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We propose a powerful and convenient method to systematically design flat-band lattice models, which over-
comes the difficulties underlying the previous method. Especially, our method requires no elaborate calculations,
applies to arbitrary spatial dimensions, and guarantees to result in a completely flat ground band. We use this
method to generate several classes of lattice models, including models with both short- and long-range hoppings,
both topologically trivial and nontrivial flat bands. Some of these models were previously known. Our method,
however, provides important insight. For example, we have reproduced and generalized the Kapit-Mueller model
[Kapit and Mueller, Phys. Rev. Lett. 105, 215303 (2010)] and demonstrated a universal scaling rule between the
flat-band degeneracy and the magnetic flux that was not noticed in previous studies. We show that the flat band
of this model results from the (over-)completeness properties of coherent states.
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I. INTRODUCTION

Tight-binding lattice models that support flat bands [1], i.e.,
with single-particle energy dispersion E (k) independent of
momentum k, are of great importance. The quenched kinetic
energy and the associated macroscopic degeneracy in a flat
band makes the system extremely sensitive to perturbations.
In particular, in a many-body setting, interaction between
particles in the flat band, no matter how weak it is, can re-
sult in strong correlations and exotic quantum phases. This
is exactly what happens in, for example, fractional quantum
Hall systems [2–4], where the underlying single-particle spec-
trum features flat Landau levels. It is therefore important to
understand what model Hamiltonians can support flat bands
and, conversely, how one can systematically design models
supporting flat bands.

At the first glance, it seems quite simple to construct a
flat-band lattice model in momentum space. Given dispersion
relations {E1(k), E2(k), ..., En(k)} in which one or a few of
them are set to be constant, e.g., E1(k) = 0, we can construct
a n-band flat-band model from an arbitrary unitary matrix
U (k): h(k) := U (k)E (k)U †(k), where E (k) is the diagonal
matrix with elements {E1(k), E2(k), ..., En(k)}. However, this
approach is too general to be practical. Specifically, if we
want the flat-band model to possess certain properties (e.g.,
finite-range hopping, certain symmetry properties, etc.), it
is not straightforward to put appropriate constraints on the
matrices U (k) and E (k) to make h(k) possess the desired
properties. To solve this problem, we turn our attention from
the momentum space to the real position space.

Suppose the Hilbert space is spanned by the basis
|R; i = 1, 2, . . . , n〉, where R = ∑d

j=1 x je j (x j ∈ Z) repre-
sents the position of cells in a d-dimension lattice and i’s
distinguish the n sites in a cell. In general, as long as a
Hamiltonian H defined on this basis satisfies the translational
symmetry URHU †

R = H for arbitrary R, where UR|R′; i〉 ≡
|R + R′; i〉, it depicts a n-band system. Now it is not difficult
to make the hopping terms in H finite ranged. This usually

comes, however, at the cost of losing control on the band
dispersions.

Although it is difficult to manipulate the energy of all the
n bands simultaneously in the position representation, it is
still possible to set some of the bands flat. It can be done
by putting the bands into the null space of the Hamiltonian.
For example, the famous Lieb’s lattice, whose flat bands are
crucial in proving magnetization when repulsive Hubbard in-
teraction is turned on [5], consists of two sublattices A and B
with unequal numbers of sites and zero hopping magnitude
between any two sites in the same sublattice. This special
bipartite connectivity results in |nA − nB| flat bands that reside
in the null space of the Hamiltonian, where nA and nB are
the number of sites in the two sublattices, respectively. The
flatness originates from the fact that the Hamiltonian is a
direct sum of hAB and hBA, consisting of hopping terms starting
from sites in A and B, respectively, and the rank of hAB (hBA)
cannot be greater than the dimension of hBA (hAB). Sutherland
[6] studies the band structure of general bipartite systems and
finds that these connectivity-induced flat bands occur at the
middle of the spectrum, while there exist dispersive upper and
lower bands that are reflectively symmetric about the average
on-site energy of the two sublattices. It is remarkable that the
flat bands of a bipartite lattice will not be lifted by an external
magnetic field because the flatness is not due to fine-tuning of
the hopping strengths [7]. However, a general flat-band lattice
model is not necessarily bipartite.

An alternative method to put a band into the null space
of the Hamiltonian is based on the following feature of any
flat bands: One can superimpose Bloch states on the flat
band to make localized states which remain as eigenstates on
the same band. Such localized states that occupy the fewest
cells are called compact localized states (CLSs). CLSs can
be annihilated by their parent Hamiltonian if the band energy
is shifted to zero. Conversely, as long as we find one of the
CLSs, we can generate a whole family of them by translation,
each centering at a different cell. Altogether, this family of
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CLSs form a flat band. Thus, using CLSs as generators, one
can devise a systematic way of constructing flat-band models.
However, it is tricky to find appropriate CLSs. For an arbitrary
localized state, its parent Hamiltonian may not exist, because
the Hamiltonian is found by solving an inverse eigenvalue
problem that may not have a solution. Another drawback of
the CLS method is that information about the band spectrum
cannot be obtained readily. In particular, one cannot know a
priori whether the flat band is a ground or an excited band.
Moreover, the inverse problem is in general computationally
cumbersome, particularly for spatial dimensions larger than
one. Only very recently, the complete flat-band generators
on the one-dimensional (1D) lattice was found [8], but its
generalization to higher dimensions is not straightforward.
It is thus highly desirable to develop a more powerful and
convenient method of generating flat-band models [7–11] .

In this paper, we will present such a method based on
the simple mathematical properties of Gram matrices. The
Gram matrix method put the ground states into the null space
of the Hamiltonian. It guarantees the flatness of the low-
est band by simple dimension-counting procedures without
invoking complicated inverse problems. Also, generating flat-
band models in high-dimensional lattices is straightforward as
the method is insensitive to spatial dimensions. The remainder
of the paper is organized as follows. We will describe the
general principle of our method in Sec. II. In the next two
sections, we will present some specific examples to demon-
strate its usage. In Sec. III, we demonstrate the construction of
several flat-band models with finite-range hopping. In Sec. IV,
we construct the long-range Kapit-Mueller model in the two-
dimensional (2D) square lattice and present its generalization
to arbitrary lattice geometry. Finally, we conclude in Sec. V.

II. GENERAL PRINCIPLE OF THE GRAM
MATRIX METHOD

A Gram matrix G defines a semi-inner product in a linear
vector space V . Given a linear transformation T : V → V ′,
G is the pullback of the inner product defined in V ′, that is,
G ≡ T †T . Obviously, G is Hermitian and semipositive defi-
nite. Under a basis {|vi〉}N

i=1 of the N-dimensional space V , the
ith column of the T matrix is the image of |vi〉, |v′

i〉 := T |vi〉,
so the matrix element of G is the inner product 〈vi|G|v j〉 =
〈v′

i|v′
j〉. If the set of vectors {|v′

i〉}N
i=1 are linearly independent,

then G is positive definite; otherwise, G would be singular and
possess zero eigenvalues, and the number of zero eigenvalues
equals the dimension of the kernel of T . If N ′ < N , where
N ′ is the dimension of V ′, then the set {|v′

i〉}N
i=1 is necessarily

linearly dependent, and the number of zero eigenvalues that G
possesses is at least N − N ′.

This simple property serves as the basic principle un-
derlying our method. Up to a shift of energy making its
ground-state energy zero, a Hamiltonian can always be written
as H ≡ T †T and can thus be interpreted as a Gram matrix.
Now T is a linear transformation from the Hilbert space V to
an auxiliary space V ′. We take the states |R; i = 1, 2, . . . , n〉’s
as the basis of V . If the auxiliary space V ′ is spanned by sites
|R; i′ = 1, 2, . . . , n′〉aux in an auxiliary lattice, where n′ < n,
then we claim that any n-band model with n − n′ flat lowest

bands is associated with a matrix T whose elements are

aux〈R′; i′|T |R; i〉 = T i′,i
R−R′ . (1)

Thus we can interpret the T matrix graphically as hopping
terms that connect a single cell in the real lattice to sites in
the auxiliary lattice. Because H ≡ T †T , as long as T is finite
ranged, so will the Hamiltonian H . We will construct some
specific finite-range flat-band models in Sec. III.

The proof our statement is straightforward: Any desired
flat-band Hamiltonian can be decomposed as H = ∑

k T †
k Tk,

where Tk’s are n′-by-n matrices acting on k-Bloch states with
the usual definition |k; i〉 ≡ ∑ eik·R√

N
|R; i〉 in momentum space.

Without loss of generality, we can identify the image of Tk
with the k-Bloch states in the auxiliary space |k; i′〉 aux ≡∑ eik·R√

N ′ |R; i′〉aux. Thus T = ∑
k Tk and the matrix elements of

T in Eq. (1) are related by a simple Fourier transformation. We
can say that the translational symmetry of the Hamiltonian is
inherited by the T matrix.

To summarize our Gram matrix method, here is the pro-
tocol to generate an n-band model in d-dimensional space
whose lowest few bands are degenerate.

(1) The Hilbert space is spanned by |R; i = 1, 2, . . . , n〉,
where R’s are positions of the unit cells and each unit cell
contains n internal sites.

(2) Construct an auxiliary space spanned by
|R; i′ = 1, 2, . . . , n′〉aux, where n′ < n.

(3) A mapping T , whose matrix elements are given by
Eq. (1), is constructed to map between the Hilbert and the aux-
iliary spaces. Note that T is completely arbitrary unless some
special properties are desired for the resulting Hamiltonian.

(4) The Hamiltonian can be constructed as H = T †T . The
lowest n − n′ bands of H are guaranteed to be flat with
energy 0.

The above is the most general protocol to generate models
with flat lowest bands. The choice of the auxiliary space
V ′ is flexible in the sense that the space is not necessar-
ily spanned by the lattice |R; i′ = 1, 2, . . . , n′〉aux. Especially,
when the restriction on finite-range hopping is lifted, then
an alternative choice of V ′ may better serve our purpose. In
Sec. IV, we will see that if we select the auxiliary space to be
spanned by a subset of coherent states, then we can elegantly
reproduce the Kapit-Mueller model and its generalizations, re-
vealing the nature of the massive degeneracy in such models,
which turns out to be a universal feature as required by the
(over-)completeness of the coherent states.

III. GENERATING FINITE-RANGE FLAT-BAND MODELS

Let us now demonstrate the usage of the Gram matrix
method by constructing several specific models. In this sec-
tion, we show the simplest models constructed by the Gram
matrix method. By simplest we mean that the model Hamil-
tonian contains the fewest number of hopping terms in the
T matrix. Considering a d-dimensional lattice, the simplest
choice of the T matrix is T |R; i〉 = |R; i〉aux. However, it is
trivial because the resulting Hamiltonian does not contain
hopping terms between sites in the real lattice. To obtain a
nontrivial Hamiltonian, the T matrix has to map the real lattice
cell at R to the auxiliary lattice cell at R and to at least d of its
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FIG. 1. Tasaki lattice in one dimension (a) and two dimensions
(b) governed by Hamiltonian (2). Bipartite lattice in one dimension
(c) and two dimensions (d) governed by Hamiltonian (3). Rectangu-
lar boxes represent unit cells, with internal sites labeled by circled
numbers. Solid lines represent nonzero hoppings starting from a
single cell. Duplicated hopping terms are marked by dashed lines.

nearest neighbor cells. For example,

T |R; 1〉 =
d∑

j=1

(a j |R; j〉aux + b j |R + e j ; j〉aux),

T |R; i〉 = |R; i − 1〉aux, i = 2, . . . , d + 1,

where a j, b j ∈ C. The corresponding Hamiltonian is given
by

H =
∑

R

[
d∑

i=1

(|ai|2+
∣∣b2

i

∣∣)|R; 1〉〈R; 1| +
d+1∑
i=2

|R; i〉〈R; i|
]

+
∑

R

d∑
i=1

[ai|R; i + 1〉〈R; 1|+bi|R + ei; i + 1〉〈R; 1|

+ a∗
i bi|R + ei; 1〉〈R; 1|+H.c.]. (2)

The underlying lattice is the d-dimensional Tasaki’s lat-
tice [examples in one and two dimensions are presented in
Figs. 1(a) and 1(b), respectively], and the hopping amplitudes
in the original Tasaki’s Hamiltonian [12] represent a special
case of Eq. (2) with ai = bi = 1/λ. This Hamiltonian has
n = d + 1 bands. Since each unit cell in the auxiliary space
has n′ = d internal sites, H possesses n − n′ = 1 flat band.
This flat band has zero energy and represents the ground band
of the system. The CLSs of the flat band can be found as

∣∣ψ0
R

〉=|R; 1〉 −
d∑

i=1

(ai|R; i+1〉 + bi|R + ei; i+1〉).

If we group the sites |R; 1〉 as sublattice A and the remaining
sites |R; i = 2, 3, ..., d + 1〉 as sublattice B, we find that the
particle on a B site can only hop to an A site. Following the
same argument about the origin of the flat bands in bipartite

lattices, we conclude that there must be (d − 1) additional flat
bands at energy one, whose CLSs are∣∣ψ i

R

〉 = a∗
i+1|R; i+1〉 + b∗

i+1|R − ei+1; i+1〉
− a∗

i |R; i+2〉 − b∗
i |R − ei; i+2〉, (i=1, ..., d−1).

Finally, there exists a dispersive top band with energy Ek =
1 + ∑d

i=1 |αi
k|2 where αi

k := ai + bi exp (−ik · ei ). The corre-
sponding eigenstate is

∣∣ψd
k

〉 = (Ek − 1)|k; 1〉 +
d∑

i=1

αi
k|k; i + 1〉.

The above example of constructing the d-dimensional
Tasaki’s model serves a pedagogical purpose, from which we
see the power of the Gram matrix method that it takes no extra
effort to generalize the model to high dimensions, whereas the
conventional CLS method involves solving more and more
complicated equation when d increases. By modifying the
T matrix, any model with a desired number of lowest few
flat bands can be readily constructed. We can also artificially
put constraints on the T matrix so that the resulting model
possesses desired properties. To this end, we now turn to
construct a finite-range hopping lattice model which possesses
a special feature: All of its bands are flat.

The basic idea rooted in the reflection symmetry of the
upper and lower bands in a bipartite model. From [6] we know
the middle bands in a bipartite model are flat, and if there is
only one lower band (i.e., the ground band) whose flatness is
guaranteed by the Gram matrix, then the only upper band must
also be flat because of the reflection symmetry. So in order
to build a model in which all bands are flat, we are going to
design a bipartite structure which guarantees n − 2 middle flat
bands and, by choosing n′ = n − 1, there is a zero-energy flat
ground band. Such a T matrix can be chosen as follows:

T |R; 1〉 = cd+1|R; d + 1〉aux +
d∑

j=1

c j |R + e j ; j〉aux,

T |R; i〉 =
d+1∑
j=1

ui−1, j |R; j〉aux, i = 2, 3, . . . , d + 2,

where c j ∈ C and ui, j is an arbitrary unitary matrix. The uni-
tary matrix guarantees the bipartite structure: Different rows
of ui, j are orthogonal to each other, so the hopping amplitudes
between sites |R; i = 2, 3, . . . , d + 2〉 are zero, and the onsite
energy of these sites is uniform because each row of the
unitary matrix has the same norm. The resulting Hamiltonian
is given by

H =
∑

R

d+1∑
i=1

|ci|2|R; 1〉〈R; 1| +
∑

R

d+2∑
i=2

|R; i〉〈R; i|

+
∑

R

d+1∑
i=1

[
u∗

i,d+1cd+1|R; i + 1〉〈R; 1|

+
d∑

j=1

u∗
i, jc j |R + e j ; i + 1〉〈R; 1| + H.c.

]
. (3)
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The lattice connectivity in one and two dimensions are il-
lustrated in Figs. 1(c) and 1(d), respectively. The bipartite
nature can be easily seen if we group |R; 1〉 as sublattice A
with onsite energy EA = ∑d+1

i |ci|2, and |R; i = 2, .., d + 2〉
as sublattice B with onsite energy EB = 1. This (d + 2)-band
model consists of a flat ground band with energy zero, d flat
bands with energy EB = 1, and a flat top band with energy
EA + EB = 1 + ∑d+1

i |ci|2, reflecting the reflection symmetry
of bipartite lattices.

IV. THE KAPIT-MUELLER MODEL AND ITS
GENERALIZATION

We have seen two examples of finite-range flat-band
models. The flat bands in a finite-range Hamiltonian are nec-
essarily nontopological with zero Chern number. This is due
to a theorem [13] which states that the following three con-
ditions concerning a band cannot be simultaneously satisfied:
(1) being flat; (2) having a nonzero Chern number; (3) the
Hamiltonian is finite range. To create a flat band with a fi-
nite Chern number, it is then necessary to construct a model
with infinite-range hopping amplitudes. This can be done by
following the same protocol and by choosing a T matrix
that contains infinite-range hoppings in real space. To ensure
nontrivial topology, the Fourier transform of the T matrix (i.e.,
the T matrix in momentum space) must possess singularities
to yield finite Berry curvature. It may be more convenient to
directly work in the momentum space. As we have demon-
strated in the Introduction, a flat topological ground band
can always be obtained by writing down a topologically
nontrivial unitary matrix U (k) to construct the Hamilto-
nian in the momentum space: h(k) = U (k)E (k)U †(k), where
E (k) = diag(0, E2(k), E3(k), . . . , En(k)). Usually, we want
the constructed Hamiltonian to possess hopping amplitude
whose magnitude decays fast when the hopping distance in-
creases. It is, however, inconvenient to work in the momentum
space to restrain the hopping distance. In the following, we
will construct a topological flat band by slightly modify-
ing the protocol: Instead of using orthogonal basis states
|R; i′ = 1, 2, . . . , n′〉aux in the auxiliary space, we choose to
use nonorthogonal basis which naturally leads to long-range
hopping in the resulting Hamiltonian. We will illustrate this
method by constructing the Kapit-Mueller model [14].

In Ref. [14], Kapit and Mueller, working in the real space,
found such a topological flat band in a 2D square lattice, and
attributed the massive degeneracies in the flat band to some
unrevealed symmetries. It was realized that the degenerate
ground states can be regarded as discrete lowest Landau levels
(LLLs), and that the degeneracy of the LLLs gives birth to
the flatness. Here we find an alternative way to understand
the origin of this topological flat band by reproducing the
model with Gram matrices. More specifically, we reproduce
the Kapit-Mueller model by a Gram matrix built upon a subset
of coherent states. From this construction, the massive degen-
eracy of the ground band can be straightforwardly understood
as a result of the linear dependency of the coherent states. And
we find the generalizations of the model, which are beyond the
LLL descriptions, can also share the ground band degeneracy.

A. Constructing Kapit-Mueller model on arbitrary 2D lattice

A coherent state |z〉 is an eigenstate of a bosonic annihi-
lation operator with complex eigenvalue z. It is well known
that the full set of coherent states form an overcomplete ba-
sis. Perelomov [15] studied the completeness of a countable
subset of coherent states. Define

zm,n := mω1 + nω2, m, n ∈ Z, ω1, ω2 ∈ C.

zm,n’s form a 2D lattice on the complex plane whose unit cell
area is S := Im ω∗

1ω2. We collect the set of coherent states
{|zm,n〉}. Perelomov finds that if S � π , the set represents an
overcomplete basis; if S > π , the set is incomplete; if S = π ,
we can take away any one of the |zm,n〉’s from the set, and the
remaining states form a complete basis.

Following the basic procedures described in Sec. II, and
replacing the orthonormal basis of the auxiliary space by the
lattice of coherent states, we consider a linear transformation
T that maps |m, n〉 := |me1 + ne2; 1〉, a site on a 2D lattice
containing a single state in a cell, to |zm,n〉’s:

T |m, n〉 = |zm,n〉. (4)

In other words, the columns of the T matrix are formed by
|zm,n〉’s. The matrix elements of the Hamiltonian H = T †T
are therefore the inner product of coherent states:

〈m′, n′|H |m, n〉 = 〈zm′,n′ |zm,n〉
= e−|zm,n−zm′,n′ |2/2+iIm z∗

m′ ,n′ zm,n . (5)

Physically, this Hamiltonian describes a fully connected 2D
lattice under a magnetic field, and the flux per unit cell is 2S.
It reduces to the Kapit-Mueller model [14] when zm,n’s form
a square lattice, and to the Hofstadter model [16] by further
taking the limit S → ∞.

From our construction, it immediately becomes clear that
the emergence of the flat ground band is guaranteed by the
properties of the Gram matrix and the (over-)completeness of
the coherent states. When S > π , the set of coherent states
on the lattice are linearly independent, and the smallest eigen-
value of the resulting H must be positive. When S = π , the set
becomes complete if we take away any one of the states, so H
has a single zero eigenvalue. When S < π , we have 1/S states
per unit area on the complex plane, while only 1/π states
per unit area are needed to construct a complete basis, so a
fraction of ρ ≡ 1 − S/π eigenvalues of H must be zero. As
a result, the massive degeneracy in the Hamiltonian Eq. (5)
follows a universal scaling behavior, in the sense that it only
depends on S and is completely independent of the lattice
geometry. As we will see, it is more convenient to interpret
S, instead of as the unit cell area, as the averaged area on the
complex plane occupied by each coherent state, because the
relation between S and the completeness extends beyond the
cases that Perelomov studied. The universal degeneracy is one
of the most elegant features of this model.

We carry out numerical calculation to verify the universal
scaling rule between the degeneracy and S. We choose N
coherent states distributed in a square region on the complex
plane, where N is large but finite (typically, N ∼ 3 × 103),
and numerically diagonalize the corresponding Gram matrix
H to find the density of states as a function of S and the
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FIG. 2. (a)–(d) Spectrum of HS for a square lattice (a), triangu-
lar lattice (b), honeycomb lattice (c), and random lattice (d). The
color map represents (D + 1) where D(E ) = ∑

n δ(E − En) is the
density of states, with En being the nth eigenvalue of HS . In the
calculation, the Dirac δ function is replaced by a smooth narrow
distribution function. S is the averaged area per state. (e) We count
N0, the number of eigenenergy that is less than 10−5, and compare
the ratio N0/N with the theoretical value ρ marked by the line, where
ρ = max(1 − S/π, 0).

energy E . In Figs. 2(a)–2(c), we display the spectrum for
several distinct lattice geometries (the lattice geometry refers
to the geometry of the coherent states on the complex plane):
square lattice, triangular lattice, and honeycomb lattice. The
positive-energy part of the spectrum forms a Hofstadter but-
terfly, whose specific pattern depends on the lattice geometry.
The universal feature for these different lattices is, however,
the massively degenerate ground states at zero energy when
S < π . Remarkably, this flat ground band exists even when
the coherent states has a random distribution over the whole
region (we specify a lower bound on the distances between
sites to ensure that no two sites are too close together in order
to exclude trivial zero eigenvalues of the Gram matrix) as we
show in Fig. 2(d). Although in this random lattice case, the
positive-energy butterfly pattern no longer exists.

As mentioned earlier, the degeneracy of the ground band is
given by N0 = ρN = (1 − S/π )N , which should be a univer-
sal feature independent of the lattice geometry. In Fig. 2(e), we
plot the numerically obtained fraction of zero-energy states

as a function for S. Results from all four lattice geometries
show excellent agreement with the theoretical prediction. The
small discrepancies can be attributed to the finite-size effect.
In Figs. 2(a)–2(d), we see a gap between the zero-energy
and the positive-energy states, which increases as S decreases
and diverges when S → 0. This can be easily understood
as follows: Since Tr[H] = N which is the sum of the posi-
tive eigenenergies, the averaged energy of the excited states
should be π/S when S < π according to the degeneracy of
the ground states.

We also carry out the same numerical calculation on a
small 5 × 5 square lattice and see that the degenerate ground
states emerge again. This demonstrates that the essential
physics can be observed even in such a small system, which
makes its experimental realization very promising.

B. Universal ground states and the Hall dynamics

The analog between the zero-energy ground states of the
model and the LLLs can be found by writing down the wave
functions explicitly. Using a more general singlet sum rule
[17] proved by Perelomov [15]:∑

m,n

(−1)m+n+mne− |αm,n |2
2 +αm,nz ≡ 0,

where z is an arbitrary complex number and αm,n’s build an
arbitrary lattice whose unit cell area is π , we can show that
the wave function of the CLS in the ground band takes the
universal form (S < π ),

〈m, n|ψ〉 = (−1)m+n+mn e− π/S−1
2 |zm,n|2 . (6)

Ignoring the phase factor (−1)m+n+mn, Eq. (6) takes the same
form as the wave function of a LLL describing a particle
with unit charge confined in the (x, y) plane subjected to a
perpendicular magnetic field with strength B:

ψLLL(x, y) = e−B(x2+y2 )/4h̄. (7)

Also, just like the LLL, the ground band formed by |ψ〉 and
its translations is topological with Chern number 1. If the
nondimensionalization is done by setting 2π h̄, and the unit
cell area of the lattice formed by |m, n〉’s [18] as 1, then by
comparing the exponents in Eqs. (6) and (7), we find that the
degeneracy of the flat band per site ρ can be regarded as the
effective magnetic field for |ψ〉, which is different from the
true flux 2S. Moreover, it is this effective field ρ, rather than
the true flux, that plays a role in the Hall dynamics of |ψ〉.
Given a constant electric field E , the Hall velocity of |ψ〉 is
E /ρ, because the Hall conductivity is 1. Similarly, the Hall
velocity for ψLLL is E /B.

The Hall dynamics of |ψ〉 can be verified numerically as
follows. We initially prepare a wave packet in the zero-energy
ground band localized at the center of an 81 × 81 square lat-
tice. We then add a linear potential, with gradient U , along the
y axis at t = 0, and the ensuing evolution of the wave packet is
depicted in Fig. 3. Figure 3(a) shows the snapshots of density
profiles at various times. The three columns correspond to
S = π/4, π/2 and 3π/4 from left to right. One can see that
the wave packet disperses and moves along the x axis, perpen-
dicular to the direction of the linear potential. The evolution
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FIG. 3. (a) Evolution of the density profile of a wave packet
on an L × L = 81 × 81 square lattice with a linear potential along
the y axis with gradient U . The evolution operator is given by
exp{−2π it (GS + Uy)}, where we take U = 3.75 × 10−4. The po-
sitions x and y are renormalized by the lattice constant. The initial
wave packet is obtained by projecting a completely localized state
to the lowest (zero-energy) band. t0 = 5000. (b) The evolution of the
central position x̄ and the half width σ along the x direction of the
wave packet in (a). (c) The same evolution as that in (a) except that
now S = 5π/4 such that the lowest band is not a flat band.

of the center position x̄ along the x axis is plotted in the left
panel of Fig. 3(b). x̄ is nearly linear in time, which results from
the very accurate quantization of the Hall conductivity. We
can readily extract the Hall velocities, vH = 5 × 10−4, 7.5 ×
10−4, 1.5 × 10−3, respectively. The Hall conductivity, given
by vH (1 − S/π )/U , is equal to 1 with a relative standard
deviation on the order 10−7 for all three cases. As the wave
packet moves, it also disperses along the x axis (but not along
the y axis). The right panel of Fig. 3(b) displays the evolution
of the half width σ along the x axis. The slower the wave
packet moves, the faster it disperses. Note that the LLL wave
packet is nondispersive under a similar situation. In Fig. 3(c),
we also display the evolution of a localized wave packet for

S = 5π/4. In this case, the wave packet quickly disperses in
both directions, in stark contrast against the situation depicted
in Fig. 3(a) where S < π .

C. Analytic derivation of the full spectrum for special cases

Despite the numerical evidence that supports universal de-
generacy presented in the generalized Kapit-Mueller model,
it is helpful if we can prove the degeneracy and write down
the Bloch wave functions by solving the Hamiltonian Eq. (5)
directly. It can be done for some special choices of |zm,n〉’s.

Consider the case when ρ is rational by taking S =
pπ/q where p, q are co-prime positive integers. After a lo-
cal gauge transformation |m, n〉 → e−imnS|m, n〉 and then a
Fourier transformation, H can be reduced to a q-band Bloch
Hamiltonian hp,q(k, l ), where k, l are pseudomomenta defined
in the range − 1

q < k � 1
q , −1 < l � 1. The explicit matrix

elements of hp,q are given by

hp,q
m′,m =

∑
r,s

exp
{−|zqr+m−m′,s|2/2 + iπ

[
k(qr + m − m′)

+ (l + (m + m′)pq)s − prs
]}

, (m, m′ = 1, 2, ..., q).

If zm,n’s form a rectangular lattice with aspect ratio ξ on the
complex plane, then hp,q

m′,m can be expressed through Jacobi θ

functions (see the Appendix for definitions):

hp,q
m′,m = exp

(
−Sξ (m − m′)2

2
+ iπk(m − m′)

)

×
∑

χ=0,1

θ3+χ (p mod 2)(z1, τ1)θ3−χ (z2, τ2),

where

τ1 := ipqξ

2
, z1 := qk

2
+ (m − m′)τ1

q
,

τ2 := 2ip

qξ
, z2 := l + (m + m′)p

q
.

We are going to verify that when p = 1, hp,q
m′,m is a rank-

1 matrix, so it has only one nonzero eigenvalue, which is
predicted by the Gram matrix construction. Now p = 1, τ1 =
−τ−1

2 , so we can use Jacobi identities,

θ3+χ

(
z

τ
,− 1

τ

)
= (−iτ )1/2 exp

(
iπz2/τ

)
θ3−χ (z, τ ),

where χ = 0,±1, to recast h1,q as follows:

h1,q
m′,m = (−iτ2)1/2

∑
χ=0,1

θ3−χ (z1τ2)θ3−χ (z2)

× exp

(
−Sξ(m − m′)2

2
+ iπk(m − m′) + iπz2

1τ2

)
,

where, for simplicity, we have omitted the second argument
τ2 of the θ functions. Define

Rm,m′ := i

τ2

(
h1,q

m′,mh1,q
m′+1,m+1 − h1,q

m′+1,mh1,q
m′,m+1

)
× exp

(
Sξ (m − m′)2 − 2iπ

(
k(m − m′) + z2

1τ2
))

.

053305-6



BUILDING FLAT-BAND LATTICE MODELS FROM GRAM MATRICES PHYSICAL REVIEW A 102, 053305 (2020)

Rm,m′ ≡ 0 iff h1,q is rank-1. Representing h1,q by the θ func-
tions, we have

Rm,m′=
∑
χ,χ ′

θ3−χ(z1τ2)θ3−χ(z2)θ3−χ ′(z1τ2)θ3−χ ′

(
z2 + 2

q

)

− θ3−χ

(
z1τ2 + 1

q

)
θ3−χ

(
z2 + 1

q

)

× θ3−χ ′

(
z1τ2 − 1

q

)
θ3−χ ′

(
z2 + 1

q

)
. (8)

Using the sum rules of the θ functions, presented in the Ap-
pendix, we can prove

Rm,m′ = 0.

So we have proved that, indeed, for rectangular lattice with
aspect ratio ξ , h1,q has only one positive eigenvalue, whose
value is given by the trace:

Tr(h1,q) = q
∑
r,s

exp

(
−1

2
|zqr,qs|2 + iπq(kr + ls − rs)

)
.

The corresponding Bloch wave function is given by any col-
umn vector of h1,q.

D. Generalization beyond the LLL analogy

The Kapit-Mueller model can also be constructed using
a projection method [19] which is analogous to the inverse
method by treating the LLLs as CLSs. However, using the
Gram matrix method, infinite variations of the model, which
cannot be regarded as the parent Hamiltonians of the LLLs,
can be constructed a similar protocol described in Sec. II. In
the discussion above to construct the Kapit-Mueller model, we
have picked a particular T matrix defined in Eq. (4). However,
we can define the T matrix, which maps the real cell |m, n〉 to
an arbitrary number of cells represented by the coherent states
in the auxiliary space, in a more general way as follows:

T |m, n〉 =
∑
m′,n′

τm,n
m′,n′ |zm′,n′ 〉. (9)

The resulting Hamiltonian is H ′†Hτ , where H is the Gram
matrix of the coherent states given in Eq. (5) which yields
the Kapit-Mueller model. Apparently, the new Hamiltonian
H ′ has at least the same number of zero eigenvalues as that of
H . In order that the zero-energy states of H ′ form a flat band,
H ′ must preserve the translational symmetry of H , which
constrains the T matrix in Eq. (9). The translational symmetry
is preserved as long as

�
†
RU †

RτUR�R = τ, (10)

where UR is the translation operator and �R a local gauge
transformation as the result of the gauge flux through the
lattice:

�pe1+qe2 |m, n〉 = exp (−iS(np − qm))|m, n〉,
where e1,2 are the two basis vectors of the lattice, and p, q ∈
Z. To find τ ’s that preserve the translational symmetry, we

E

0

5

10

15

20

S/π
0 0.5 1 1.5 2

1 10 100 1000

FIG. 4. The spectrum of the generalized Kapit-Mueller model
given by the T matrix Eq. (13). The color map has the same meaning
as that in Fig. 2(a).

recast τ into the form,

τm,n
m′,n′ =

∑
r,s

C(m, n; r, s)δm+r
m′ δn+s

n′ . (11)

Now we have

(�†
RU †

RτUR�R )m,n
m′,n′

∣∣
R=pe1+qe2

=
∑
r,s

C(m + p, n + q; r, s) exp (iS(sp − qr))δm+r
m′ δn+s

n′ .

To make Eq. (10) hold, C(m, n; r, s) must take the form,

C(m, n; r, s) = C(r, s) exp [iS(rn − sm)], (12)

where C(r, s) is an arbitrary function.
For example, analogous to the 2D Tasaki’s lattice con-

structed in Sec. III, a T matrix that maps a real cell |m, n〉 to
the auxiliary cell |zm,n〉 and its two nearest neighbors is given
by

T |m, n〉 = |zm,n〉 + eiSn|zm+1,n〉 + e−iSm|zm,n+1〉. (13)

The resulting Hamiltonian’s zero-energy band has the same
degeneracy as that of the Kapit-Mueller model. In Fig. 4, we
illustrate the spectrum of this Hamiltonian on a square lattice
by plotting the density of states as a function of the unit cell
area S.

V. CONCLUSION

We have proposed a powerful method of constructing lat-
tice models supporting flat bands. The method is based on
the mathematical properties of Gram matrices. Any lattice
model with the flat lowest band can be constructed through
the method. The method does not require any elaborate calcu-
lations such as solving the inverse eigenvalue problem, works
for arbitrary spatial dimensions, and guarantees to produce
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a flat ground band. We have presented a variety of exam-
ples, including both finite- and infinite-range hopping, and
topologically trivial and nontrivial flat bands. Specifically, we
have constructed the d-dim Tasaki lattice, a d-dim bipartite
lattice whose bands are all flat, and the generalized Kapit-
Mueller lattice whose flat ground band features universal (i.e.,
geometry-independent) degeneracy. We study the generalized
Kapit-Mueller in detail and, especially, conclude that the
(over-)completeness of the coherent states is the origin of the
universal degeneracy.

Finally, we want to comment on realizing flat-band models
in laboratory. Over the past few years, we have witnessed
rapid progress in realizing lattice models in synthetic materi-
als, particularly synthetic dimensions, in both atomic [20–29]
and photonic [30–40] systems, where the lattice sites are
represented by different atomic states or photonic modes,
respectively. Nearly arbitrary hopping amplitudes can be
realized in such systems. Realizing the flat-band models con-
structed using our method with synthetic materials should
therefore pose no essential difficulties.

ACKNOWLEDGMENTS

We acknowledge the support from the NSF and the Welch
Foundation (Grant No. C-1669).

APPENDIX: JACOBI θ FUNCTION

The Jacobi θ functions are defined by

θ1(z, τ ) : =
∑

n

exp

(
π iτ (n+1/2)2+2iπ

(
z − 1

2

)
(n+1/2)

)
,

θ2(z, τ ) : =
∑

n

exp(π iτ (n + 1/2)2 + 2iπz(n + 1/2)),

θ3(z, τ ) : =
∑

n

exp(π iτn2 + 2iπzn),

θ4(z, τ ) : =
∑

n

exp

(
π iτn2 + 2iπ

(
z − 1

2

)
n

)
.

The sum rules of the θ functions used in the paper are

θ2(v + w)θ2(v − w)θ2(x + y)θ2(x − y)

− θ2(x + w)θ2(x − w)θ2(v + y)θ2(v − y)

= θ1(v + x)θ1(v − x)θ1(y + w)θ1(y − w).

θ3(v + w)θ3(v − w)θ3(x + y)θ3(x − y)

− θ3(x + w)θ3(x − w)θ3(v + y)θ3(v − y)

= −θ1(v + x)θ1(v − x)θ1(y + w)θ1(y − w).

θ2(v + w)θ3(v − w)θ3(x + y)θ2(x − y)

− θ2(x + w)θ3(x − w)θ3(v + y)θ2(v − y)

= −θ4(v + x)θ1(v − x)θ1(y + w)θ4(y − w).

By taking

v = z1τ2, w = 0,

x = z2 + 1

q
, y = 1

q
,

one can readily show that Rm,m′ in Eq. (8) indeed vanishes.

[1] D. Leykam, A. Andreanov, and S. Flach, Adv. Phys.: X 3,
1473052 (2018).

[2] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[3] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[4] H. L. Stormer, D. C. Tsui, and A. C. Gossard, Rev. Mod. Phys.

71, S298 (1999).
[5] E. H. Lieb, Phys. Rev. Lett. 62, 1927(E) (1989).
[6] B. Sutherland, Phys. Rev. B 34, 5208 (1986).
[7] H. Aoki, M. Ando, and H. Matsumura, Phys. Rev. B 54, R17296

(1996).
[8] W. Maimaiti, S. Flach, and A. Andreanov, Phys. Rev. B 99,

125129 (2019).
[9] W. Maimaiti, A. Andreanov, H. C. Park, O. Gendelman, and S.

Flach, Phys. Rev. B 95, 115135 (2017).
[10] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C.

Mejía-Cortés, S. Weimann, A. Szameit, and M. I. Molina, Phys.
Rev. Lett. 114, 245503 (2015).

[11] Y. Zong, S. Xia, L. Tang, D. Song, Y. Hu, Y. Pei, J. Su, Y. Li,
and Z. Chen, Opt. Express 24, 8877 (2016).

[12] H. Tasaki, Phys. Rev. Lett. 69, 1608 (1992).
[13] L. Chen, T. Mazaheri, A. Seidel, and X. Tang, J. Phys. A: Math.

Theor. 47, 152001 (2014).
[14] E. Kapit and E. Mueller, Phys. Rev. Lett. 105, 215303 (2010).
[15] A. M. Perelomov, Theor. Math. Phys. 6, 156 (1971).
[16] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[17] R. Laughlin, Ann. Phys. 191, 163 (1989).

[18] The distance between physical sites is not necessarily the same
as the distance between zm,n’s on the complex plane. Here we
make it independent from S.
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