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Supersolid striped droplets in a Raman spin-orbit-coupled system
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We analyze the role played by quantum fluctuations on a Raman spin-orbit-coupled system in the stripe phase
under attractive interspin interactions. We show that beyond-mean-field effects stabilize the collapse predicted
by mean-field theory for attractive enough interspin interactions and induce the emergence of two phases, a gas
and a liquid, which also show spatial periodicity along a privileged direction. We show that the energetically
favored phase is determined by the Raman coupling and the spin-dependent scattering lengths. We obtain the
ground-state solution of the finite system by solving the extended Gross-Pitaevskii equation and find self-bound
dropletlike solutions that feature internal structure through a striped pattern. We estimate the critical binding
number of these droplets and show that their value is experimentally accessible. We report an approximate
energy functional in order to ease the evaluation of the Lee-Huang-Yang correction in practical terms.
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I. INTRODUCTION

Spin-orbit coupling (SOC), which is the interplay between
a particle’s momentum and its spin, has been a subject of
interest in recent years, both theoretically and experimentally.
It plays an important role in a wide variety of exotic quantum
phenomena, such as topological insulators [1] and topological
superconductors [2]. Spin-orbit coupling is a relativistic effect
naturally found in electronic and atomic systems. However, it
can also be synthetically engineered [3] in ultracold atomic
gases, which represent an excellent platform to study the
physics of SOC due to their high controllability and tunability.
In particular, Raman SOC was first implemented experimen-
tally by inducing a Raman coupling via two laser beams on
an atomic �-type configuration [4,5]. Raman SOC has been
realized with 87Rb atoms, both in the continuum [4] and in
a lattice [6,7], and with other atomic species such as 6Li [8]
and 40K [9]. In this context, two hyperfine states of an atom
are labeled as pseudospin states, although alternative schemes
using other types of states as pseudospins have been realized.
As an example, the two lowest eigenstates of an asymmetric
double well in a superlattice have also been employed as
pseudospins [10].

In this work we focus on Raman SOC, which couples the
linear momentum of an atom with its spin according to

Ŵ SOC = h̄k0

m
P̂xσ̂z + h̄2k2

0

2m
− �

2
σ̂x, (1)

with m the atomic mass, P̂x the x component of the momentum
operator, σ̂x and σ̂z the Pauli matrices, � the Raman coupling,
and k0 the magnitude of the wave vector difference between
the two laser beams. We are particularly interested in the
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emergence of a stripe phase, which arises from the breaking of
two symmetries: a gauge symmetry, giving rise to off-diagonal
long-range order, and spatial symmetry, seen as a periodic
density modulation in space [11]. In contrast to other systems
featuring spatial ordering like dipoles [12,13], this property is
present in SOC systems even in ultradilute conditions, mainly
because of the different physical mechanism that gives rise
to stripes: While in dipolar systems it corresponds to the
anisotropy of the dipolar interaction, in SOC systems stripes
are induced by the momentum degeneracy of the dispersion
relation induced by SOC. The stripe phase has been both pre-
dicted theoretically [5,11] and detected experimentally [10]
and the resulting stripes have been shown to be superfluid
[11,14,15], and thus often referred to as supersolid stripes
or superstripes. It has also been shown that the increase of
interatomic correlations enhances the domain of the stripe
phase in the phase diagram of Raman SOC systems [15].

As it happens in ultradilute Bose-Bose mixtures, systems
with spin-dependent interactions can become unstable at the
mean-field level for some values of the spin-dependent scat-
tering lengths. A well-known result for unstable Bose-Bose
mixtures is that quantum fluctuations can stabilize the system
through the Lee-Huang-Yang (LHY) energy correction, giv-
ing rise to liquid droplets [16], which have been realized in
experiments using 39K atoms [17,18]. In this work we inves-
tigate if the same mechanism also holds in a system under
Raman SOC in the stripe phase. While in previous works
beyond mean-field properties like the excitation spectrum and
the static structure factor of the stripe phase have been re-
ported [11], the complete LHY energy correction containing
SOC terms has not been derived. We evaluate this term in
order to estimate the role played by quantum fluctuations in
a stripe state under Raman SOC which is unstable at the
mean-field level.

At this point it is interesting to remark that, to date,
available experiments incorporating Raman SOC effects are
restricted to repulsive inter- and intraspin interactions, thus
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avoiding mean-field collapse. These systems can be accu-
rately described with the mean-field approximation [5], at
least for low gas parameter values up to na3

+1,+1 ∼ 10−4 [15],
with n the density and a+1,+1 the spin-up–spin-up scattering
length. However, state-of-the-art experiments currently under
development, featuring attractive interspin interactions, are
pursuing the observation of droplet formation in a Raman
SOC system.

This paper is organized as follows. In Sec. II we present
the Hamiltonian and the length and energy scales of the re-
duced units employed. In Sec. III we present the main results
of this work. We briefly review the Bogoliubov–de Gennes
formalism in Sec. III A. We present the phase diagram of the
system stabilized by quantum fluctuations in Sec. III B, while
self-bound striped droplet formation and the resolution of the
extended Gross-Pitaevskii equation are discussed in Sec. III C.
In Sec. IV we summarize the main conclusions of our work.

II. HAMILTONIAN

We study an N-particle system governed by the Hamilto-
nian

Ĥ =
∑

i

(
P̂2

i

2m
+ Ŵ SOC

i

)
+

∑
i< j

V̂i j =
∑

i

Ĥ0,i +
∑
i< j

V̂i j,

(2)
with V̂i j a two-body spin-dependent pseudopotential given by

V̂i j =
∑
s1,s2

gs1,s2δ(�ri − �r j )|s1, s2〉〈s1, s2|, (3)

with gs1,s2 = 4π h̄2as1 ,s2
m , si the spin coordinate of the i th par-

ticle, and as1,s2 the spin-dependent scattering lengths. To
reduce the number of variables, we set a ≡ a+1,+1 = a−1,−1 �=
a+1,−1 = a−1,+1. We introduce the parameter γ = (a −
a+1,−1)/(a + a+1,−1), which measures the relative strength
of the interaction in the different spin channels. Throughout
this work, all quantities are given in reduced units defined
by the length and energy scales given by a0 = 1/k0 and ε0 =
h̄2k2

0/2m, respectively.

III. QUANTUM FLUCTUATIONS IN A RAMAN SOC
SYSTEM IN THE STRIPE PHASE

A. Bogoliubov–de Gennes formalism

In second quantization, the system can be described by the
field operator spinor, 	̂(�r ) = [ψ̂+1(�r )ψ̂−1(�r )]τ , with the +1
(−1) index denoting the up-spin (down-spin) component. The
dynamics of the field operator are governed by the Heisenberg
equation [19]

i
d	̂(t )

dt
= Ĥ0	̂ +

(
2G1

n
	̂†	̂ + 2G2

n
(	̂†σ̂z	̂ )σ̂z

)
	̂, (4)

with G1 = n(g+1,+1 + g+1,−1)/4 and G2 = n(g+1,+1 −
g+1,−1)/4. In the stripe phase, the condensate wave function
can be written as [11,20]

�ψ0(�r ) = 1√
Ṽ

∑
n∈Z

�ψ0,neik1x+2ink1x, (5)

with Ṽ = Va3
0 the dimensionless volume of the system and

the amplitudes fulfilling the condition ψ±1
0, j = (ψ∓1

0,− j−1)∗ [20].

The value of �ψ0,n and the stripe momentum k1 can be ob-
tained by minimizing the mean-field energy. We do that using
the simulated-annealing algorithm [21]. The effect of quan-
tum fluctuations can be included following the Bogoliubov
scheme, where the time-dependent field operator is written as

	̂(t ) = e−iμt [ψ̂0 + ˆδ	(t )], (6)

with ψ̂0 = �ψ0(�r )â0 corresponding to the condensate state and
ˆδ	(t ) accounting for the quantum fluctuations. For the stripe

phase, ˆδ	(t ) can be decomposed as [20]

δ	̂(�r, t ) =
∑

0<kx<k1
0<ky, kz<∞

l

�f�k1+�k,l (�k, �r )e−iE�k1+�k,l t b̂�k1+�k,l

+ �f ∗
�k1−�k,l

(�k, �r )eiE�k1−�k,l t b̂†
�k1−�k,l

+ �g�k1−�k,l (�k, �r )e−iE�k1−�k,l t b̂�k1−�k,l

+ �g∗
�k1+�k,l

(�k, �r )eiE�k1+�k,l t b̂†
�k1+�k,l

, (7)

with �k1 = k1�ex and �ex the unitary vector along the x axis.
Notice that, in this expression, the momentum runs over all
possible values in the first Brillouin zone (0 < kx < 2k1 and
0 < ky, kz < ∞). The excitation spectrum and the Bogoliubov
amplitudes are obtained by substituting Eqs. (6) and (7) into
Eq. (4) and solving a diagonalization problem. This can be
done by expanding the amplitudes of Eq. (7) in Bloch waves
[11]. Once this is done with the Bogoliubov amplitudes, one
can numerically calculate the LHY energy correction. Since
the condensate state presents periodic density modulations on
the x axis, the LHY integral implies a sum running over all
Brillouin zones. In practice, though, we truncate the sum and
keep only a finite number of terms. Additional approximations
described in Appendix A must be adopted in order to keep the
computational cost of the calculation down to a reasonable
level, since the size of the aforementioned diagonalization
problem scales with the number of Brillouin zones in the
integration.

As happens in other non-SOC systems, the LHY integral is
ultraviolet divergent and must be regularized. By computing
it over increasingly larger cylindrical domains, we find that
its divergent behavior equals that of the function Iη(VI ) =
I0 + ∫

VI
d�k η/k2, with VI the integration volume and η and I0

fitting parameters. We use dimensional regularization [22,23]
to regularize this integral (see Appendix B). We also discuss
the convergence of the regularized integral with respect to the
number of discretization points in momentum space and the
number of Brillouin zones in Appendix C.

B. Phase diagram

We are particularly interested in the role played by quan-
tum fluctuations when the mean-field system is unstable.
Using the expression for the mean-field energy per particle of
Ref. [5] together with ∂2E

∂V 2 , it can be shown that the mean-field
stripe state is unstable for G1 < 0 if 2 > |G1| in reduced
units, a requirement fulfilled in all our calculations. Under
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FIG. 1. Phase diagram of the system stabilized by quantum
fluctuations at the LHY level for the different stripe phases with
γ = −21.

these conditions, the LHY energy is positive and stabilizes
the collapsing mean-field state. This is similar to the result
obtained for unstable Bose-Bose mixtures without SOC [16],
although remarkable differences exist between the two cases,
as detailed below.

The phase diagram of the stabilized system, as a function of
� and a+1,+1 > 0, for γ = −21 (i.e., a+1,−1 = −1.1a+1,+1)
is shown in Fig. 1. The phase diagram includes beyond-
mean-field effects, with the ground state being the phase of
minimum energy. Error bars account for the numerical error
associated with the finite number of Brillouin zones and in-
tegration points considered in the calculations. As it can be
seen from the figure, depending on the value of the Raman
coupling � and the scattering lengths, the homogeneous sys-
tem can be either a liquid (n(0) �= 0, with n(0) the density for
which E/N is minimum) or a gas (for which dE/N

dn > 0 ∀ n).
Therefore, in order to determine if the system is in a liquid
or in a gas state, we compute E/N for different densities for
fixed {�, a+1,+1}. Typically, n ∈ [3.78 × 10−4, 4.93 × 10−3],
although this range is extended in some cases up to n � 0.1.
We report in Fig. 2 the rescaled mean field and mean field plus
LHY energies per particle as a function of the density for two
different points of the phase diagram that correspond to the
stripe liquid and stripe gas phases, respectively. The liquid-gas
transition is an effect entirely induced by the presence of
the SOC interaction, since for unstable Bose-Bose mixtures
without SOC the stabilization of the collapse by the LHY
energy always brings the homogeneous system to a liquid
state [16].

Figure 1 indicates that increasing the Raman coupling in
the stripe phase leads to a lower interval of scattering lengths
where the system is in the liquid phase. In this way, for fixed
a+1,+1, increasing � leads to a decrease in n(0), leading to
a less correlated liquid. In much the same way, increasing
a+1,+1 with γ = −21 and keeping � constant drives the sys-
tem from a liquid state to a gas, i.e., the equilibrium density
n(0) shifts to lower values until n(0) = 0, with the gas param-
eter n(0)a3

+1,+1 also decreasing. Remarkably, this behavior is
not seen in ultradilute non-SOC Bose-Bose mixtures, where
multiplying all the scattering lengths by a constant leaves
n(0)a3

+1,+1 invariant [16].
As it can be seen in Fig. 1, other phases arise as the

ground state of the system for high enough values of �.

FIG. 2. Rescaled mean field and total energy per particle terms
for (a) � = 2 and a+1,+1 = 0.1 and (b) � = 0.125 and a+1,+1 =
0.05. In both cases, γ = −21.

The plane-wave phase is energetically favorable for � � 3.8,
a+1,+1 � 0.1, and n > 3.78 × 10−4 (although the single mini-
mum phase may have lower energy for high enough densities),
while the single minimum phase is the ground state of the
system for � > 4, a+1,+1 � 0.03, and n > 3.78 × 10−4. Re-
markably, the plane-wave and single minimum phases arise
only as a gas, while the stripe liquid is present as the ground
state of the system for all values of � if a+1,+1 � 0.025. This
differs from the results obtained for fully repulsive interac-
tions, for which the single minimum phase is the ground state
of the system for � > 4 both at the mean-field level [5] and
when correlations are introduced [15].

The phase diagram of Fig. 1 has been computed by set-
ting a+1,−1 = −1.1a+1,+1. However, due to the mean-field
instability present for a+1,−1 < −a+1,+1, the LHY correc-
tion yields clearly unphysical imaginary contributions to the
energy, since the excitation spectrum becomes imaginary at
low momenta. In order to avoid that, and as usually done
in the non-SOC case, we evaluate the LHY correction for
a+1,−1 = −a+1,+1, i.e., in the limit of the mean-field sta-
bility, while the mean-field energy terms are computed for
a+1,−1 < −a+1,+1. The changes in the phase diagram reported
in Fig. 1 when ELHY(a+1,−1 = −a+1,+1) is used instead of
Re{ELHY(a+1,−1 = −1.1a+1,+1)} are accounted for in the er-
ror bars.

C. Extended Gross-Pitaevskii equation and
supersolid striped droplets

As it also happens in ultradilute non-SOC Bose-Bose
mixtures, a finite-size system in the liquid stripe phase can
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form a droplet. However, in the SOC case, the droplets
show a striped pattern along the x direction, defined by P̂x

in Ŵ SOC. Since Raman SOC stripes are known to be su-
persolid [11,14,15], the resulting striped droplets represent
an alternative quantum state of matter that mixes the self-
bound character of liquids, the spatial periodicity present in
solids, and a superfluid behavior. To obtain the ground state
of the finite system, we solve the extended Gross-Pitaevskii
equation (EGPE). To this end, we build a density-dependent
energy functional by fitting the obtained LHY energy cor-
rection for different densities n. The chosen functional form
is [ELHY/N](n) = bn + an3/2, with a and b two fitting pa-
rameters, which consistently reproduces our data in the
range of densities spanned in this work. In order to obtain
the EGPE, we minimize E (	,	†) = ∫

d�r [εMF(	,	†) +
Vosc(�r )|	|2 + εLHY(	,	†)], replacing n → 	†	 in the εLHY

term. Here εMF and εLHY are the mean-field and Lee-Huang-
Yang energy densities of the infinite system, respectively,
and 	 is the spinor wave function. The harmonic-oscillator
potential Vosc(�r ) = ω2r2 in reduced units is added to keep the
system finite.

Solving directly the EGPE is technically involved for some
values of the system size because of the presence of two very
different length scales: the period of the stripes, which for
values of � � 1 is Ls ∼ O(1), and the radius of the droplet,
which is generally much larger. Nevertheless, the results for
a set of parameters for which the problem is well conditioned
show that the spinor ground-state wave function of the system
obtained from the EGPE can be well approximated by

	+1(�r ) = 	−1(�r ) � fstripe(x) fdroplet(r), (8)

with errors on the momentum of the stripes of at most 5%.
Here fstripe(x) �

√
Ṽ ψ±1

0 (�r ), a dimensionless factor which

equals Eq. (5) multiplied by
√

Ṽ and considering only the n =
−1 and n = 0 terms in the sum. This is equivalent to taking
the mean-field ansatz of Ref. [5] divided by

√
n. The function

fdroplet(r) depends only on r = |�r |, with �r the position vector
in three dimensions. In order to efficiently calculate fdroplet(r),
we apply a further approximation by solving the EGPE ob-
tained from the functional Ẽ (	,	†) = ∫

d�r [ε̃MF(	,	†) +
Vosc(�r )|	|2 + εLHY, SOC(	,	†)]. Here ε̃MF is the mean-field
energy density obtained with the SOC terms removed, while
εLHY,SOC is the LHY energy density obtained from the full
SOC calculation. Then the resulting EGPE can be solved
efficiently as the problem only depends on r.

There is a minimum particle number required to have a
stable self-bound droplet in the ground state, which is known
as the critical number Ncrit. We determine Ncrit by solving
the EGPE for different strengths of the trapping potential
and comparing the solution obtained to the ground-state wave
function of the harmonic oscillator. For N � Ncrit, changing
the trapping strength leaves the solution of the EGPE un-
affected. We show in Fig. 3 the normalized wave function,
obtained under the aforementioned approximations, along the
x axis, corresponding to a case where a stable droplet is
formed, with the parameters � = 0.5, a+1,+1 = 0.12, γ =
−21, and N = 1.4 × 105. The trapping strengths are ω1 =
4.93 × 10−6 and ω2 = 2.77 × 10−6. We only show the +1
spinor component, since 	+1(�r ) = 	−1(�r ). We also re-

FIG. 3. (a) Normalized wave function of the droplet along the
x axis for � = 0.5, a+1,+1 = 0.12, γ = −21, and N = 1.4 × 105

with ω1 = 4.93 × 10−6 (green line). The profile corresponding to the
same N , a+1,+1, γ , and � values but for ω2 = 2.77 × 10−6 is indis-
tinguishable from the one reported in (a). The harmonic-oscillator
ground-state solution for both values of ω is shown as squares and
circles. (b) Magnified view of the two droplet wave functions at small
x. Only x > 0 values are displayed since the profile is symmetric on
the x axis.

port the noninteracting harmonic-oscillator ground-state wave
function for each one of the trapping frequencies. We do so to
showcase the self-bound character of the dropletlike solution:
Since the characteristic size of the normalized wave function
is much smaller than the characteristic length of the harmonic
trap, this indicates that the system is in a self-bound state. As
one can also see in Fig. 3, the density profile of the droplet
clearly manifests oscillations in the density, characteristic of
the stripe phase. Using the units of Ref. [10], one can see
that stripes with similar periodicity and contrast such as those
shown in Fig. 3 have already been observed experimentally
through Bragg scattering [10].

We report in Fig. 4 the critical number as a function of
a+1,+1 for � = 0.125, 0.5, and 1.0 and γ = −21 (a+1,−1 =
−1.1a+1,+1). Error bars account for the numerical inaccu-
racies associated with both the finite number of Brillouin
zones being integrated and the number of points used in the
computation of ELHY and also for the difference in the results
obtained when employing either ELHY(a+1,−1 = −a+1,+1) or
ELHY(a+1,−1 = −1.1a+1,+1). As can be seen from the figure,
the critical number increases with both � and the scattering
lengths, consistently with the results shown in Fig. 1. It must
be remarked that, for values of N above the critical numbers
listed in Fig. 4, the self-bound droplet corresponds to the
ground state of the system. Remarkably, the critical numbers
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FIG. 4. Critical number as a function of the scattering length
a+1,+1 for γ = −21 (a+1,−1 = −1.1a+1,+1) for different values of �.
Lines are a guide to the eye.

obtained are reachable in current experimental setups, open-
ing the possibility to observe and measure quantum properties
of striped droplets. For the sake of comparison, previous ex-
periments with SOC systems have been carried out with N ∼
1.8 × 105 [4] and N ∼ 105 [10] particles. Another interesting
quantity regarding the number of particles of a droplet is the
saturation number Ns. If N > Ns, fdroplet(r) shows a plateau at
a range of positions r ∈ [0, rmax], with rmax increasing as N
increases. For � = 0.125, the saturation number in all cases
is of O(106) or higher, which makes it challenging to observe.

Despite the evaluation of ELHY for SOC systems presented
in this work being more elaborate than in non-SOC systems,
the resulting observed dependence on the system parameters
is smooth enough to allow for a simple functional form ap-
proximation. In this way, we report an approximated density
functional for ELHY(a+1,−1 = −a+1,+1) in the stripe phase.
This functional depends on a+1,+1, n, and � and has been
obtained by fitting the LHY energies in different density
regimes. It is given by

ELHY/N |a+1,−1 = −a+1,+1

� (A + B�2)na2
+1,+1 + C

√
n3a5

+1,+1, (9)

with A = 1.89 ± 0.04, B = 2.17 ± 0.03, and C = 37 ± 2 in
dimensionless form. The above expression reproduces the
obtained LHY energies with errors between 1% and 10% for
0 < � < 3, 0 < n � 0.1, and 0 < a+1,+1 < 0.225, although
the limiting value of the density can be increased further
for scattering lengths a+1,+1 � 0.05, keeping the error of the
functional approximation within the mentioned boundaries.

The are several reasons behind the choice of the func-
tional form in Eq. (9). The functional features a difference
of one between the exponents of the scattering length and
the density in each term, as can be seen from the solution
of the Bogoliubov–de Gennes equations. Also, the linear de-
pendence with respect to the density can be clearly observed
in low-density regimes. The term proportional to

√
n3a5

+1,+1
has been chosen in analogy with the non-SOC case. Finally,
the fitting process reveals that higher-order terms with respect
to the density and the scattering length are irrelevant in the
density regimes considered in this work.

Regarding the potential experimental observation of the
ultradilute, supersolid striped droplets, we have performed
calculations of the liquid equation of state and the critical
number for droplet formation for parameters close to the
experimental conditions of Refs. [4,10], �(1,2) = 0.313 and
a(1)

+1,+1 � 0.025 for the case close to Ref. [10], and a(2)
+1,+1 =

0.0146 for the case close to Ref. [4]. The densities are n(1) =
5.82 and n(2) � 50.2, with all quantities expressed in reduced
units. However, we have set γ = −21 to enable the formation
of droplets, unlike the scattering lengths employed in both
experiments, which are positive and thus make the forma-
tion of droplets not possible. Remarkably, both experimental
systems lie within the stripe liquid region of the diagram of
Fig. 1, which implies that an interaction with an attractive
enough interspin component should lead to the formation of
supersolid striped droplets. Moreover, the minimum of the
energy per particle is located at a density close to the one em-
ployed in both experiments, with n(1)

min = 7.1 ± 1.5 and n(2)
min =

40 ± 10. Regarding the critical number, it lies below particle
numbers employed in both experiments, since N (1) = 105 and
N (2) = 1.8 × 105, while we find N (1)

crit = 22 500 ± 2500 and
N (2)

crit = 17 500 ± 2500. For the particle numbers used in the
experiments, the droplets have central densities of n(1)

cent � 7.9
and n(2)

cent � 42.9. Although our calculations are restricted to
the case a+1,+1 = a−1,−1 and a+1,−1 = −1.1a+1,+1, both ex-
periments lie far from the liquid-gas transition of Fig. 1 in
terms of both � and a+1,+1. Therefore, we do not expect the
modification of any of the conditions considered in this work
regarding the scattering lengths to disable droplet formation
under the experimental parameters of Refs. [4,10].

IV. CONCLUSION

We have evaluated the role of quantum fluctuations in a
striped system under Raman SOC that is unstable at the mean-
field level. We have found that quantum fluctuations prevent
the mean-field collapse as happens in regular ultradilute non-
SOC Bose-Bose mixtures. However, the presence of SOC
induces the emergence of two stable stripe phases, a gas phase
and a liquid phase, with the Raman coupling and the scattering
lengths determining the one that is energetically favorable.
The stripe liquid phase of this system represents a state of
matter which shows superfluidity and periodicity along one
direction. We have evaluated the ground state of the finite
system by solving the EGPE to find self-bound dropletlike
solutions with periodicity along the x axis as a result. These
droplets represent a different state of matter that combines
the self-bound character of liquids, a density modulation, and
superfluidity. We have also computed the critical numbers
associated with the self-bound droplet states and found that
they are experimentally accessible. Finally, we have provided
an approximated energy functional for the Lee-Huang-Yang
energy in the stripe phase. We hope that this work can inspire
new experiments to detect the proposed supersolid striped
droplets.
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APPENDIX A: APPROXIMATIONS ON THE NUMERICAL
COMPUTATION OF THE LEE-HUANG-YANG INTEGRAL

The unregularized Lee-Huang-Yang energy per particle is
given by

Eunreg
LHY

/
N = 1

n
(I1 + I2 + I3), (A1)

I1 =
∑
l,l ′

s1,s2

1

(2π )3

∫
0<kx<k1

0<ky, kz<∞
d�k{

f�k1−�k,l,l ′,s1
f ∗
�k1−�k,l,l ′,s2

[
H0

(�k1 + �k + 2l ′ �k1, s1, s2
) − δs1,s2μ

]

+g�k1+�k,l,l ′,s1
g∗

�k1+�k,l,l ′,s2

[
H0(�k1 − �k + 2l ′ �k1, s1, s2) − δs1,s2μ

]}
, (A2)

I2 = 8πn

(2π )3

∑
l

n1,n2,n3,n4
s1,s2

∫
0<kx<k1

0<ky, kz<∞
d�k[

ψ∗
0,n1,s1

ψ∗
0,n2,s2

as1,s2

×(
g∗

�k1+�k,l,n3,s1
f�k1+�k,l,n4,s2

+ f ∗
�k1−�k,l,n3,s1

g�k1−�k,l,n4,s2

)
δ(n3 + n4 − n1 − n2)

]
, (A3)

I3 = 8πn

(2π )3

∑
l

n1,n2,n3,n4
s1,s2

∫
0<kx<k1

0<ky, kz<∞
d�k[

ψ∗
0,n1,s1

ψ0,n2,s1 as1,s2

(
g�k1+�k,l,n3,s2

g∗
�k1+�k,l,n4,s2

+ f ∗
�k1−�k,l,n3,s2

f�k1−�k,l,n4,s2

)

× δ(−n3 + n4 − n1 + n2) + ψ∗
0,n1,s1

ψ0,n2,s2 as1,s2

(
g�k1+�k,l,n3,s1

g∗
�k1+�k,l,n4,s2

+ f ∗
�k1−�k,l,n3,s1

f�k1−�k,l,n4,s2

)
× δ(−n3 + n4 − n1 + n2)

]
, (A4)

where s1 and s2 are spinor component indices, μ is the chem-
ical potential, n is the density, and we have expanded the
Bogoliubov amplitudes of Eq. (7) in Bloch waves [20]

�f�k1+�k,l (�k, �r ) = 1√
Ṽ

ei(�k1+�k)�r ∑
n∈Z

�f�k1+�k,l,ne2ink1x, (A5)

�f ∗
�k1−�k,l

(�k, �r ) = 1√
Ṽ

ei(�k1+�k)�r ∑
n∈Z

�f ∗
�k1−�k,l,n

e2ink1x, (A6)

�g�k1−�k,l (�k, �r ) = 1√
Ṽ

ei(�k1−�k)�r ∑
n∈Z

�g�k1−�k,l,ne2ink1x, (A7)

�g∗
�k1+�k,l

(�k, �r ) = 1√
Ṽ

ei(�k1−�k)�r ∑
n∈Z

�g∗
�k1+�k,l,n

e2ink1x, (A8)

with �f�k,l,n = ( f�k,l,n,s=+1 f�k,l,n,s=−1)τ . The same holds for �g�k,l,n.
The terms ψ0,n,s correspond to the expansion in Bloch waves
of the condensate wave function (see the main text). The
integration region in Eqs. (A2)–(A4) is k⊥ =

√
k2

y + k2
z ∈

[0,∞), 0 < kx < k1, with k1 the ground-state momentum.
The sum indices {l, n1, n2, n3, n4} range from −∞ to +∞.
In practice, we introduce cutoff values in both operations
and restrict the calculation to 0 < k⊥ =

√
k2

y + k2
z < k⊥,max

and −Nc < l, n1, n2, n3, n4 < Nc − 1. The integration volume
is then VI = πk2

⊥,max × 4Nck1, a cylinder of radius k⊥,max in
the {ky, kz} plane and height 4Nck1 in the kx axis, centered
at the origin. The Bloch amplitudes fulfill the normalization

condition [20]

n=Nc−1∑
n=−Nc

�f τ

k1+�k,l,n
�fk1+�k,l,n − (

�gτ

k1+�k,l,n�gk1+�k,l,n

) = 1, (A9)

n=Nc−1∑
n=−Nc

�f τ

k1−�k,l,n
�fk1−�k,l,n − (

�gτ

k1−�k,l,n�gk1−�k,l,n

) = −1. (A10)

We define Nx and N⊥ as the number of points on the x
and radial axes, respectively. Looking at Eq. (A1), one no-
tices that the integral scales as O(NxN⊥N4

c ), while typically
Nx ∼ O(102), N⊥ ∼ O(103), and the calculation becomes too
expensive in computational cost terms. In order to make it fea-
sible, we introduce two approximations. The first one involves
the number of momentum components of the condensate wave
function [i.e., indices n1 and n2 in Eq. (A1)]. According to
Ref. [20] and to our simulated-annealing calculations, the
absolute value of the Bloch wave amplitudes in the condensate
wave function decreases very rapidly with the momentum
index, n. Therefore, we denote by Nc,0 the number of momen-
tum components of the condensate wave function included
in the computation of the LHY integral and set its value. In
this way, the LHY integral scales as O(NxN⊥N2

c,0N2
c ), with

the integration volume remaining unchanged. In practice, no
significant changes are seen in the results when Nc,0 > 5, so
we set Nc,0 = 5.
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FIG. 5. Exact (Nc = 9) and approximated (Nc = 9 and Nc,0 = 5)
marginal integrands of the unregularized LHY energy per parti-
cle for � = 2.8, a+1,+1 = a−1,−1 = 0.641 982, γ = 0.4, n = 3.7 ×
10−3, Nx = 200, and N⊥ = 2000.

The computation cost can be further reduced by introduc-
ing a second approximation. It can be checked numerically
that, as k⊥ and Nc increase, the integral I2 is dominated by
the contributions from the f�k1+�k,l,l,±1 and g�k1−�k,l,l,±1 terms.
Therefore, we retain the two dominant terms for every value of
l to the integral instead of performing the whole sum over n3

and n4. Additionally, we retain only the two first momentum
modes of the condensate state when computing the integral
I3, since we have checked that these are the dominant contri-
butions. These approximations reduce the scaling of the LHY
integral on Nc up to max{O(NxN⊥NcN2

c0), O(NxN⊥N2
c )}. We

show in Fig. 5 the marginal integrand of ELHY/N after inte-
grating over the x axis and performing the sums, for the exact
case with Nc = 9 and the approximated case with Nc = 9 and
Nc,0 = 5. As it can be seen from the figure, both curves are in
excellent agreement.

APPENDIX B: REGULARIZATION OF
THE LHY INTEGRAL

We define εLHY(VI ) as the integral of Eq. (A1) over a
finite integration volume VI . As mentioned in the main text,
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FIG. 6. Plot of εLHY (blue circles) and fη,I0 (green line) computed
for different integration volumes VI , with VI = πk2

⊥,f × 2k⊥,f, a cylin-
der of radius k⊥,f, and height 2k⊥,f, with k⊥,f = 2Nck1, Nc ∈ [5, 25].
The other parameters are � = 1.0, a+1,+1 = a−1,−1 = 0.2, γ = −21,
n = 3.11 × 10−3, Nx = 300, and N⊥ = 3000.

FIG. 7. (a) Plot of I0(Nx ) vs Nx . (b) Plot of εLHY(VI ) − Iη(VI )
computed for different integration volumes VI , with VI = πk2

⊥,f ×
2k⊥,f, a cylinder of radius k⊥,f, and height 2k⊥,f. The other
parameters are � = 1.0, a+1,+1 = a−1,−1 = 0.2, γ = −21, and
n = 3.11 × 10−3.

the LHY integral for a Raman SOC stripe system is ul-
traviolet divergent [i.e., limVI →∞ εLHY(VI ) = ∞] and must
be regularized. To identify the diverging behavior, we com-
pute εLHY(VI ) over increasingly larger cylindrical volumes.
These volumes are defined as V (i)

I = π (k(i)
⊥,max)2 × 4N (i)

c k1,

with k(i)
⊥,max = 2N (i)

c k1, N (i)
c ∈ N. We find that εLHY(VI ) can

be fitted to

fη,I0 (VI ) =
∫

VI

d�k η/k2 + I0 = Iη(VI ) + I0, (B1)

with η and I0 fitting parameters, k2 = k2
x + k2

y + k2
z , and Iη(VI )

given by

Iη(VI ) = 8πηNck1

(
π

4
+ ln 2

2

)
, (B2)

where ln indicates the natural logarithm. We show εLHY(VI )
and fη,I0 (VI ) as a function of the integration volume in
Fig. 6. Therefore, the quantity limVI →∞ εLHY(VI ) − Iη(VI )
is finite. Thus, the LHY energy per particle can be
computed as

ELHY/N = lim
VI →∞

[εLHY(VI ) − Iη(VI )] + I reg
η , (B3)

with I reg
η the regularized Iη(∞) value, which we obtain by

applying dimensional regularization [22,23]. In this scheme,
the regularized integral of a polynomial identically vanishes
[22], which implies I reg

η (VI = ∞) = 0. Thus, the regularized
LHY integral is given by

ELHY/N = lim
VI →∞

[εLHY(VI ) − Iη(VI )] = I0. (B4)
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APPENDIX C: CONVERGENCE OF THE REGULARIZED
LHY INTEGRAL

Ideally, the regularized LHY integral should be computed
for Nc → ∞, Nx → ∞, and N⊥ → ∞. However, in practice,
the values Nc, Nx, and N⊥ used in the calculations are finite.
In order to approach the asymptotic limit, the regularized
LHY integral is computed for different values Nc ∈ [nc,0, nc,1]
and for a different number of points Nx ∈ [nx,0, nx,1], with
N⊥ = 10Nx. For each value of Nc, the cylindrical inte-
gration volume is VI = π (2Nck1)2 × 4Nck1, analogously to
Appendix B. For each fixed number of points, the fitting
described in Appendix B is carried out, resulting in a function
I0(Nx ). We then extrapolate I0(Nx ) to Nx → ∞ using a func-
tion of the form g(Nx ) = a + b/Nl

x and take the extrapolation

I0(Nx → ∞) as the final result. The range of Nc is chosen
such that the quantity εLHY(VI ) − Iη(VI ) does not depend on
Nc, meaning that the asymptotic limit has been reached. We
show in Fig. 7 I0(Nx ) as a function of the number of points Nx

for � = 1.0, a+1,+1 = a−1,−1 = 0.2, γ = −21, n = 3.11 ×
10−3, and the quantity εLHY(VI ) − Iη(VI ) as a function of the
number of modes Nc, for Nx = 300. As it can be seen from the
figure, εLHY(VI ) − Iη(VI ) shows no significant dependence on
Nc. The extrapolation of I0(Nx ) to Nx → ∞ yields the final
result ELHY/N = I0(Nx → ∞) = 6.505 × 10−4. In practice,
one can just perform the calculations for two values of Nc and
one for Nx such that I (Nx ) � I (Nx → ∞). As an example, set-
ting Nc = 5, 7 and Nx = 600, one obtains ELHY/N = I0(Nx =
600) = 6.494 × 10−4 � I0(Nx → ∞).
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