. In this frame, the DSWs are just starting to interacting with the first seeded vortex ring: Without the seeding rings, the structures
of these DSWs are similar to that shown in Fig. 1. In the tilted case, the vortex rings rapidly decay into vortices that break the axial symmetry
and average to significantly smoother integrated line density. (d) Results of DSWs interacting with initial vortex rings. Note that many fully
formed and stable vortices exist on the left, whereas fewer vortices survive on the right. This is attributed to an increased number of vortex
annihilation events to the right, evident by the manifestation of short wavelength oscillations in the integrated cross sections. Some features
are sensitive to the tilt, such as the vortices near x = 0 whose location shifts by several microns in the integrated 1D density. Others remain
robust, such as the right-moving shock wave and corresponding peak at 20–25 μm.

[19–22] seen in Fig. 5(b), forming vortex rings on either side
of the growing central excitation, or bulge. During the initial
stages of evolution, vortex rings form quite symmetrically
on both sides. Most have their central flow oriented towards
the center of the cloud, however, with increasing potential
strength some vortex rings form with central flow facing out-
ward.

After the attractive potential is turned off, the central bulge
expands along the axis of the trap as shown in Fig. 5(c). This
can be described by decomposing the bulge as a superposi-
tion of left- and right-moving bulges (phonons), which move
outward at approximately the local speed of sound once the
attractive potential is suddenly switched off. Due to the non-
linear interaction, these left- and right-moving bulges quickly
form DSWs, the orientation and polarization [17] of which
are sensitive to the curvature of the dispersion as shown in
Fig. 1. In particular, the left-moving DSW forms a leading
soliton train as short-wavelength components travel faster
than the solitary wave edge of the bulge. On the right, a small-
wavelength soliton train trails behind the bulge. This has
an intuitive explanation in terms of the modified dispersion.
On the right, the phonon dispersion has negative curvature,
and both group and phase velocities of the short-wavelength
modes are slower [7,17]. Discerning these features in an ex-
periment would require high-resolution in situ imaging as they
are on the order of the healing length, and they do not survive
the expansion imaging procedure.

As these outward traveling shock waves overtake the ini-
tially seeded vortex rings, intriguing dynamics ensue and a
complex interaction develops between the rings and the shock
front as shown in Fig. 5(d). In particular, the vortices absorb
energy and momentum from the shock front, causing the
shock to dissipate as if it were a VSW, even though the total
energy is conserved by the system. To verify this, we have per-
formed related simulations and experiments where the dipole
beam is slowly turned on so as not to seed vortices: in this
case, both shock waves persist, allowing us to conclude that
the decay of the left-moving shock wave is, indeed, related to
the presence of microscopic vorticity. This is consistent with
previous observations of VSWs in superfluids as a result of
dimensional reduction [25,26] where a dissipationless super-
fluid in 3D is described by viscous hydrodynamics in 1D after
integrating over the transverse directions. The modified dis-
persion plays an important role here, significantly suppressing
these dissipative effects. In Fig. 5(d) one can see a large num-
ber of vortex rings on the left side of the cloud, whereas very
few remain on the right. Examining the detailed dynamics (see
Appendix E), we see that vortex-vortex and vortex-shock front
interactions are more likely to trigger vortex annihilation on
the right side of the cloud than on the left. As a result, fewer
vortices remain on the right, and less energy is dissipated from
the shock front, leading to less effective viscosity and to the
stabilization effect we observe in experiments with modified
dispersion.
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One might wonder if the asymmetry is due to the initial
asymmetric form of the DSWs shown in Fig. 1, in particular,
noting that the strong leading soliton train on the left might
trigger the formation of more vortices. Although this likely
plays a role, it appears that the vortices seeded in Fig. 5(b) are
crucial to the observed dynamics, at least, at these potential
strengths. Both numerics and experiment reveal that using
a shallower potential, such as Ub = −30 nK [see Fig. 4(a)],
decreases the number of defects generated initially in the sys-
tem, thus, greatly reducing the effective viscosity, and shocks
propagate in both directions without significant dissipation.

Explaining the exact microscopic mechanism for the
enhanced likelihood of vortex annihilation with modified dis-
persion requires further investigation, but we anticipate that
this is largely due to the presence of a dynamical instability
in the region of negative effective mass [shaded region in
Fig. 2(c)] [28]. As the shock front passes through a vortex
ring, it can induce portions of its flow to enter this region
where dynamical instabilities can manifest. Our numerics re-
veal that this often triggers the vortex ring to rapidly collapse
or expand out of the system, effectively decaying to many
high-frequency phonons seen as rapid near-stationery oscilla-
tions on top of the simulations in Fig. 5(d). In contrast, vortex
interactions with the shock front moving to the left change
the diameter of the vortex rings, triggering fewer annihilation
events, and leaving them free to absorb the energy from the
passing shock wave. Annihilations from the dynamical in-
stability occur primarily in the center of vortex rings when
the relative flow from the passing shock front increases the
quasimomentum into the negative mass region. Notably, the
rapid oscillations from the dynamical instability are also seen
developing on the cusp of the outward traveling right side
DSW in the raw Ub = −30-, −60-, and −90-nK numerical
data sets.

E. Expansion dynamics

Structures induced by SOC and topological defects formed
during DSW decay have length scales on the order of a healing
length. These length scales are below the imaging resolution
in our experimental setup. Therefore, time-of-flight imaging
with 10.1-ms expansion time is used. During this expansion,
features, such as solitons and vortices widen and, thus, can
be resolved by the imaging system [29]. We have performed
numerical simulations of the expansion dynamics which re-
veal that this process is nontrivial, and the structures of the
excitations change considerably during this time. We find that
the expansion process significantly enhances the peak of the
DSWs, allowing it to be clearly imaged after the experiment:
After the BEC is released from the trap, the gas expands
rapidly in the radial direction, reducing the density by more
than a factor of 10 in 2 ms and rendering the gas essentially
noninteracting. In the remaining time of expansion, the vari-
ous frequency components determined from the bare particle
dispersion separate with velocity v = h̄k/m, where k is the
wave vector of the frequency component. What remains is a
highly enhanced peak moving with the characteristic momen-
tum of the shock wave. See Appendix F for more information
and animations.

III. DISCUSSION

Using an attractive dipole sheet to generate large amplitude
excitations on the background of a SOC BEC, we are able to
probe the effects of higher-order dispersion on the nonlinear
dynamics in an ultracold atomic system. The experimental
results show a clear asymmetry in the nonlinear dynamics in
the presence of SOC, surprisingly manifesting an enhanced
stability of shock fronts propagating into the direction of
higher-order dispersion, in agreement with GPE simulations.
Within the numerical simulations, one is able to resolve the
microscopic origin of this stability: The SOC significantly
modifies the dynamics and stability of vortices in the region of
modified dispersion, reducing their ability to dissipate energy
from the shock wave. Although it has been shown that the
presence of SOC significantly alters the structure of vortices
[30], no comparable study of the effect on their dynamics has
been performed.

The left-moving shock front decays rapidly, leaving behind
a wake of vortices, whereas the right-moving shock front
remains quite stable. We interpret the observed asymmetry as
a manifestation of quantum turbulence: Viewed in terms of
1D VSW theory, the vorticity induced in the system provides
a mechanism to absorb energy, resulting in an effective viscos-
ity in the 1D theory, similar to that seen in previous superfluid
experiments [25,26]. This effect is qualitatively consistent
with our results, but further analysis is required to quantify
the effective viscosity.

In this language, the modified dispersion here signifi-
cantly alters the vortex dynamics in comparison to previous
cited works, reducing the effective viscosity for the right-
moving shock front. Thus, SOC provides an effective tool for
modifying the underlying dynamics of vortices and thereby
tuning the effective viscosity of the long-range hydrody-
namic effective theory. Such control is essential for using
cold atoms as effective quantum simulators for turbulent fluid
dynamics with wide-ranging applications, including quantum
metrology, quantum information, photonic applications, and
quantum simulations of neutron stars. For example, quantum
simulation using ultracold atoms is one of the most promising
strategies for studying the hydrodynamics in neutron stars
that result from quantum turbulence [31,32]. The neutrons,
protons, and possibly even quarks in neutron stars form su-
perfluids whose dynamics are thought to be responsible for
observable phenomena, such as pulsar glitches—rapid sud-
den increases in the rotation rate of pulsars despite a stead
loss of angular momentum. Being able to simulate neutron
stars with terrestrial cold-atom experiments may provide the
key needed to understand these glitches, whose microscopic
origin remains a mystery, despite almost half a century of
intensive study [33,34] (see Ref. [35] for a review). This
application represents an exciting convergence of practical
quantum simulation and improving astrophysical observations
(see, for example, Ref. [36] where the structure of a glitch was
observed).

Our results here show that spin-orbit coupling provides
another tool to adjust the microscopic properties of quantum
turbulence. Through proper calibration and benchmarking,
such microscopic controls greatly expand the flexibility of
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cold-atom platforms, allowing them to simulate other hydro-
dynamics systems with greater fidelity.
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APPENDIX A: EXPERIMENTAL METHODS
AND PARAMETERS

Our experiments are conducted with elongated BECs of
87Rb atoms. The atoms are confined in an optical dipole trap
with trap frequencies {ωx, ωy, ωz} = 2π{3.07, 278, 278} Hz
where the weakly confining direction is oriented horizontally.
For data presented in Fig. 4, an additional wide cross-dipole
beam anchors the BEC in place and increases the axial fre-
quency from 2π × 3.07 to 2π × 3.49 Hz, whereas keeping
the radial confinement the same. A 10-G uniform bias field
leads to a Zeeman splitting of the hyperfine states. The |1,−1〉
and |1, 0〉 states are coupled through a two-photon Raman
transition, whereas the |1,+1〉 state is essentially uncoupled
due to the quadratic Zeeman effect. After loading into SOC,
there are approximately 2 × 105 atoms in the majority (|↑〉)
component of the condensate. During the experiment, the
Rabi coupling strength is � = 1.5ER. The detuning of the
Raman drive is set to δ = 0.54(1)ER ≡ 2000(50) Hz where
the uncertainty is given by the stability of the external bias
field.

During the preparation and course of the experiment, heat-
ing caused by the Raman beams will decrease the condensate
fraction, reducing the 1D longitudinal speed of sound and the
equivalent non-SOC chemical potential in the majority com-
ponent spin state from their initial values of cs0 ≈ 2.2 mm/s
and μ0 ≈ 100 nK to cs ≈ 1.6 mm/s and μ ≈ 55 nK, respec-
tively.

An additional vertical dipole sheet with λb = 850 nm and
Gaussian waists {wx,wy} = {4.8, 27.2} μm, is focused onto
the center of the BEC. The extent of the Gaussian profile in
the y direction is larger than the size of the BEC in situ. The
beam is pulsed on for 10 ms to create excitations at the center
of the cloud.

Imaging is performed after 10.1-ms time-of-flight expan-
sion during which all laser beams are off, and a Stern-Gerlach
technique is used to vertically separate the spin states during
the imaging procedure.

APPENDIX B: GPE SIMULATIONS

To model the experiment, we adjust the chemical potential
μ so that the density of the gas vanishes at xTF = 150 μm
in the TF approximation. These parameters correspond to
a grid spacing of dx ≈ 0.06 μm which is sufficiently small
compared with the healing length ξ ≈ 0.22 m in the center of
the cloud.

We start from the ground state in a harmonic trap with
frequencies {ωx, ωy, ωz} = 2π{3.49, 278, 278} Hz. We then
evolve in real time using a fifth-order Adams-Bashforth-Milne
(ABM) predictor-corrector integration scheme [37] with step-
size dt = 6.3 μs. We model the dipole sheet with a Gaussian
potential centered on x0 with a width of σ = 4.8 μm. This
potential is turned on and off smoothly using a C∞ step
function over tstep = 0.1 ms. We note that it is important for
the accuracy of the ABM method that the time-dependent
parameters vary smoothly.

To simulate the cloud expansion, we use the scaling pro-
cedure described in Ref. [27] to scale the radial coordinate
without needing to add more lattice points to our simulation.
Since the trapping potential along the long axis of the cloud
is weak, there is very little expansion in this direction, so
we do not scale the coordinate in this direction—our box is
sufficiently large to accommodate this expansion.

Although the dynamics are three dimensional, the two ra-
dial trapping frequencies are approximately equal, and the full
3D dynamics are well approximated by an axially symmetric
geometry. Axially symmetric simulations can reproduce tur-
bulent features generated by a quantum-mechanical piston in
a channel geometry, such as that found in Ref. [26]. Similar
agreement between axially symmetric simulations [38] that
can reproduce 3D shock phenomena in channel geometries
[25] has also been observed in fermionic superfluids.

There are two differences of note between the experiment
and GPE simulations. First, the numerical simulations enforce
an axial symmetry, which restricts solitonic excitations, such
as vortex rings, to be axially symmetric. Although this is
consistent with the experimental geometry, it is well known
that small perturbations will destabilize vortex rings, which
can evolve relatively quickly into solitonic vortices [21,22,39–
45]. We have verified by performing unrestricted 3D simula-
tions (see Appendix F) that perturbations as small as 1% in
alignment of the dipole beam (see the third panel of Fig. 5)
rapidly induce these instabilities, resulting in much smother
average densities on the left consistent with the experimental
images but performing full high-resolution simulations for
direct comparison is prohibitive for this initial paper. We,
therefore, expect that where the simulations produce vortex
rings, we can expect to observe solitonic vortices in the ex-
periment. Despite these radial instabilities, we have verified
that using axially symmetric simulations still quantitatively
reproduces the bulk dynamics in these elongated systems.

Second, whereas preparing the SOC BEC in the experi-
ment, a thermal cloud is generated by the Raman beams in
the initial state. This is observed in 1D cross sections of the
data. Although in principle one can include the effects of the
thermal cloud using the stochastic projected Gross-Pitaevskii
equation (SPGPE) [46–49] or Zaremba-Nikuni-Griffin (ZNG)
[50,51] formalisms, the agreement between our simulations
and experiment show that these effects are small.

APPENDIX C: SOC PHONON DISPERSION

In a previous work, Khamehchi et al. used a single-particle
dispersion to describe the expansion of a SOC BEC into a
vacuum, notably matching the speed and DSW shape dur-
ing expansion [28]. In contrast, here the DSW is expanding
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FIG. 6. Phonon dispersions with SOC. Phonon dispersion for
the full theory (solid black curve) compared with the single-
band approximation Eq. (C1) [solid orange (light gray) curve] and
single-particle dispersion [thick blue (light gray) dashed curve] for
experimental parameters � = 1.5ER and δ = 0.54ER. The shaded
area indicates quasimomenta with negative effective mass. The
phonon dispersion has been shifted to line up with the single-particle
dispersion minimum for convenience. Although qualitatively similar,
the single-band model has some quantitative differences. For this
reason, we simulate the full two-component model in all of our
results.

through a nonzero background density. From this perspective,
DSWs are large amplitude phonons described by a phonon
dispersion constructed from Bogoliubov–de Gennes (BdG)
theory.

The single-particle dispersion for excitations about the vac-
uum, used in Ref. [28], is found by solving

i = √−1h̄
∂

∂t
|ψ〉 = [E±( p̂) + gn + Vext (x)]|ψ〉, (C1)

where E±( p̂)’s are the dispersion of the upper and lower bands
of the single-particle obtained by diagonalizing Eq. (1) for
homogeneous states. We assume that the coupling constants
are equal g↑↑ = g↓↓ = g↑↓ = g. |ψ〉 is the wave function cor-
responding to the eigenstate of Eq. (1) describing the lowest
band and is a linear combination of the two bare hyperfine
states, and n = n↓ + n↑ is the total density. For inhomoge-
neous densities this picture is locally valid for slowly varying
densities, similar to the Thomas-Fermi approximation and
remains valid as long as the system is gently excited compared
to the band separation, which is proportional to the Raman
coupling strength �. The two branches E±(p) mix the hyper-
fine states due to the SOC interaction,

h̄E±(h̄kkR)

2ER
= k2 + 1

2
±

√
(k − d )2 + w2, (C2)

where we have defined the dimensionless parameters k =
p/h̄kR, d = δ/4ER, and w = �/4ER to incorporate � and the
detuning of the Raman coupling δ. The form of the lower band
defined here is shown as the dashed blue curve in Fig. 6.

With our given parameters, the single-band model ex-
hibits qualitatively similar results to the multiband description
where many aspects of the experiment are reproduced,
but quantitative differences are observed. The approximate
equality of the coupling constants allows one to define a spin-
quasimomentum mapping that relates the two-component spin
populations n↑ and n↓ to the quasimomentum q of the single-
component state,

n↓ − n↑
n↓ + n↑

= k − d√
(k − d )2 + w2

. (C3)

This simplified model captures the interesting phenomena
observed in the experiment but is not quantitatively accurate.

Within this single-band model, the phonon dispersion ob-
tained from BdG theory has a fairly simple form (thin solid
orange curve in Fig. 6),

ω(q) = E1(q) +
√

E2(q)

2

(
E2(q)

2
+ 2gn0

)
, (C4a)

E1(q) = E−(q0 + q) − E−(q0 − q)

2
, (C4b)

E2(q) = E−(q0 + q) + E−(q0 − q) − 2E−(q0) (C4c)

where n0 is the background density upon which the phonons
propagate, q0 is the momentum of the background state, and
q is the momentum of the phonon. Form these formulas the
speed of sound follows from the slope of the dispersion at
small momentum values. [For phonons about the ground state,
one should take q0 to be the minimum of the lowest band
where E ′

−(q0) = 0 Eq. (C1).]
For our experimental parameters, this single-band theory

predicts a linear dispersion for small phonon momenta and
a rotonlike branch at large positive phonon momenta. These
qualitative features persist in the two-component model, but
to capture the full physics in the regions of negative mass, a
two-component model is required. In particular, the phonon
dispersion in the full two-component model shifts to a lower
energy in the negative mass region, resulting in slower DSW
propagation in the +q direction, which gives rise to the asym-
metry seen in Fig. 1.

The full phonon dispersion in the two-component model
(black curve in Fig. 6) can be found by solving the following
BdG equations,

⎛
⎜⎜⎜⎜⎝

K↑(q0 + q) + g↑↑n↑ g↑↑n↑ �
2 + g↑↓

√
n↑n↓ g↑↓

√
n↑n↓

g↑↑n↑ K↑(q0 − q) + g↑↑n↑ g↑↓
√

n↑n↓ �
2 + g↑↓

√
n↑n↓

�
2 + g↑↓

√
n↑n↓ g↑↓

√
n↑n↓ K↓(q0 + q) + g↓↓n↓ g↓↓n↓

g↑↓
√

n↑n↓ �
2 + g↑↓

√
n↑n↓ g↓↓n↓ K↓(q0 − q) + g↓↓n↓

⎞
⎟⎟⎟⎟⎠ (C5a)
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K↑(q) = (q + kR)2

2m
− μ − δ

2
+ g↑↑n↑ + g↑↓n↓,

K↓(q) = (q − kR)2

2m
− μ + δ

2
+ g↑↓n↑ + g↓↓n↓. (C5b)

APPENDIX D: AXIALLY SYMMETRIC GPE
SIMULATIONS

In Fig. 4 of the main text, experimental results are directly
compared to a Gaussian convolution (to mimic the optical
resolution of the experiment) of axially symmetric numerical
GPE simulations. In this figure, the simulations show signif-
icant peaks moving to the left that are not observed in the
experiments. This is due to the enforced axial symmetry in
the simulations, forcing all defects to be aligned along the
imaging axis. Symmetry unrestricted simulations (described
in the following Appendix) show that small perturbations
cause these defects to align quasirandomly, averaging out and
only the shock fronts remain but are computationally expen-
sive to perform for the full system, and although they are able
to show an accurate picture of the experimentally observed
dynamics, axially symmetric numerical simulations are able
to reproduce some of the key macroscopic features observed
in experiments. In this Appendix, we describe detail of these
axially symmetric simulations with which we can simulate the
full experiment, including expansion dynamics.

The simulations in Fig. 4 were performed using the axially
symmetric GPE with a Nx × Nr = 8000 × 50 grid. The initial
conditions use a cloud with a Thomas-Fermi radius of xTF =
150 μm which models the condensate but not the extended
thermal cloud. As has been noted in many experiments with
BEC dynamics, we find again here that appropriately mod-
eling the condensate without the thermal cloud provides an
excellent approximation of the observed experimental dynam-
ics. The three columns in Fig. 4 represent different potential
depths −30, −60, and −90 nK, respectively.

Movies of these simulations are provided in the Supple-
mental Material [52] and include:

AXIAL30NK.MP4 [53]: Axially symmetric simulations with-
out TOF expansion Ub = −30 nK.

AXIAL60NK.MP4 [54]: Axially symmetric simulations with-
out TOF expansion Ub = −60 nK.

AXIAL90NK.MP4 [55]: Axially symmetric simulations with-
out TOF expansion Ub = −90 nK.

SW.MP4 [56]: Shock waves from a 60-nK attractive po-
tential interacting with vortex-antivortex line pairs of varying
separation.

3D_90NK.MP4 [57]: A comparison between the Axial,
“tube,” 3D, and 3D 1%-tilt numerical simulations with an
attractive potential depth of −90 nK.

AXIAL90NK_TOF.MP4 [58]: Axial simulation of 10.1-ms
TOF expansion starting after26 ms in trap evolution.

The simulated data in AXIAL30NK.MP4 [53], AX-
IAL60NK.MP4 [54], and AXIAL90NK.MP4 [55] show detailed
dynamics of the system in three time regimes: First, from
twait = −10 to 0 ms, showing the dynamic generation of
turbulent features; second from twait = 0 to 6 ms, showing

the interaction between the DSW and the turbulent features
stabilizing the right-hand side shock wave; third, from
twait = 6 ms onward, showing the motion of the turbulent
features once the density peak has passed.

The attractive potential is turned on at twait = −10 ms and
the superfluid floods into the potential well, forming a large
peak in the center. Within 2 ms, areas of modulated density
form gray solitons at the edges of potential. For shallow poten-
tials (−30 nK) these solitons are stable. However, for larger
potential depths (−60 and −90 nK) a snaking instability sets
in, nucleating vortex rings. The vortex rings form mostly
with their central flow oriented away from the center of the
cloud. This is clearly seen in the −30-nK simulation where
all the vortex rings have a net outward flow and move in that
direction. For larger potential heights, a few vortex rings of
opposite orientation also form.

The vortex rings move according to the Magnus relation
�v ∝ �k × �F , where �v is the velocity of the vortex relative to
the background flow, �k is the circulation of the vortex, and �F
is a force acting on the vortex. If a vortex ring experiences a
force in the same direction as its central flow, it will expand,
whereas a vortex ring experiencing a force in the opposite
direction to its central flow will shrink. In the present setting,
the vortex rings see a background flow towards the attractive
potential (altering �v) and a density gradient from the density
peak ( �F = −∇gn). The later density gradient moves outward
as the shock features expand, causing vortex rings orientated
away from density peak to expand, whereas shrinking vor-
tex rings that are orientated towards it. For larger potential
heights, nonequilibrium dynamics, including vortex ring col-
lisions and annihilations, distort these features.

The attractive potential is turned off in 0.1 ms and at
twait = 0 ms is completely off as the central density peak
expands outward, pushing past the turbulent features. The
density gradient widens (shrinks) vortex rings of same (oppo-
site) central flow. If a ring becomes too small, it will annihilate
through a Jones-Robert soliton [59–62]. Vortex rings with
central flow oriented towards the SOC have a larger phase
space to annihilate, leading to less vorticity, less effective
viscosity, and less dissipation on the right-hand side. These
vortex-shock interplay dynamics are explored in a systematic
theoretical study captured in the video SW.MP4 [56]. Here, the
vortex-antivortex separation and flow orientation are varied to
represent a simplified view of the initial seeding of vorticity
from jumping on the attractive potential. This simulation has
been used to investigate the behavior of vortex line pairs as
a shock structure passes through them with standard phonon
dispersion (to the left) and higher-order phonon dispersion (to
the right).

A closer look at the individual components around a vortex
ring shows that areas with flow in the direction of the SOC
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have higher densities of |↓〉. As the density peaks pass through
the vortex rings, the bump moving in the direction of the SOC
converts particles from |↑〉 to |↓〉, whereas the bump traveling
in the opposite direction converts particles from |↓〉 to |↑〉. For
wait times longer than twait = 8 ms, the density bumps have
developed DSW structures and the remaining vortex rings
move according to the Magnus relation expected from their
flow.

A deficiency of these axially symmetric simulations is that,
in them, the vortex rings align perfectly with the imaging axis.
This produces sharp features in the final images that would
be averaged out by the line-of-sight imaging in experiments
where perfect axial symmetry cannot be maintained. A clear
example is seen in Fig. 4(b) in the twait = 20- and 26-ms
frames. As can be seen from the movies, at these times, the
large shock excitation moves through a vortex ring. The ring
alters the integrated density, causing the shock image to split
into two peaks separated by a density depletion from the
vortex core. The peak-tracking algorithm finds the higher of
these two peaks, which lags behind the center of the shock
structure. Once the shock passes the ring, the right peak be-
comes larger, resulting in a kink in the top panel of Fig. 4(b)
in the numerical (blue shaded) results. Without this artifact
of the axial symmetry, we expect that the shock peak would
follow the experimentally seen peak even more accurately.

APPENDIX E: AXIAL VS 3D NUMERICS

In addition to the full axial simulations described above,
we have also performed 3D calculations. Full resolution 3D
calculations are expensive, so for the unconstrained 3D anal-
ysis, we simulate only a central portion of the 3D BEC in a
smaller box with Lx = 120 μm, Nxyz = (1200, 64, 64), and
a periodic trapping potential. This reduces the memory costs
by a factor of 4 and is accurate for short times and dynam-
ics in the center of the cloud as we ensure by comparing
3D simulation with symmetric initial condition to the full
axial simulations described above. In some cases, a quasi-
1D simulation using techniques, such as the nonpolynomial
Schrödinger equation (NPSEQ) [44,63–65] and dynamically
reduced GPE [66] (which we refer to as tube simulations) can
quantitatively reproduce the 3D dynamics. However, these are
insufficient once features, such as vortices appear as shown in
Ref. [67].

Comparing 3D to axially symmetric simulations in
3D_90NK.MP4 [57], we see almost exact agreement during the
10-ms-long attractive potential pulse. This includes the forma-
tion of solitons, vortices pulled in from the boundary, and the
snaking creation of vortex rings. The simulations differ as the

density peak splits and pushes past the central vortices: The
3D simulations allow for more vortices to remain. However,
there is agreement among the shape, speed of the shocks, the
speed of solitonic, and vortex features.

To test the stability of vortex rings against small changes
of the experimental parameters, we simulated the attrac-
tive dipole beam with a 1% tilt in the y direction, VDB ∝
exp [(x + 0.01y)2/2σ ]. In this data (Fig. 5 third panel) and
supplementary animations, we see that main features, such
as the DSW maintain their structure. However, many of the
vortex rings decay into vortex lines that terminate at the cloud
edge. We find that the exact pattern of vortex generation de-
pends very sensitively on the degree of this tilt, indicating that
the underlying dynamics may be chaotic. This sensitivity is
one hallmark of turbulent flow, supporting our interpretation
of the observed macroscopic dynamics in terms of quantum
turbulence.

APPENDIX F: TIME-OF-FLIGHT DYNAMICS

The technique used to numerically simulate the expansion
of the system during the 10-ms time-of-flight corresponds to
setting λ1(t ) = 1 and λ2(t ) = λ3(t ) = λ⊥(t ) in Eqs. (11) and
(15) of Ref. [27]. The evolution of dynamics during time of
flight is shown in AXIAL90NK_TOF.MP4 [58].

When the Raman lasers inducing the SOC are switched
off, the system is projected into the undressed basis of states
|↑〉 and |↓〉. Without SOC to dress their momenta, the |↑〉
component moves slowly to the right whereas the |↓〉 com-
ponent moves rapidly to the left, making it difficult to locate
the center of the cloud. This can be understood in terms
of the background ground state which is a linear combi-
nation of mostly |↑〉 (with density n↑) having momentum
k↑ = k0 + kR and some |↓〉 (with density n↓) having momen-
tum k↓ = k0 − kR. The spin-quasimomentum map ensures
that the background has zero net momentum: n↑k↑ + n↓k↓ =
(n↑ + n↓)k0 + (n↑ − n↓)kR = 0. With our detuning, n↑ > n↓
and k0 ≈ −0.945kR. Thus, during expansion, the two com-
ponents move in opposite horizontal directions in addition
to the vertical separation from the Stern-Gerlach technique.
Within the first 2 ms of expansion the cloud expands rapidly,
dropping the density by a factor of 10. The most notable
features after expansion come from low-density objects, such
as solitons, vortex rings, and DSW where areas with these
features deepen and widen, pushing density to either side. The
density pileup of nearby vortex rings will often constructively
interfere, resulting in some of the largest peaks during expan-
sion dynamics.
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