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I consider general interacting systems of quantum particles in one spatial dimension. These consist of bosons
or fermions, which can have any number of components, arbitrary spin, or a combination thereof, featuring
low-energy two- and multiparticle interactions. The single-particle dispersion can be Galilean (nonrelativistic),
relativistic, or have any other form that may be relevant for the continuum limit of lattice theories. Using an
algebra of generalized functions, statistical transmutation operators that are genuinely unitary are obtained,
putting bosons and fermions in a one-to-one correspondence without the need for a short-distance hard core.
In the nonrelativistic case, low-energy interactions for bosons yield, order by order, fermionic dual interactions
that correspond to the standard low-energy expansion for fermions. In this way, interacting fermions and bosons
are fully equivalent to each other at low energies. While the Bose-Fermi mappings do not depend on microscopic
details, the resulting statistical interactions heavily depend on the kinetic energy structure of the respective
Hamiltonians. These statistical interactions are obtained explicitly for a variety of models, and regularized
and renormalized in the momentum representation, which allows for theoretically and computationally feasible
implementations of the dual theories. The mapping is rewritten as a gauge interaction, and one-dimensional
anyons are also considered.
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I. INTRODUCTION

Ensembles of interacting quantum particles exhibit a
remarkable variety of fascinating phenomena. These occur at
various scales, ranging from the microscopic few-body regime
to the macroscopic world of materials. Interesting few-body
physics can be found in systems as varied as atoms and
molecules [1], small nuclei [2,3], and even in the description
of solids, with excitons [4] and trions [5], together with
magnons [6], being prime examples of the latter. Of particular
interest is the Efimov effect [7], consisting of the existence of
a series of three-body bound states that obey a discrete scaling
law when three bosons interact in such a way that the two-
body scattering length diverges, i.e., in the unitary limit. These
were sought for intensively in nuclear physics for many years
[8], and were first observed with ultracold Cs by Kraemer
et al. [9]. They have since been confirmed in atomic 4He as
well [10] and have been predicted to occur for three magnons
in a solid [11]. The Efimov effect represents a paradigmatic
example of universality [12], in which microscopic details
of the multiparticle interactions are irrelevant—Cs–Cs
interactions are of a completely different nature from magnon-
magnon interactions—and low-energy scattering properties
are sufficient to describe the phenomenon [3,13]. At the few-
body level, universality of interactions is directly linked to the
fact that, as far as two- and multiparticle scattering amplitudes
are concerned, short distance details of the interactions, and
therefore the wave functions, are not important, since the am-
plitudes are only related to the physics at long distances. These
interactions, which still describe microscopic phenomenol-
ogy, are the subject of study of the low-energy effective field

theory (EFT) of interactions [2,14,15]. In many-body physics,
universality shows in a number of ways. The connection
with few-body universality is given by the use of effective
low-energy interactions to simplify their a priori extremely
complicated description. For instance, while in a fully micro-
scopic description, 87Rb atoms interact with each other via
detailed, strong Born-Oppenheimer potentials, it is possible
to describe a dilute, ultracold gas of 87Rb atoms using only
the two-body scattering length [16], which produces an effec-
tive zero-range interaction given by the Fermi-Huang-Yang
pseudopotential [17]. Mean-field theory, as well as Bogoli-
ubov theory, which would miserably fail using the original
interaction, has immense predictive power in the physics of
Bose-Einstein condensates [18], be it 87Rb or any other many-
boson system, provided it remains dilute. Remarkably, both
weak and strong, nonperturbative interactions, in the sense
of EFTs, can often be effectively described by the same
universal low-energy macroscopic theory in the many-body
case. A prominent example of this type of universality in-
cludes Luttinger liquid theory [19]. In one spatial dimension,
gapless many-body systems are described, at low energies,
by Luttinger liquid theory. This applies to both bosons and
fermions, with or without spin, and (essentially) arbitrarily
weak or strong microscopic interactions [20]. The “trick” in
these effective macroscopic theories—which do not solve the
microscopic many-body problem—is that, while their nonuni-
versal parameters require solving the microscopic many-body
problem fully nonperturbatively, once these are fixed, it is
possible to extract large amounts of information about these
systems.
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Quantum systems in one spatial dimension are currently
attracting great interest, especially in the context of ultracold
atoms [21,22], which can be effectively constrained to move
in one spatial dimension by means of anisotropic trapping.
Although of importance in other fields, systems of ultracold
atoms in (quasi-) one dimension (i) can be composed of spin-
less, spinful, or multicomponent bosons and fermions [23–28]
or mixtures thereof [22], (ii) can be trapped in a variety of
geometries [29,30], (iii) can consist of as few as two or three
particles [25,29,31] as well as many [32], and (iv) their ef-
fective low-energy interactions can be tuned at will by means
of Feshbach [28,33,34] and confinement-induced resonances
[35–37].

A particularly interesting feature of interacting one-
dimensional quantum systems is the thin line separating the
properties of bosons and fermions, especially in the spinless
case. Nonrelativistic spinless bosons and fermions whose two-
body interactions feature a short-distance hard core, otherwise
arbitrary, are equivalent, or dual to each other, as shown
by Girardeau 60 years ago [38]. His result is known as the
Bose-Fermi mapping theorem for hard-core particles. If the
hard core has zero range and there are no other interactions,
bosons are dual to noninteracting fermions and the system is
exactly solvable, and is in the so-called Tonks-Girardeau limit,
realized experimentally in Ref. [24]. It was not until 1999 that
a duality relation between nonrelativistic soft core spinless
bosons and fermions was found by Cheon and Shigehara [39].
In particular, N spinless bosons with zero-range two-body
Dirac delta interactions (corresponding to lowest order EFT
for bosons) of arbitrary strength, known as the Lieb-Liniger
model [40], are dual to N spinless fermions with lowest order
interactions in the odd-wave channel. The Cheon-Shigehara
mapping was used to find a duality relation between non-
relativistic spin-1/2 fermions with lowest order even- and
odd-wave pseudopotentials and two-component bosons by Gi-
rardeau and Olshanii [41], while a point hard core Bose-Fermi
mapping was found for non-relativistic spin-1 bosons [42].
The derivation of the duality relation for soft core spinless
bosons and fermions, Ref. [39], relies heavily on microscopic
details, in particular, short-range boundary conditions. There,
a clever guess of regularized Dirac delta interactions and their
zero-range limit, in the position representation, are crucial.
The resulting interaction for fermions is then given by a zero-
range pseudopotential that is chosen to match the dual bosonic
scattering phase shifts. In Ref. [41], the Cheon-Shigehara
mapping, together with symmetry arguments, was sufficient
to map nonrelativistic spin-1/2 fermions and two-component
bosons with the same lowest-order interactions. If one wishes
to generalize soft-core Bose-Fermi mappings in one dimen-
sion to arbitrary dispersion (beyond non-relativistic), spin
or internal structure, and arbitrary low-energy interactions,
within the EFT paradigm, it is clear that the approach of
Refs. [38,39,41], where pseudopotentials are guessed rather
than derived, quickly becomes impossible to handle. This
is because (i) the short-range boundary conditions imposed
by a particular low-energy interaction depend heavily on
the single-particle dispersion; (ii) boundary conditions are
increasingly complicated for higher order interactions that
may include effective range or three-particle effects; and (iii)
the approach relies in one way or another in the analytical

knowledge of exact wave functions, which are certainly out
of reach for complicated nonintegrable systems with more
than two particles. Moreover, with the exception of the Lieb-
Liniger model, the resulting pseudopotentials appear difficult
to use in either approximate or exact numerical treatments,
due to their highly singular nature.

Technically, what hinders the ability to produce a fully uni-
versal Bose-Fermi mapping in one dimension is the fact that
the signum function, S(x) = 1 for x > 0 and −1 for x < 0,
is a distribution or generalized function [43]; this distribu-
tion is present in all one-dimensional Bose-Fermi mappings
[38,39,41,42]. As such, its value at the origin is undefined,
which can be problematic unless the wave functions vanish
at the coalescence point of two particles (hard-core condition
[38]). For a duality relation to be valid, the two dual systems
should be in one-to-one correspondence, i.e., there must be a
unitary transformation relating them. Specifically, the signum
function must be elevated to a unitary operation, that is, one
must be able to set [S(x)]2 = 1 for all values of x including
the origin, regardless of whether S(x) itself is defined or not at
x = 0, and this must be done in a mathematically consistent
manner.

In this paper, I find the most general one-to-one mapping
between bosons and fermions in one spatial dimension with
arbitrary low-energy interactions, not restricted to pairwise
forces. The mapping applies to any internal structure (single
or multicomponent) and spin. It is also valid for arbitrary
single-particle dispersion, including nonrelativistic, relativis-
tic and continuum limits of lattice Hamiltonians. This is
done by regarding the unavoidable generalized functions that
appear in the unitary transformations and multiparticle inter-
actions as members of an algebra of distributions constructed
by Shirokov in Ref. [44]. The goal of the algebra is to pro-
vide a direct regularization and renormalization procedure in
the position representation, and to provide a mathematically
rigorous framework to elevate the map between bosons and
fermions to a unitary operator. Since the algebra yields formal
expressions that are not of much use unless exact solutions
are provided, all interactions are given in the momentum
representation and regularized according to standard cutoff
schemes. These provide a theoretically and computationally
simple prescription for the practical use of the duality rela-
tions. At low energies, it is shown here that nonrelativistic
soft-core bosons and fermions are equivalent to each other
order by order in their respective low-energy EFTs, explicitly
up to lowest-order three-body interactions. This is to say that
the Bose-Fermi mapping does not take the dual system out of
the low-energy scattering regime. As a corollary, it is possible
to describe soft core bosons, fermions and hard core bosons
(which are equivalent to fermions due to Girardeau’s mapping
[38]), at low energies, using either effective representation:
near the Tonks-Girardeau limit, one can use the fermionic
EFT perturbatively, while in the opposite limit, it is most
convenient to use the bosonic representation. Since, as the
order of the EFT description increases, the interactions even-
tually become too singular, separable, regular terms may be
necessary, and the duality relations also apply to these. The
unitary Bose-Fermi mapping operator is also given explicitly
for general multicomponent or spinful systems. Two examples
of duality relations are given, namely the continuum limit
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of the fermionic Su-Schrieffer-Heeger (SSH) model [45,46]
near half-filling, which features first derivatives only at the
single-particle level, and non-relativistic spin-1/2 fermions
described by Yang’s model [47]. The statistical interaction
in the continuum SSH model is shown to differ significantly
from the non-relativistic case, and is shown to be renormal-
izable in its momentum representation. The duality relation
from fermions to two-component bosons is therefore satis-
fied, a fact that is also shown explicitly. For Yang’s model,
I show how grid computations can be easily performed by
discretizing the dual two-component bosonic Hamiltonian on
a lattice, where three-body calculations in the continuum limit
give identical results for both dual representations. The gen-
eral Bose-Fermi mapping, being unitary, is finally written as
a gauge interaction, and one-dimensional anyons are briefly
considered.

This paper is organized as follows. In Sec. II, I introduce
Shirokov’s algebra of generalized functions. In Sec. III, I
define Bose-Fermi mappings, which I call statistical trans-
mutation operators (STOs), with desirable properties, and
explicitly find them; the concept of statistical interaction is
also defined and the formal duality relations are obtained.
In Sec. IV, low-energy two- and three-body interactions for
nonrelativistic bosons and fermions are considered, and some
renormalizability issues for fermions are pointed out. Du-
ality relations between non-relativistic spinless bosons and
fermions at low energies are studied in detail in Sect. V. Mul-
ticomponent and spinful systems are considered in Sec. VI.
In Sec. VII, the duality transformations are written as a gauge
interaction, and one-dimensional anyons are considered. Con-
clusions and some important consequences are presented in
Sec. VIII. Finally, some further technical details are given in
four Appendices.

II. ALGEBRA OF DISTRIBUTIONS

The transformations that map bosonic wave functions onto
fermionic ones and viceversa are generally singular [38]. In
particular, they involve mathematical distributions (or gener-
alized functions) in the sense of Schwartz [43], that is, the
usual, linear theory of distributions. As will be seen below,
the action of the transformed or dual Hamiltonian of either
the bosonic or fermionic representations, involves products of
distributions. These products, unfortunately, do not in gen-
eral represent a mathematical distribution in the sense of
Schwartz [48]. To overcome this issue, a nonlinear theory of
distributions is required. Nonlinear theories of distributions
[44,49,50] are concerned with the construction of associative
algebras which, from a practical point of view, regularize and
renormalize expressions such as [δ(x)]2, S(x)δ(x) or δ(x)δ′(x),
where δ(x) and S(x) are, respectively, the Dirac delta and
signum distributions. The reason behind constructing an al-
gebra A corresponds to the reasonable requirement that if two
distributions belong to A, so does their product. Associativity
allows one to define the algebraic product operation pairwise.
The field over which the algebra is defined is obviously the
complex numbers C, and A is constructed such that differen-
tiation respects Leibniz’s rule and that complex conjugation
(adjoint) works in the usual way. Although Colombeau’s
algebra [49] is the best known in mathematical literature,

especially because it is commutative, Shirokov’s algebra U
[44], which is much simpler but non-Abelian, was constructed
with quantum mechanics in mind. Therefore, from here on,
every distribution encountered is treated as a member of U .
The defining properties of Shirokov’s algebra are the follow-
ing:

δ(m)(x)δ(n)(x) = 0 ∀m, n � 0, (1)

{S(x), δ(x)} = 0, (2)

[S(x)]2 = 1 ∀x, (3)

where δ(n)(x) = ∂n
x δ(x) and {·, ·} is the anticommutator. Note

that Eq. (2) follows from Eq. (3), since ∂x[S(x)S(x)] = 0 =
{S(x), δ(x)}.

As a simple example of how the properties of U work, take
the following bosonic two-body wave function in the rela-
tive coordinate x, ψk

B(x) = sin(k|x| + θk ), and its fermionic
dual ψk

F (x) = S(x)ψk
B(x). The usual assertion that |ψk

B(x)|2 =
|ψk

F (x)|2 ∀x is only correct after the algebra is chosen: Prop-
erty (3) is not at all trivial and [S(x)]2 is otherwise undefined
at x = 0.

III. STATISTICAL TRANSMUTATION OPERATORS

In this section, I introduce the concept of STOs, which
formally transform bosonic functions into fermionic functions
and vice versa. For a particular one-dimensional N-body sys-
tem, I require the STO to be (i) linear, (ii) unitary, (iii) energy
independent, and (iv) local.1

With the above conditions, I define a boson-to-fermion
STO T such that any fermionic state |χ〉 becomes bosonic
after application of T . It then holds that |χ〉 = T †|ψ〉, and
|ψ〉 = T |χ〉. If |ψ〉 is an eigenstate of HB with eigenenergy
E , then |χ〉 is an eigenstate of HF = T HBT † with the same
energy.

In the single-channel two-body example of the previous
section, we have

〈x′|T x〉 = S(x)δ(x − x′) = 〈x′|T †x〉, (4)

that is, the STO is local. Moreover, it is unitary, since
〈x′|T T †x〉 = 〈x′|T †T x〉 = δ(x − x′). Note, again, that for
unitarity to hold the use of the algebra is required, in particular
Eq. (3).

It is also necessary to establish whether a particular one-
dimensional quantum system admits an STO at all. Without
loss of generality, I will use an N-boson system as reference,
whose dynamics is described by Hamiltonian HB = H0 + VB,
where H0 is a general single-particle operator including all
kinetic energy terms, which can be multichannel and contain
single-particle external potentials, and VB is the interaction,
not necessarily pairwise, but possibly multichannel in accor-
dance with the structure of H0. It can be shown that every
quantum one-dimensional system, whether single or multi-
channel in nature, admits an STO. To see this, denote by
ξi = (xi, mi ) (i = 1, . . . , N) the degrees of freedom of particle

1Recall that an operator Ô is local iff 〈x′|Ô|x〉 ∝ δ(x − x′).
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i, with xi the position and mi a vector containing the internal
degrees of freedom in the multichannel case. An N-body wave
function ψ satisfying bosonic statistics can be unitarily trans-
formed into a wave function χ satisfying fermionic statistics
by means of the following local STO T :

〈ξ ′
1, . . . , ξ

′
N |T |ξ1, . . . , ξN 〉 = δ(x − x′)SN (x)

N∏
i=1

δmi,m′
i
, (5)

SN (x) ≡
N∏

i< j=1

S(xi − x j ). (6)

The unitarity of operator T , which is diagonal in all degrees
of freedom, is guaranteed by the fact that, within Shirokov’s
algebra, [S(x)]2 = 1 ∀x. The simplicity of the diagonal STO
of Eq. (5) makes it a very appealing choice. However, ex-
cept for the single-channel case, in which the STO (5) is
actually unique—a consequence of the locality condition—
multichannel systems admit more than one STOs. These are,
however, related by (symmetric) unitary transformations.

Duality relations are useful if it is possible to obtain
strongly coupled bosonic (fermionic) solutions from a weakly
coupled fermionic (bosonic) theory. Therefore, it is conve-
nient to cast the transformed Hamiltonian, again without loss
of generality using bosons as a reference, in the usual form
of kinetic + potential terms. The original Hamiltonian HB for
the bosonic system is given by

HB = H0 + VB, (7)

where, again, all kinetic energy operators are contained in
H0. The transformed Hamiltonian HF = T HBT † can then be
rewritten as

HF ≡ H0 + WF + VF, (8)

where WF is the totally antisymmetric projection of W , with

W = [T , H0]T †, (9)

VF = T VBT †. (10)

I will call VF the ordinary dual fermionic interaction, and W
the statistical interaction.

IV. NONRELATIVISTIC SINGLE-CHANNEL EFFECTIVE
FIELD THEORIES

Before reviewing existing duality relations and establish-
ing new ones, it is important to understand how bosons and
fermions interact at low energies. This is especially relevant
because, at least in the single-channel case, it would be very
convenient from a theoretical point of view if low-energy
bosonic interactions map, via the STO, order-by-order onto
the respective low-energy fermionic interactions. If this is the
case, as I will show in Sec. V, then it is possible to assert that
at low energies fermions and bosons are completely equiv-
alent and, therefore, the description of universal low-energy
physics in one dimension can be done from either fermionic
or bosonic side, whichever is most convenient for the partic-
ular application. For instance, 4He atoms tightly confined to
(quasi-) one dimension, have a strongly repulsive (infinite)
two-body core at short distances [51,52] but the two-body

scattering length is very large and positive [53]. The exis-
tence of a short-distance hard core makes this system of 4He
atoms be equivalent to fermions with the same Hamiltonian
[38], suggesting that the low-energy physics at low densi-
ties should be described by a fermionic EFT. However, the
large scattering length means that the fermionic EFT is in the
strong-coupling (attractive) regime [15,39], making the de-
scription of the system highly nonperturbative. The use of the
more convenient soft-core bosonic EFT, which is weakly cou-
pled for large scattering lengths, including three-body forces
that stabilize its liquid phase [53], can only be theoretically
justified if the fermionic and bosonic representations of the
low-energy EFT are equivalent.

In the following subsections, I consider low-energy inter-
actions in the two- and three-body sectors for bosons and
fermions, with Hamiltonian

H =
∑

i

p2
i

2m
+
∑
i< j

V (2)
i j +

∑
i< j<l

V (3)
i jl + . . . , (11)

where V (n)
i j... represents an n-body interaction. I restrict these

interactions to the smooth, hyperspherically symmetric case,
that is, their momentum representations V (2)(q), with q the
relative momentum exchange, only depend on q through q2,
while V (3) only depends on the three-body hypermomentum
qH via q2

H and not on the three-body angular variables.

A. Bosonic low-energy interactions

In the nonrelativistic single-channel case, developing low-
energy EFTs simply consists, at the bare level, of expanding
the interactions in power series of the momentum transfer. The
two-body interaction V (2)

i j (q) is expanded as

V (2)(q) = v0 + v2q2 + O(q4). (12)

Since the momentum representation of the “true” smooth two-
body interaction is given by

〈k′|V (2)|k〉 = V (2)(k − k′) ≡ V (2)(q), (13)

its even-wave part V (2)
e (k′, k), which has a nonvanishing effect

on bosonic wave functions, takes the form

V (2)
e (k′, k) = v0 + v2(k2 + k′2) + O(q4). (14)

If the interaction above is described to leading order (LO)
only (vn>0 ≡ 0), then v0 must be replaced by its renormalized
value g0, which is obtained by fixing the scattering length
a to the actual scattering length obtained using the “true”
interaction V (2), as g0 = −2h̄2/ma [40]. An N-boson system
with LO interactions corresponds to the Lieb-Liniger model
[40]. If the next-to-leading order (NLO) term in Eq. (14) is
also retained, then v0 cannot be set to g0 as above as the NLO
term produces momentum-independent terms in the scattering
amplitude [15].

The three-body interaction is expanded in the same way as
the two-body potential, i.e.,

V (3)(qH) = w0 + w2q2
H + O

(
q4

H

)
. (15)

For a three-particle system, q2
H =∑3

i< j=1(ki j − k′
i j )

2, where
ki j is the relative momentum for the pair (i, j). The bosonic
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interaction becomes, from Eq. (15),

V (3)
B (k′, k) = w0 + w2

3∑
i< j=1

(
k2

i j + k′2
i j

)+ . . . , (16)

where k is shorthand for (k12, k23, k13). Also note that,
in Eqs. (15) and (16), total momentum (K = k1 + k2 + k3)
conservation is implicitly assumed, i.e., the full three-body
interaction is 2πδ(K − K ′)V (3)(qH).

The few-body phenomenology associated with the effec-
tive interactions above is as follows. As I already mentioned,
LO two-body interactions correspond to a zero-range poten-
tial that describes the scattering length only. The LO + NLO
interaction can describe the even-wave scattering phase shifts
up to the effective range [15]. Unfortunately, the term ∝ (k2 +
k′2) introduces, already at the two-body level, severe com-
plications and restrictions in its renormalization procedure
in one dimension [15], just as in higher dimensions [14,54].
Since the NLO term represents an off-shell interaction (it
depends on momentum), it can be neglected at the two-body
level and the effective range can be included by allowing
energy dependence in the LO coupling constant g0 = g0(E )
[55,56]. Off-shell contributions of the two-body NLO term
for three and higher particle numbers are typically included
perturbatively [55,58] or else a regularized separable version,
such as ∝ (k2 + k′2) exp[−k2/	2 − k′2/	2], with fixed 	,
may be employed nonperturbatively. Within a Lagrangian for-
malism, using field redefinitions [59], it is possible to trade,
for more than two particles, the NLO off-shell potential for
a LO three-body contact force [60], bypassing this issue in
a different way. The LO three-body interaction, with bare
coupling constant g(3)

0 replacing w0 in Eq. (16), has been
shown to be important for realistic two-body interactions in
one dimension with large scattering length [61], where the
three-body interaction and its three-body range correction
dominate low-energy physics [61–68].

The LO three-body interaction gives rise to a single log-
arithmic ultraviolet (UV) divergence when calculating the
scattering amplitude [61,63,64], which is easily renormalized
away in favor of the three-body scattering length a3 [67] or,
equivalently, a three-body momentum scale Q∗ (∝ 1/a3) [61]
beyond which the EFT description breaks down. I will use
the latter convention from here on. If the three-body T -matrix
with no two-body interactions exhibits a (Landau) pole for (re-
pulsive) attractive interactions at E = E∗ = −h̄2Q2

∗/2m, then
the bare three-body coupling constant as a function of a hard
hyper-radial cutoff 	 is given by [61]

1

g(3)
0

= m√
3π h̄2

ln
∣∣∣Q∗
	

∣∣∣, (17)

and the three-body T -matrix at energy z = h̄2k2/2m + i0+ is
a constant (independent of momentum) and reads [62]

T3(z) = h̄2

m

2π
√

3

ln
(Q2∗

k2

)+ iπ
. (18)

B. Fermionic low-energy interactions

Here, I consider nonrelativistic spinless or spin-polarized
fermions. In the two-body sector, these are affected by

V (2)(q), Eq. (12), starting at O(q2). The first two terms (LO +
NLO) of the odd-wave interaction are given by

V (2)
o (k′, k) = −2v2k′k − 4v4k′k(k2 + k′2) + O(q6). (19)

Above, −2v2 and −4v4 are to be replaced by bare cou-
pling constants g1 and g3, respectively. In this case, the LO
two-body interaction already gives rise to a linear UV diver-
gence in the calculation of the amplitude [15] and, with the
appropriate relation between g1(	) and g0, this interaction
corresponds to the Cheon-Shigehara (fermions) [39] dual to
the Lieb-Liniger (bosons) [40] interaction. The LO + NLO
interaction can also be renormalized, as in the bosonic case,
but suffers from the same issues and complications [15].

The three-body sector is more complicated. The lowest-
order three-body interaction for fermions starts only at O(q6

H)
in Eq. (15). Lower order interactions only affect bosons and
distinguishable particles or mixtures. The LO three-body in-
teraction for three fermions takes the form

V (3)
F = g(3)

6

3∏
i< j=1

ki jk
′
i j, (20)

where total momentum conservation is implicitly assumed,
and g(3)

6 is the bare coupling constant. The corresponding
T -matrix is calculated from the Lippmann-Schwinger equa-
tion T3,F(z) = V (3)

F + V (3)
F G0(z)T3,F(z), with z the energy and

G0(z) the noninteracting Green’s function. The equation is
solved in the momentum representation by T3,F(z; k′, k) =
T (z)

∏3
i< j=1 ki jk′

i j . Clearly, the interaction appears too singu-
lar to be renormalizable, since integrands in the calculation
of the three-body T matrix involve a product of k from the
Jacobian, k−2 from the Green’s function, and k6 from the
potential and T matrix, for large k, yielding a leading UV
divergence in a hard cutoff of O(	6). As I will show below,
there are three subleading divergences and only one coupling
constant, making this interaction nonrenormalizable. To illus-
trate this, in Fig. 1, I plot the coefficient T (z) of the T matrix
at total momentum K = 0 for a fixed coupling constant g(3)

6

FIG. 1. Coefficient of the three-body T -matrix for spinless
fermions with three-body interaction in Eq. (20) for fixed g(3)

6 and
energy z = E = −|E |, as a function of the cutoff. Inset: Rescaled
coefficients τ6 (solid black line) and τ4 (dashed red line), see text.
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and negative energy z = E = −|E |, as a function of the cutoff
	. Clearly, the T matrix vanishes very quickly as the cutoff is
increased. In the inset, I show rescaled values of the T matrix
τi, i = 6, 4, given by τ6(	) = (T/g(3)

6 )[(g(3)
6 /|E |)1/8	]6 and

τ4 = (τ6(	) − τ6(∞))[(g(3)
6 /|E |)1/8	]8, which show that the

two leading UV divergences in the inverse T matrix are of
O(	6) and O(	4), respectively.

Analytically, this can be seen as follows. The T matrix has
a pole at z = E < 0 if the following equation is satisfied:

1 = g(3)
6

∫
dk1dk2

(2π )2

k2
12k2

13k2
23

E − ε(k1, k2, K − k1 − k2)
, (21)

where total momentum conservation is implicitly assumed,
ki j = (ki − k j )/2 and ε(k1, k2, k3) =∑3

i=1 h̄2k2
i /2m. For E <

0, the integral in Eq. (21) can be bounded by changing to polar
coordinates k1 = k cos θ , k2 = k sin θ , with K = 0 without
loss of generality and a hard cutoff (k < 	), as

∫
dk1dk2

k2
12k2

13k2
23

|E | + ε(k1, k2, K − k1 − k2)

�
∫ 	

0
dkk7(162π )

1

|E | + h̄2k2/2m
. (22)

The divergent part of Eq. (22) in the UV has four terms,
proportional to 	6, 	4, 	2, and ln(	/	0), with 	0 an ar-
bitrary, finite momentum scale to render the expression in the
logarithm dimensionless.

Nonrenormalizability of the three-body interaction above
on its own simply means that three fermions with three-body
interactions only do not interact at low energies. A duality
relation between bosons and fermions in the three-body sector
would show two important results: (i) the inclusion of two-
body forces lifts the nonrenormalizability of the fermionic LO
three-body interaction and (ii) bosons in the Tonks-Girardeau
(point hard core) limit are not affected by three-body interac-
tions at low energies. Item (ii) sounds very natural but, since
the bare three-body interaction is not regular, it requires a
fully nonperturbative treatment. This is done in the following
section.

V. DUALITY IN THE SINGLE-CHANNEL
NON-RELATIVISTIC CASE

A. Statistical transmulation operator and statistical interaction

In the structureless, single-component, single-channel
case, the STO is unique, as outlined in Sec. III. From Eq. (5),
the matrix elements of the STO are given by

〈x′
1, x′

2, . . . , x′
N |T †x1, x2, . . . , xN 〉 = SN (x)δ(x − x′), (23)

Using the STO in Eq. (23), I now derive the statistical inter-
action W , Eq. (9). Its action on an arbitrary wave function,
not necessarily an eigenstate of any Hamiltonian, is straight-
forward to obtain introducing Eq. (23) into Eq. (9), with
H0 =∑i p2

i /2m, and we have

W (x) = − h̄2

2m
SN (x)

[∇2
N SN (x) + 2∇N SN (x) · ∇N

]
, (24)

where ∇N is the N-dimensional gradient. Explicitly, one finds

W (x) = −2h̄2

m

N∑
i< j=1

S(xi j )[δ
′(xi j ) + 2δ(xi j )∂xi j ], (25)

where xi j = xi − x j . Importantly, the statistical interaction
(25) contains only pairwise interactions, which implies no
further terms need to be included for more than two particles.

B. Practical examples

To show how duality works from a practical operational
point of view, I will begin by solving two examples, namely,
the two-body fermionic dual to noninteracting bosons, and
the many-body bound state of fermions dual to the bosonic
MacGuire state with attractive delta interactions [69].

1. Two-body Bose-Fermi mapping

The fermionic Hamiltonian dual to two noninteracting
bosons simply reads, after separation of center of mass X and
relative (x) coordinates, using Eqs. (8) and (25),

HF = − h̄2

m
∂2

x − 2h̄2

m
S(x)[δ′(x) + 2δ(x)∂x]. (26)

The fermionic ground state (with eigenenergy E = 0), ac-
cording to the above analysis, has the form χ0(x) = S(x).
Applying HF in Eq. (26) on χ0(x), I obtain

HFχ0 = −2h̄2

m
δ′(x) − 2h̄2

m
S(x)[δ′(x)S(x) + 2(δ(x))2]

= −2h̄2

m
δ′(x) + 2h̄2

m
δ′(x) = 0, (27)

where I have used properties (1), (2), and (3) of Shirokov’s
algebra U to go from the first to the second line. Note that the
statistical interaction in Eq. (26) admits no bound states. Also,
for arbitrary positive energy E = h̄2k2/m, the scattering phase
shift δo (δe) induced for fermions (bosons) with scattering
states χ (x) = S(x) sin(k|x| + δo) (ψ (x) = cos(k|x| + δe )) is
simply δo = δe = π/2.

2. MacGuire’s state for dual fermions

MacGuire’s state for N bosons is the ground state of the
attractive Lieb-Liniger model, i.e.,

HB =
N∑

i=1

p2
i

2m
+ g

N∑
i< j=1

δ(xi − x j ), (28)

with g < 0. The simplest way to extract the ground state of
Hamiltonian (28) is to write it in supersymmetric form [70].
Defining Ai = ∂xi + vi(x), one can build a Hermitian Hamil-
tonian HS as

HS = h̄2

2m

N∑
i=1

A†
i Ai. (29)

Since HS is positive semidefinite, if Aiψ = 0 ∀i = 1, . . . , N
and ψ is normalizable, then ψ is the ground state of HS with
energy E = 0. For the Lieb-Liniger model, the so-called super
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potential vi is given by

vi(x) = α
∑
j �=i

S(xi − x j ), (30)

with α = −mg/2h̄2. It is easy to see that the Hamiltonian HS

is given by

HS = HB − E0, (31)

where HB is the Lieb-Liniger Hamiltonian (28) and E0 =
−(mg2/4h̄2)N (N + 1)(N − 1)/6 is a constant to be identified
with the ground state energy of HB provided that the state
ψ annihilated by Ai ∀i = 1, . . . , N is normalizable, which is
indeed the case for g < 0. The ground state takes the well-
known form [69]

ψ (x) =
N∏

i< j=1

exp(−α|xi − x j |). (32)

I show now explicitly that the fermionic dual to MacGuire’s
state (32) is the ground state of the dual Hamiltonian HF, by
writing down the transformed Hamiltonian HS,F as

HS,F = T HST † = h̄2

2m

∑
i

A†
i,FAi,F, (33)

with Ai,F = T AiT † explicitly given by

Ai,F = Ai + SN (x)∂xi SN (x). (34)

The action of Ai,F on χ (x) = SN (x)ψ (x), with ψ in Eq. (32),
is given by

Ai,Fχ (x) = [∂xi SN (x)]ψ (x) + SN (x)∂xiψ (x)

+ SN (x)vi(x)ψ (x) + SN (x)[∂xi SN (x)]SN (x)ψ (x)

= SN (x)[∂xiψ (x) + vi(x)ψ (x)] = 0, (35)

where I have used the anticommutativity of SN (x) and
∂xi SN (x) due to property (2) of U and, in the last line, the fact
that Aiψ = 0. Therefore, we have HFχ = E0χ .

C. Duality in effective field theory I: Two-body sector

I will show here how, order by order, bosonic low-energy
EFT is equivalent or dual to its fermionic counterpart. I be-
gin with the bosonic two-body interaction V (2)

e in Eq. (14).
In operator form, its fermionic dual Ṽ (2)

o = T V (2)
e T †, where

I have used Eq. (10). I define fermionic two-body eigen-
states |χk〉 of H0 as χk (x) = sin(kx) in the relative coordinate
x = x1 − x2, and hardcore bosonic states |φk〉 = T |χk〉, with
position representation φk (x) = sin(k|x|). The matrix el-
ements 〈χk′ |Ṽ (2)

o |χk〉 clearly vanish, since 〈χk′ |Ṽ (2)
o |χk〉 =

〈φk′ |V (2)
e |φk〉 and, for instance, to lowest order:

〈φk′ |V (2)
e,LO|φk〉 = g0

∫
dx sin(k′|x|)δ(x) sin(k|x|) = 0. (36)

This does not mean that the interaction potential van-
ishes identically (try it on interacting states of the form
S(x) sin(k|x| + θk ), with θk not necessarily the correct phase
shift). Instead, it means regularization is necessary when using
the noninteracting fermionic basis, i.e., standard low-energy
EFT. Instead of using a short-distance regularization of the

Dirac delta function, e.g., δb(x) = [δ(x − b) + δ(x + b)]/2,
which is problematic within Shirokov’s algebra [44], I work
directly in the momentum representation—which is neverthe-
less the goal of EFT—and use a hard cutoff 	 in the relative
momentum. Using Eq. (10), and the STO, Eq. (23), which
in the two-body sector is simply S2(x1, x2) = S(x12), together
with the fact that one dimensional functions are split only
into symmetric (S) and antisymmetric (A) parts as f (x12) =
fS(x12) + fA(x12), it is immediate to verify that

V (2)
e (k′, k) =

∫
dq′

2π

∫
dq

2π
S∗

k′−q′V (2)
o (q′, q)Sk−q, (37)

where the integrals run from −	 to 	 and Sk is the Fourier
transform of the signum function, i.e.,

Sk =
∫

dxS(x)eikx = 2iP
1

k
, (38)

where P denotes Cauchy’s principal value, so Eq. (37) be-
comes

V (2)
e (k′, k) = −

∫
dq′

π
−
∫

dq

π

V (2)
o (q′, q)

(k′ − q′)(k − q)
, (39)

where the dashed integral sign −
∫

indicates it is a principal
value integral. I proceed to show how the fermionic EFT gives,
order by order, a bosonic EFT to the same order. To LO,
V (2)

o (q′, q) = αq′q which, inserted into Eq. (39) gives

V (2)
e,LO(k′, k) = 4

π2
α(	2 + O(1)). (40)

The above relation gives α = g0π
2/4	2. To complete the

boson-fermion correspondence, it is also necessary to extract
the momentum representation of the fermionic statistical in-
teraction WF. Using Eq. (9) together with (23), it is easy to see
that

〈k′|W |k〉 =
∫

dq

2π
S∗

k′−q

h̄2q2

m
Sk−q − h̄2k2

m
2πδ(k − k′). (41)

The odd-wave projection of the statistical interaction above
takes the simple form (see Appendix B)

WF(k′, k) = −π h̄2

m	
k′k + O(	−3). (42)

Therefore, the full bare LO fermionic coupling constant that
is dual to the bosonic LO interaction takes the form

g1(	) = π2g0

4	2
− π h̄2

m	
. (43)

To see that the two-fermion problem is renormalized in this
way, notice that there is a bound state with energy E =
−mg2

0/4h̄2 for

1

g1(	)
= −

∫ 	

−	

dq
q2

|E | + h̄2q2/m
, (44)

which gives, as 	 → ∞,

1

g1(	)
= − m	

π h̄2 −
( m

h̄2

)2 g0

4
. (45)

Equation (43) can be inverted and expanded in powers of
	−1, obtaining Eq. (45) plus terms of O(	−1) and lower, as I
wanted to show.
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The order-by-order duality relation can be continued. The
LO + NLO fermionic interaction has the form

V (2)
o (k′, k) = k′k[α2 + β2(k2 + k′2)]. (46)

Introducing the above interaction in Eq. (39), the full
regularized-renormalized (in the limit 	 → ∞) bosonic dual
is given by

V (2)
e = α2

π2

[
4	2 + 2	 ln

∣∣∣∣ (	 − k′)(	 − k)

(	 + k′)(	 + k)

∣∣∣∣
+ ln

∣∣∣∣	 − k′

	 + k′

∣∣∣∣ ln
∣∣∣∣	 − k

	 + k

∣∣∣∣
]

+ β2

π2

{[
2	 + ln

∣∣∣∣	 − k′

	 + k′

∣∣∣∣
]

×
[

k3 ln

∣∣∣∣	 − k

	 + k

∣∣∣∣+ 2	k2 + 2	3

3

]
+ (k ↔ k′)

}
.

(47)

The above interaction is dual to the odd-wave interaction (46)
together with the odd-wave statistical interaction (42). Equa-
tion (47) looks complicated. However, it only contains sums
of separable terms, that is, terms of the form f1(k′) f2(k), and
therefore the two-body problem can be reduced to an algebraic
system of equations. These are still rather cumbersome and do
not show low-energy duality in a transparent fashion. To see
this, Eq. (47) can be expanded in powers of the momenta k′
and k, obtaining

V (2)
e = 4α2	

2

π2
+ 8	4

3π2
β2 + 8β2	

2

3π2
(k2 + k′2) + O(k4),

(48)
where O(k4) englobes terms ∝ k′2k2 and ∝ k4, k′4. Comparing
the above with Eq. (14), the coupling constants are naïvely
related as

β2 ∼ 3π2g2

8	2
, (49)

α2 ∼ π2g0

4	2
− π2g2

4
, (50)

where the ∼ symbol denotes the relation is only formal
within the expansion. Unfortunately, because the above ex-
pressions come from low-energy expansions of the (already
regular) effective interaction (47), Eqs. (49) and (50) would
only be valid in the Born approximation, which is invalid
given the fully nonperturbative nature of the problem. Du-
ality within the EFT formalism to this order requires more
microscopic input than in the LO problem studied earlier,
and duality is proved fully nonperturbatively by solving the
exact Lippmann-Schwinger equations for even- and odd-
wave interactions in Appendix A. There, it is shown that
bosons with LO + NLO interactions of the form Ve(k′, k) =
g0 + g2(k′2 + k2) are dual to their fermionic counterpart, of
the form Vo(k′, k) + WF(k′, k) = k′k[g1 + g3(k′2 + k2)] upon
renormalization to the same scattering length and effective
range. That is, if for coupling constants g0(	) and g2(	)
(	 → ∞), one has ψ (x) = cos(k|x| + δe ), then it is possible
to find energy-independent g1(	) and g3(	) that renormalize
the two-body problem such that χ (x) = S(x)ψ (x) for all x.
The EFT program can easily be continued to arbitrary order

but, at least in one dimension, it is rather impractical and I
will not proceed any further.

It is also important to remember that, even though the main
application of the duality relations is to low-energy physics,
the mapping does work for regular interaction potentials.
It works as well as for other types of regularizations. For
instance, beyond LO, effective range effects with no energy-
dependent constants are easier to introduce numerically with
soft, separable potentials, which are nonlocal. As an example,
I work out an exactly solvable two-body problem with a sep-
arable potential in the even-wave channel of the type

〈x′|Ve|x〉 = e−a|x′|V0e−a|x|, (51)

with Fourier transform Ve(k′, k) = V0F ∗
e (k′)Fe(k), and

Fe(k) = 2a

a2 + k2
. (52)

Its odd-wave dual is simply

〈x′|Vo|x〉 = S(x′)e−a|x′|V0e−a|x|S(x), (53)

with Fourier transform Vo(k′, k) = V0F ∗
o (k′)Fo(k), and

Fo(k) = 2
k/a

1 + (k/a)2
. (54)

The T matrix with even-wave interactions takes the form

Te(z; k′, k) = V0te(z)F ∗
e (k′)Fe(k), (55)

with

te(z) = 1

1 − V0
∫ dq

2π

|Fe (q)|2
z−h̄2q2/m

. (56)

A two-boson bound state with energy E = −|E | occurs when
te has a pole, and the bound state equation reads

h̄2

mV0
= − 2a +

√
m|E |/h̄2

a
√

m|E |/h̄2(a +
√

m|E |/h̄2)2
. (57)

For two fermions, the total interaction is given by Vo(k′, k) +
WF(k′, k). At the bound-state energy E = −|E |, the residue τ

of the T matrix can be written as

τ (k) = (A + BFo(k))k, (58)

where A and B are two constants. These satisfy the coupled
system of equations,

A = gF

∫
dq

2π

q2

E − q2
(A + BFo(q)), (59)

B = V0

∫
dq

2π

q2

E − q2
(AFo(q) + B|Fo(q)|2), (60)

where I have defined gF = −π h̄2/m	. It is tedious yet
straightforward to solve the equations above, which yield, for
the bound-state energy, Eq. (57). This procedure shows that,
as expected, bound state problems—typically weakly coupled
for bosons and strongly coupled for fermions—are easiest to
handle in the bosonic representation.
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D. Duality in effective field theory I.b: s-wave two-body
collisions in three dimensions

It is worth noting that the one-dimensional Bose-Fermi
duality in the two-body sector can be used to simplify the
calculation of two-body s-wave scattering amplitudes in three
dimensions within the EFT formalism. To see this, write the s-
wave stationary Schrödinger equation for a three-dimensional
spherically symmetric interaction V (r) for the reduced radial
wave function u(r) = rR(r):

− h̄2

m
u′′(r) + V (r)u(r) = Eu(r). (61)

Since the Schrödinger equation above is defined for r ∈
[0,∞), two simple extensions of u to the domain (−∞,∞)
that are nonzero at the origin (i.e., solutions of zero-range
EFTs) can be defined. First, a continuous but nondifferen-
tiable extension that is parity symmetric, which I denote uB,
which is given by uB(r) = u(|r|) ∀r ∈ (−∞,∞). Second,
uF(r) = S(r)uB(r). The scattering amplitudes for the sym-
metric (bosonic) and antisymmetric (fermionic) extensions, as
one-dimensional problems, are exactly related order by order
by the duality relations defined above. The s-wave scatter-
ing amplitude can be directly related to the one-dimensional
fermionic scattering amplitude and, by duality, to the bosonic
amplitude, as follows. Denote the s-wave projection of the
central interaction V by Vs which, in the momentum repre-
sentation, only depends on k and k′ via their moduli k and
k′, respectively. The T matrix Ts from the s-wave interaction
only depends on k and k′ as well, and is a solution to the
Lippmann-Schwinger equation,

Ts(z; k′, k) = Vs(k
′, k) + 1

2π2

∫ 	

0
dq

q2Vs(k′, q)

z − h̄2q2/m
Ts(z; q, k),

(62)
where I have set a hard cutoff 	 to regularize the integral
equation. Since, moreover, the analytic continuation of Vs

that is continuous and differentiable satisfies Vs(−k′, k) =
Vs(k′,−k) = Vs(k′, k), it is possible to extend the domain of
the integration and write

Ts(z; k′, k) = Vs(k
′, k) + 1

4π2

∫ 	

−	

dq
q2Vs(k′, q)

z − h̄2q2/m
Ts(z; q, k).

(63)
For one-dimensional fermions, the low-energy interaction
(including WF) can be written as k′V (k′, k)k/2π , and the T -
matrix TF(k′, k) satisfies

TF(z; k′, k) = k′V (k′, k)

2π
k

+ 1

4π2

∫ 	

−	

dq
k′V (k′, q)q

z − h̄2q2/m
TF(z; q, k), (64)

which can be simplified by writing TF(z; k′, k) ≡
k′τ (z; k′, k)k, yielding

τ (z; k′, k) = V (k′, k)

2π
+ 1

4π2

∫ 	

−	

dq
q2V (k′, q)

z − h̄2q2/m
τ (z; q, k).

(65)

A simple comparison between Eqs. (63) and (65) shows that
if V (k′, k) = Vs(k′, k), then

Ts(z; k′, k) = 2πτ (k′, k). (66)

Since the s-wave T matrix is equivalent to the one-
dimensional fermionic one, it can be obtained by solving
the one-dimensional bosonic problem as well (on-shell) and
invoking the duality relations here derived. The bosonic rep-
resentation, as already mentioned, has the advantage of being
less singular than both the fermionic representation and the
three-dimensional s-wave problem.

E. Duality in effective field theory II: Three-body sector

I now tackle the problem of establishing duality relations
between one-dimensional bosons and fermions in the three-
body sector. In this case, interactions are already much weaker
than in the two-body sector [61], and I will only consider the
LO three-body force. However, these are especially important
in two scenarios: (i) weakly repulsive (near noninteracting)
Bose gases with negative, large scattering length, where the
three-body interaction is dominant [61,62]; and (ii) attrac-
tive (single component) bosons with large, positive scattering
length, whose binding energy scales as ∝ N3 (see Sec. V B),
with N the particle number if no three-body interaction is
present and, as I will show, always acts as repulsive, at low
energies, and may stabilize quantum droplets. Higher multi-
particle interactions, such as four-body processes, also feature
interesting physical phenomena [71] but shall not be consid-
ered here.

Since the statistical interaction WF does not generate
three-body terms, all that is needed here is the unitary trans-
formation between the bosonic three-body interaction V (3)

B

and its fermionic dual V (3)
F = T V (3)

B T †. In the three-body
sector, the position representation of the STO is given by
S3(x) = S(x12)S(x13)S(x23). I denote by |χk〉 the noninteract-
ing fermionic three-body state with momenta (k1, k2, k3), i.e.,
|χk〉 = A(|k〉), with A the antisymmetrization operator.2

The momentum representation of the fermionic LO dual
three-body interaction is given by

V (3)
F (k′, k) = g(3)

0

(2π )6

∫
dq′SA∗

q′,k′

∫
dqSA

q,k, (67)

where total momentum conservation is assumed [there is an
implicit factor of 2πδ(K − K ′)], together with a hard cutoff
	, g(3)

0 is the bosonic three-body coupling constant, K = k1 +
k2 + k3 is the total momentum, and where SA

q,k = A(Sq−k ),
antisymmetrized with respect to k, with Sk the Fourier trans-
form of the STO, i.e.,

Sk =
∫

dxS3(x)eik·x. (68)

2 A|k1, k2, k3〉 ≡ (1/6) [|k1, k2, k3〉 − |k1, k3, k2〉 + |k2, k3, k1〉
−|k2, k1, k3〉 + |k3, k1, k2〉 − |k3, k2, k1〉].
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The Fourier transform above can be performed analytically,
giving, after tedious but straightforward algebra,

Sk = 2πδ(K )4π iP

[
δ(Qs)

Qt
− δ(Qt )

Qs
+ δ(Qs + Qt )

Qs

]
, (69)

where

Qs = 1
3 (2k1 − k2 − k3), (70)

Qt = 1
3 (−k1 − k2 + 2k3). (71)

Inserting Eq. (69) into SA
q,k and integrating over q, the follow-

ing is obtained:∫
dqSA

q,k = iπ2
∑
P�mn

(−1)P−
∫

dq
1

kmn − q
, (72)

where the sum above is over all permutations (�mn) of (123),
and kmn = (km − kn)/2. I introduce Eq. (72) into the three-
body interaction, Eq. (67), and finally obtain

V (3)
F (k′, k) = g(3)

0

(2π )6
F ∗
(

k′
12

	
,

k′
23

	

)
F

(
k12

	
,

k23

	

)
, (73)

with

F (x, y) = 2iπ2 ln

∣∣∣∣ (1 + x)(1 + y)(1 − x − y)

(1 − x)(1 − y)(1 + x + y)

∣∣∣∣. (74)

Expanding the interaction to LO, the low-energy dual interac-
tion reads

V (3)
F (k′, k) = g(3)

0

4π2	6
k′

12k′
13k′

23k12k13k23 + O(g(3)
0 	−8),

(75)
which yields, by comparing with Eq. (20), a LO coupling
constant:

g(3)
6 = g(3)

0

4π2	6
. (76)

Note that the nontrivial dependence of g(3)
0 on the hyper-

spherical cutoff within the bosonic formalism can hinder
practical computations with fermions as is. However, the cut-
off dependence can be removed by instead realizing that the
bosonic three-body interaction can be implemented with mini-
mal subtraction [61]. The three-body coupling constant can be
replaced by its renormalized value, after choosing a subtrac-
tion point −μ2 [3], g(R)

3 = π
√

3h̄2 ln |
√

h̄2/2mQ∗/μ|/m and
subsequently define the LO bosonic three-body interaction as
[3]

V (3)
B = −g(R)

3 [μ2 + z]G0(−μ2), (77)

where total momentum conservation is implicitly assumed,
z = E + iη is the energy, and G0(−μ2) is the three-body
noninteracting Green’s function at energy −μ2.

It is also possible to estimate the effects of the three-body
interaction near the fermionization limit, that is, for low two-
body scattering length |a|. The cutoff structure ∝ 	−6 of
the fermionic interaction suggests, from dimensional grounds,
that its effect in perturbation theory should be of O(a6). For
small scattering lengths, the ground state is similar to that of
the extended hard-rod model [57], and agree to second order
in a. Place a three-body system in a box of size L with periodic

boundary conditions. Using the exact wave function [38], and
the renormalized coupling constant in a box [61], one obtains
the correction to the three-body ground state energy due to the
three-body force,

〈V (3)〉 = 32π7

√
3

h̄2

mL2 ln |Q∗L/2π |
( a

L

)6
+ . . . , (78)

which is indeed of O(a6). This formally means that the three-
body interaction near the free fermionic limit is very weak as
compared to scattering length effects, of O(a/L3), and effec-
tive range (r) effects, of O(a2r/L5). However, the numerical
constant in Eq. (78) is very large, 32π7/

√
3 ≈ 5 × 104, of

the order of 103 times larger than the respective numerical
constant for effective range effects and is not necessarily neg-
ligible.

F. Duality in effective field theory III: Three-body bound states

Here, I will use the EFT formalism for three-body bound
states with LO two-body and three-body interactions for
bosons and their fermionic dual. Since, for bound states,
the fermionic problem is in the strong coupling (attractive)
regime, it is computationally much harder to work with
fermions and, therefore, the duality relations are very appeal-
ing for obtaining fermionic bound states via their bosonic
representation. Three-body bound states in the momentum
representation are most naturally studied within the formal-
ism of Faddeev equations, which are derived for bosons and
fermions in Appendix C.

The usefulness of the duality relations is patent when ex-
ploring bound-state problems. For two particles, both bosonic
and fermionic bound states are easy to calculate in the mo-
mentum representation. For three particles, bosonic bound
states remain numerically tractable with either two-body
forces only (which is exactly solvable in the position represen-
tation for both bosons and fermions) or two- and three-body
forces. For the dual three-fermion bound states, however, even
with only two-body forces in the Faddeev equations numerical
convergence is rather slow, while including the three-body
dual interaction in the bound state problem is even more
problematic. To see this, I have solved the integral equation
in Eq. (C11) for three bosons with fixed LO coupling con-
stant g0 and varying three-body momentum scale Q∗, and the
corresponding fermionic dual, Eq. (C17) with no three-body
interaction (Q∗ → ∞). In the limit 	 → ∞, the numerical
solution of the fermionic bound-state equation converges very
slowly as the number of quadrature points is increased. In-
stead, I use the kernel subtraction method of Ref. [3], which is
equivalent to a different kind of three-particle interaction, and
subtraction point −μ2/2. The original problem is recovered
in the limit μ2 → ∞. The results, fully converged for three
bosons, and as a function of μ for fermions, are shown in
Figs. 2 and 3, respectively. The convergence in the fermionic

problem is logarithmically slow. Setting x = μ/

√
E (2)

B , with

E (2)
B = mg2

0/h̄2 the exact three-body binding energy for μ2 →
∞, a logarithmic fit to the data of the form E/E (2)

B (x) =
a + b/ ln(dx) + c/ ln2(dx) gives a ≈ −1.02 (exact is −1).
Convergence is so slow that, according to the fit, to achieve
less than 10% relative error in the binding energy, values of
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FIG. 2. Three-boson bound-state energy E with total momentum
K = 0 with LO two- and three-body interactions, in units of the
three-boson binding energy with no three-body interaction E (2)

B =
mg2

0/h̄2, as a function of the three-body momentum scale Q∗. This
state corresponds asymptotically (Q∗ → ∞) to the bound state of the
Lieb-Liniger model, and not the deep state with asymptotic energy
−h̄2Q2

∗/2m.

μ/

√
E (2)

B > 1014 are required, for which numerical conver-
gence is not achieved.

In short, the duality relations between bosons and fermions
with two- and three-body interactions allow one to set the
low-energy scattering parameters a (scattering length) and Q∗
(three-body scale) for either bosons and fermions, and N-body
bound states can be calculated using the bosonic represen-
tation, which is by far the simplest. If the target system is
fermionic, the wave function |χ〉 is obtained from the bosonic
one |ψ〉 by using the STO.

500 1000 1500 2000

-0.6

-0.5

μ/ E
(2)
B

E
/
E

(2
)

B

FIG. 3. Three-fermion bound state energy E with total momen-
tum K = 0 with LO two-body interactions in the kernel subtraction
scheme (blue solid line), as a function of the subtraction scale μ (sub-
traction energy −μ2/2), in units of the three-fermion binding energy
with no three-body interaction E (2)

B = mg2
0/h̄2. The red dashed line is

a fit to the data (see text).

VI. DUALITIES IN MULTICOMPONENT AND SPINFUL
SYSTEMS

A. Statistical transmutation operators

In systems with other internal degrees of freedom, be
it different sublattices for continuum limits of tight-binding
models, atomic levels, or spin, to name a few, STOs are not
unique. This is easy to see in the two-body sector, where a
bosonic two-body wave function ψ (ξ1, ξ2) and a fermionic
one χ (ξ1, ξ2) that are dual to one another via an STO T are
related by

ψ (ξ1, ξ2) =
∑

m′
1,m2

′
〈m1m2|T (x1 − x2)|m′

1m′
2〉

× χ (x1, x2; m′
1, m′

2), (79)

where I have used the locality of T and the fact that, since
it is only concerned with particle exchange, it only de-
pends on the relative coordinate x1 − x2. Particle exchange
in Eq. (79), together with unitarity, implies that the matrix
elements T m1,m2

m′
1,m

′
2

(x12), of T ,

T m1,m2
m′

1,m
′
2

(x12) = 〈m1m2|T (x1 − x2)|m′
1m′

2〉, (80)

can only have two different spatial dependencies, either a
constant or proportional to the signum distribution S(x1 − x2).
For m1 = m2 and m′

1 = m′
2, clearly the only possible spatial

dependence is proportional to S(x1 − x2), since particle ex-
change only affects the exchange of spatial coordinates. To
show the nonuniqueness of STOs in the multichannel case,
it suffices to consider a general two-component system, with
single-particle components |1〉 and |2〉. Using the following
matrix ordering for two particles, {|11〉, |12〉, |21〉, |22〉}, it
is easy to see that the following local operators T1 and T2

are valid STOs: T1(x1 − x2) = S(x1 − x2)I, with I the 4 × 4
identity operator and T2(x1 − x2) = AS(x1 − x2)/4, with

A =

⎛
⎜⎝

1 i i 1
i 1 −1 −i
i −1 1 −i
1 −i −i 1

⎞
⎟⎠, (81)

which are related via a simple (symmetric and regular) unitary
transformation, which adds no new physical content. Note,
again, that the STOs are valid for any two-component system
regardless of the kinetic energy and interaction details of the
Hamiltonian. As I will show in the next subsection, T1, which
allows for a straightforward generalization to many particles,
see Eq. (5), is important from the physical point of view
regarding duality relations, and will be used in two relevant
two-component models below.

B. Duality in the continuum limit of the
Su-Schrieffer-Heeger model

The SSH model [45,46] is a paradigmatic tight-binding
model of condensed-matter physics in one spatial dimen-
sion with a plethora of interesting emergent features. Besides
its topological nature, which has been even shown exper-
imentally using trapped ultracold atoms [30] admitting a
zero-energy in-gap edge state for a perfect boundary [72–74],
it provides a Dirac-like dispersion in its continuum limit near
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half filling for spinless fermions. Bose-Fermi duality in the
hard-core limit holds in the SSH model on the lattice, since
tunneling is nearest-neighbour only. However, its continuum
limit has a different structure and duality will take a form very
different from the naïve continuum limit. The noninteracting
SSH model has the lattice Hamiltonian

H0 =
∑

j

t j (c
†
j+1c j + H.c.), (82)

where t j = t + (−1) jδ/2, and c j (c†
j ) the annihilation (cre-

ation) operator of either a spinless boson or fermion at site
j. Fermions with Hamiltonian (82) and bosons with the same
Hamiltonian together with the interaction term

V = U

2

∑
j

n j (n j − 1), U → +∞, (83)

where n j = c†
j c j , are dual to each other. In the continuum limit

near quasi-momentum kd = π/2, with d the lattice spacing,
the first quantized version of the single-particle Hamiltonian
(82) takes the form

H0 =
(

0 −ih̄v∂x − iδ
−ih̄v∂x + iδ 0

)
, (84)

where the velocity v = −2td/h̄, and each component cor-
responds to a sublattice (1 and 2) of the SSH model. For
fermions, this is well defined provided they are noninteracting
or weakly interacting. Bosons, on the other hand, must be
strongly interacting in order for their excitations, which are
not single particle entities, to behave according to Hamilto-
nian (84). To extract the continuum Hamiltonian describing
the original, microscopic bosons, Bose-Fermi duality in the
continuum is required. I use the diagonal STO, Eq. (5), which
gives the following statistical interaction in the position repre-
sentation:

W (x) = −2ih̄v
∑
i< j

S(xi j )δ(xi j )Mi j, (85)

where Mi j acts on the sublattice degrees of freedom of parti-
cles i and j, given by

Mi j = |11〉(〈21| − 〈12|) + |22〉(〈12| − 〈21|) + H.c., (86)

where |n1n2〉 ≡ |n1〉i ⊗ |n2〉 j . Observe that Hermiticity of W
in Eq. (85) is guaranteed by the properties of Shirokov’s
algebra, in particular the anticommutativity of signum and
delta distributions, Eq. (2). The position representation of W ,
Eq. (85), is not very useful unless the exact solution is used,
as usual. Its momentum representation using a cutoff requires,
just as in the usual nonrelativistic cases, some microscopic
knowledge, see Appendix B. To see this, take two particles
and write W (k′, k) = w(k′, k)Mi j as

w(k′, k) = −2ih̄v

∫
dq

2π
Sq−k′ = 2ih̄v

∫
dq

2π
Sk−q. (87)

Without a cutoff in the above integrals, there is no problem
a priori, since they both vanish. Introducing a cutoff 	̃ and
expanding the results, however, gives

w(k′, k) = −4h̄v

π

k′

	̃
= −4h̄v

π

k

	̃
. (88)

The cutoff 	̃ is not the same as the cutoff (	) one introduces
when solving, say, the two-body problem. All that Eq. (88)
says is that the coupling constant is negative and proportional
to 1/	. This is because the above expression, Eq. (88), is an
expansion of already regular, separable interactions. The fact
that the expressions in Eq. (88) are not equal to each other
before 	̃ → ∞ is not a problem, since they only need to agree
in that limit. To fix the coupling constant in Eq. (88) with the
appropriate cutoff 	, it is simplest to consider the massless
limit (δ = 0), and use the fact that, since the fermionic dual
problem to the bosonic problem with either statistical inter-
action in Eq. (88) is renormalizable (in fact, free), so is the
bosonic problem. The two-body scattering problem is solved
in detail in Appendix D, where I show that the statistical in-
teraction as a function of the actual cutoff 	 in the two-boson
problem, that renormalizes the theory and puts fermions and
bosons in one-to-one correspondence, Eq. (88), takes the
form w(k′, k) = −4π h̄vk′/	 or w(k′, k) = −4π h̄vk/	. The
symmetric choice, w(k′, k) = −(4π h̄v/	)(k′ + k), also gives
identical results.

The introduction of finite interactions in the bosonic prob-
lem is of course possible and it is more complicated than in
the fermionic dual (see Appendix D), which makes the duality
relations very useful in this case. It is easiest to introduce the
simplest interactions for fermions, which are of the form

V (x12) = g0δ(x12)Ô, (89)

with Ô = |12〉〈12| + |21〉〈21|. The dual bosonic interaction Ṽ
is given, in the momentum representation, by

Ṽ (k′, k) = π2mg0

4h̄2	2
k′kÔ, (90)

and therefore the full boson-boson interaction, with the choice
of statistical interaction ∝ k, is given by Ṽ − 4π h̄v(k/	)Mi j .

C. Duality between nonrelativistic spin-1/2 fermions and
two-component bosons

I consider now nonrelativistic spin-1/2 fermions with
Dirac delta, even-wave interactions, corresponding to Yang’s
model [47]. Its Hamiltonian is given by

H =
N∑

i=1

p2
i

2m
+ g0

N∑
i< j=1

δ(xi − x j ). (91)

The dual bosonic theory to the above model was obtained
using pseudopotentials in Ref. [41]. I show here its EFT
construction and how to discretize it, for numerical purposes,
on a grid (lattice), and subsequently present results for three
particles that clearly show duality in the continuum limit.

I now discuss the bosonic dual to Yang’s model in Eq. (91).
In the triplet (spin-symmetric states) collision channels,
bosonic statistics implies symmetric spatial exchange. The
only term in the dual bosonic Hamiltonian in this channel is
an even-wave two-body statistical interaction. From Eq. (41),
this is seen to be a linearly divergent constant as function of
the cutoff. Therefore, interactions in the triplet (|τ1〉 = |↑↑〉,
|τ2〉 = |↓↓〉, |τ3〉 ≡ (1/

√
2)(|↑↓〉 + |↓↑〉)) channels are given

by

〈k′τ ′
i |WB|kτi〉 = γ δi,i′ , γ → +∞. (92)
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Above, the Kronecker delta indicates that the statistical in-
teraction due to the STO (5) induces no spin flips. The
statistical interaction between a triplet and the singlet chan-
nel also vanishes. In the singlet channel (spin antisymmetric
|s〉 = (1/

√
2)(|↑↓〉 − |↓↑〉)), bosonic statistics dictates spa-

tial exchange antisymmetry. Therefore, the singlet statistical
interaction is odd-wave and Eq. (41) gives 〈k′s|WB|ks〉 =
−(π h̄2/m	)k′k. The structure of the STO (5) generates no
three- and higher-body terms in the statistical interaction. The
interaction in Yang’s model (91) only affects singlet states,
a fact that carries over to the bosonic dual. The (odd-wave)
bosonic dual interaction in the singlet channel is obtained by
matching, as in the spinless case, and gives, as 	 → ∞,

〈k′α′|VB|kα〉 = π2g0

4	2
δα,sδα,α′ . (93)

A straightforward discretization of Yang’s model
(fermions), with lattice spacing d , is given by the Hubbard
Hamiltonian

Hd = −J
∑

j,σ=↑,↓
(c†

j+1σ c jσ + H.c.) + 2JN + U
∑

j

n j↑n j↓,

(94)
where c jσ (c†

jσ ) annihilates (creates) a fermion with spin σ at

site j, n jσ = c†
jσ c jσ is the number operator at site j, and N =∑

jσ n jσ is the total number operator. The continuum limit

is attained for J = h̄2/2md2 and U = g0/d , with d → 0. For
bosons, one has two components bj1 and b j2, corresponding
to spin-↑ and spin-↓, respectively, in this dual representation.
Since the triplet interactions are hardcore, intracomponent
interactions are hardcore. Since, for the remaining triplet state,
the interaction is also hardcore, the bosonic Hamiltonian con-
tains hardcore even-wave interactions VHC of the form

VHC = U∞

[
1

2

∑
jσ

n jσ (n jσ − 1) +
∑

j

n j1n j2

]
, U∞ → +∞,

(95)
with the sums over σ = 1, 2. The singlet states interact via an
odd-wave interaction. In the first quantization, and denoting
the relative site index by jr = j1 − j2, this interaction Vo is
given by

〈 j′r |Vo| jr〉 = v

2
(δ jr ,1 + δ jr ,−1)(δ jr , j′r − δ jr ,− j′r ), (96)

with [15]

v = − 2J

1 − d/a
, (97)

where a is the scattering length, related to g0 as g0 =
−2h̄2/ma. In the second quantization, this is realized by defin-
ing an exchange operator Ôex as

Ôex =
∑
j1, j2

b†
j12b†

j21b j11b j22, (98)

and the odd-wave singlet-singlet Vs interaction takes the form

Vs = v

2

∑
j

(n j,1n j+1,2 + n j,2n j+1,1)(1 − Ôex). (99)

I obtain the ground state of three fermions (bosons), two
of them with spin-↑ (component 1) and one with spin-↓

0 0.05 0.1

0.98

0.99

1

1.01

d/L

E
0
/
E

(0
)

0

FIG. 4. Ground-state energy E0 in units of the continuum limit
(d → 0) of the fermionic noninteracting ground-state energy E (0)

0

of three fermions (bosons) with spins ↑↑↓ (components 1,1,2) cor-
responding to Yang’s model and its dual, in a box of size L as a
function of the lattice spacing for mLg0/h̄2 = 1/10. Blue circles and
red squares correspond, respectively, to fermions and bosons. Solid
blue (red dashed) line is a fit of Eq. (100) [Eq. (101)] to the fermionic
(bosonic) data.

(component 2) on a lattice with varying spacing d and open
boundary conditions. The length of the continuum target sys-
tem is L = (Ls + 1)d , where Ls is the number of lattice sites
used in the calculation. I fix the value of L and vary d ac-
cording to d = L/(Ls + 1). For fermions, the best fit for the
ground-state energy EF

0 (d ) is quadratic in d ,

EF
0 (d ) = E0 + ad2 + bd4, (100)

while for bosons, which contain multiple strong interactions,
the finite-d scaling shows nonmonotonic behavior and a fit of
this form to the ground-state energy EB

0 (d ) works well:

EB
0 (d ) = Ẽ0 + ãd + b̃d2 + c̃d3. (101)

In Fig. 4, I show the values of the ground-state energy E0

in units of the noninteracting ground-state energy E (0)
0 for

three interacting fermions with spins ↑↑↓ in a box of size
L with varying lattice spacing, together with fits (100) and
(101) to the numerical data. Clearly, the results for fermions
and dual bosons are identical in the continuum limit within
extrapolation errors.

VII. DUALITY AS A GAUGE INTERACTION—EXTENSION
TO ANYONS

The STOs presented here are all unitary and the emergent
interactions in either the bosonic or fermionic representation
do not couple the center of mass and relative coordinates,
preserving Galilean invariance when this is present in the
original system. Therefore, it is possible to find a gauge
interaction which is antisymmetric upon particle exchange
[76] which, upon elimination, is equivalent to the introduction
of the STO. I also consider one-dimensional anyons, which
were incorrectly introduced as a gauge theory decades ago
[77], as pointed out by Aglietti et al. in Ref. [76]. I will
show that, although anyons cannot be introduced by means
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of a conventional gauge interaction, a particle label-dependent
term can do the job. More importantly, I derive the statistical
interaction for the anyonic STO, obtain its EFT description,
and show that it is renormalizable. I will focus on the spinless
one-component case for simplicity and concreteness.

I denote by a j (x) the gauge interaction for particle j, and
� the function satisfying

−ih̄∂x j �(x) − a j (x)�(x) = 0, j = 1, 2, . . . , N. (102)

Since the STO is simply T (x) = SN (x), one has �(x) =
SN (x). Introducing this into Eq. (102) and multiplying the
resulting equation by SN (x) on the right, together with the
properties (2) and (3) of Shirokov’s algebra, one obtains

a j (x) = 2ih̄
∑

�(� �= j)

S(x j�)δ(x j�). (103)

I now consider one-dimensional anyons with statistical
angle φ [78]. The spatial part of the local STO Tφ (x) is given
by

Tφ (x) = i exp

[
−iφ

∑
j<�

S(x j�)

]

= i
∏
j<�

[cos φ − iS(x j�) sin φ]. (104)

A gauge interaction aφ
j of the following form can be defined:

aφ
j (x) = −h̄

N∑
�=1

[sin(2φ j�) + 2i sin2 φS(x j�)]δ(x j�), (105)

where the sum above is restricted to � �= j and φ j� = φ for
j < � and φ j� = −φ for j > �. Note that, in Eq. (105), it
was necessary to include a term ∝ sin(2φ j�) which depends
on labeling of the particles to preserve the antisymmetry.
Therefore, I would be reluctant to consider Eq. (105) a proper
gauge interaction for indistinguishable particles. Of course,
the anyonic STO (104) induces a statistical interaction Wφ =
[Tφ, H0]T †

φ . For non-relativistic particles, this includes two-

(W (2)
φ ) and three-body parts (W (3)

φ ). Since I will only consider
the two-body problem below, I only write down explicitly the
two-body part, given by

W (2)
φ (x) = −i

h̄2

m
sin(2φ)

∑
i< j

[δ′(xi j ) + 2δ(xi j )∂xi j ]

+ sin2 φW (x), (106)

where W = Wπ/2 is the statistical interaction of the Bose-
Fermi mapping, Eq. (25). The three-body statistical inter-
action W (3)

φ is obtained analogously. As in the case of
Bose-Fermi duality, Eq. (106) is highly formal due to
the distributional nature of the statistical interaction. A
momentum-space regularization is desirable, and it is given
by

W (2)
φ (k′, k) = h̄2

m
sin(2φ)(k + k′) + sin2 φ

[
g∞

0 − π h̄2

m	
k′k
]
,

(107)

where g∞
0 = 4h̄2	/mπ .

Consider now two-body scattering with the statistical inter-
action W (2)

φ of Eq. (107). The T matrix can be split as

T (z; k′, k) = τ0(z) + τ+(z)k + τ−(z)k′ + τ+−(z)k′k, (108)

yielding two coupled systems of algebraic equations, namely,

τ0 = g0 + g0I0τ0 + g01I2τ−, (109)

τ− = g01 + g01I0τ0 + g11I2τ−, (110)

and

τ+ = g01 + g0I0τ+ + g01I2τ+−, (111)

τ+− = g11 + g01I0τ+ + g11I2τ+−, (112)

where I have defined g0 = g∞
0 sin2 φ, g01 = h̄2 sin(2φ)/m,

g11 = − sin2 φπ h̄2/m	 and

In = In(z) =
∫

dq

2π

qn

z − h̄2q2/m
. (113)

As 	 → ∞, setting z = h̄2k2/m + iη gives, for the first sys-
tem,

τ0 = −ih̄2|k| cos2 φ[4 sin2 φ + sin2(2φ)]/2m

cos2 φ + [4 sin2 φ + sin2(2φ)]/2
, (114)

τ− = 2h̄2 tan φ

m

[
1 − im

2h̄2|k|τ0

]
, (115)

which affects the scattering of identical bosons. A similar

solution is obtained for τ+ and τ+−, which affect the scattering
of identical fermions. The on-shell T matrix (for bosons) is
given by

T on =
[

e−iφτ0 + 2h̄2|k|
m

sin φ

]
sec φ. (116)

It is interesting to note from Eqs. (114) and (115) that, for low
statistical angle φ, the lowest order source of scattering for
bosons is the term g01k′, which gives a contribution to the T
matrix that is linear in φ, which can be included perturbatively
to lowest order. Also, as one would expect, anyonic statistics
itself does not generate any bound states, since the T matrix
has no poles.

VIII. CONCLUSIONS

In this paper, I have presented a detailed account of the
most general duality relations between bosons and fermions
in one spatial dimension. These are valid for arbitrary low-
energy interactions, including multiparticle forces among
more than two bodies, spin, or multicomponent structure, and
single-particle Hamiltonian or dispersion in the continuum.
For spinless nonrelativistic systems, it has been shown that
the low-energy physics of interacting bosons and fermions
are equivalent to one another, a fact that would be difficult
to prove using a scattering theory approach, especially for
more than two particles. The results have been extended
to systems with arbitrary internal structure or spin, and
regularized in a manner that is computationally tractable,
for few bodies in the momentum representation and for
many particles using a lattice discretization—amenable to
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density-matrix renormalization group [79] calculations—or a
real-space regularization—amenable to quantum Monte Carlo
methods—for both Galilean systems and otherwise. One-
dimensional anyons can be treated in a completely analogous
way and have been briefly discussed.

These results have a number of direct consequences.
First, any system of bosons (fermions) in one dimension,
in continuous space with low-energy interactions, regardless
of the particular details of the single-particle Hamiltonian
and internal structure, can be treated in either the orig-
inal or dual representations. This allows one to choose
the most convenient particle statistics, depending on how
weakly or strongly coupled they are. For example, spinless
bosons with effectively attractive two-body interactions and
repulsive three-body interactions can form one-dimensional
quantum droplets [53], and therefore the same is true for
spinless fermions (whose low-energy interactions have been
recently manipulated by means of p-wave Feshbach reso-
nances [28]) with their dual Hamiltonian. Quantum droplets
of two-component bosons [80], which have been created
and observed in three dimensions [81,82], are also predicted
to occur in one dimension [83–86]. The conditions for the
formation of spinful fermionic droplets, which would be in
the strong-coupling limit, can be directly inferred from the
bosonic multicomponent theory [83] and the duality relations.
Bose-Fermi duality also applies to coupled wires, whether
genuinely continuous or as continuum limits of tight-binding
quantum ladders [21,87–89], where each wire represents a
different component (spin or true components can also be
included), and these are already coupled at the single-particle
level—a fact that only affects the form and nature of the statis-
tical interaction. With optical lattice-based ladders [88,89], it
is also important to note that, while the general Bose-Fermi
mapping does not apply on a tight-binding model, it does
apply to the more accurate continuous description with a non-
relativistic single-particle dispersion and an external periodic
potential. I leave other potentially interesting consequences
and applications of the results obtained here to the ingenuity
of our colleagues.
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APPENDIX A: TWO-BODY COUPLING CONSTANTS TO
NEXT-TO-LEADING ORDER

Here I present the solution to the spinless two-boson and
two-fermion problems with LO and NLO interactions. For
two bosons, the interaction is given by

Ve(k′, k) = g0 + g2(k′2 + k2). (A1)

Since I am dealing with identical particles, I will obtain the
scattering phase shifts via the reaction operator (R matrix),
which is simpler as it does not involve imaginary quantities.
The reaction matrix uses standing-wave boundary conditions,
as opposed to the T matrix, which uses incident-scattering
wave boundary conditions. For identical particles, these are
equivalent since incident wave functions are standing waves

[cos(kx) for bosons and sin(kx) for fermions]. The Lippmann-
Schwinger equation for the R matrix reads

R(z) = V + V Gsw
0 (E )R(z), (A2)

where Gsw
0 (E ) = [G0(E + i0+) + G0(E + i0−)]/2 ≡

Re(G0(E + i0+)).
The R matrix for nonrelativistic bosons with interaction

(A1) can be written as

Re(z; k′, k) = R0(z) + R20(z)k′2 + R02(z)k2 + R22(z)k′2k2.

(A3)
The R matrix above can be calculated analytically and, after
tedious but straightforward algebra, one observes that R20,
R02, and R22 all vanish as the cutoff 	 → ∞, while R0(z),
with z = h̄2k2/m, takes the renormalized form

R0(z) = 2h̄2

m

(
−1

a
+ 1

2
rk2

)
, (A4)

where a and r are, respectively, the scattering length and effec-
tive range. Defining the constant gR = −2/a, renormalization
is attained by fixing the bare coupling constants g0 and g2 in
Eq. (A1) as

mg2(	)

h̄2 = − π

	

[
1 +

√
−gR + π	

r	2

]−1

, (A5)

mg0(	)

h̄2 =
(

	

3π
+ 1

r

)[
	

mg2(	)

h̄2

]2

+	π

(
1 + 	mg2(	)

π h̄2

)2

. (A6)

The fermion interaction is given by

Vo(k′, k) + WF(k′, k) = g1k′k + g3k′(k′2 + k2)k, (A7)

where the odd-wave statistical interaction is already included
in g1. The R matrix for two fermions can be written as

Ro(z; k′, k) = k′k[R1(z) + R31(z)k′2 + R13(z)k2

+ R33(z)k′2k2]. (A8)

This can be calculated analytically as well and, analogously
to the bosonic case, one has vanishing R31, R13, and R33 in
the limit 	 → ∞, while R1(z), with z = h̄2k2/m, takes the
renormalized form

R1(z) = −2h̄2

m

(
−1

a
+ 1

2
rk2

)−1

. (A9)

Renormalization is attained by fixing the fermionic coupling
constants g1 and g3 as

mg3(	)

h̄2 = −3π

	3

[
1 −

√(πgR

4	
+ 1
) 3

1 − πr	/4

]
, (A10)

mg1(	)

h̄2 = − 1

	

3π

1 − πr	/4
+ [	3mg3(	)/h̄2]2

5π	
. (A11)

Note that for both the bosonic and fermionic problems, the
effective range is restricted to negative values, as observed
in Eqs. (A5) and (A10). This, while a strong constraint, is
not unphysical. In the recent experiment of Ref. [28] with
quasi-one-dimensional polarized fermions with odd-wave in-
teractions, the measured effective range is negative, and
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FIG. 5. Scattering phase shifts to LO + NLO for spinless bosons
and fermions as functions of the relative momentum with r <

0 and r/a = 1. Open (filled) symbols correspond to spinless
bosons (fermions). From bottom to top (top to bottom), 	|a| =
102, 103, 104, and 105. Blue dashed line is the exact result in the limit
	 → ∞.

therefore the corresponding low-energy physics can be de-
scribed by zero-range EFT.

The bosonic and fermionic theories are dual in virtue of
Eqs. (A4) and (A9). To see this, I first note that the R matrix
for bosons (fermions) is independent of momentum (only
depends on momentum proportionally to k′k), just as in the
case of LO scattering, which means that the scattering states
of bosons (fermions) take the form ψ (x) = cos(k|x| + δe )
(χ (x) = S(x) sin(k|x| + δo)). The scattering phase shifts δe for
the bosonic R matrix take on values

−k tan δe =
[
−1

a
+ 1

2
rk2

]
, (A12)

while the fermionic phase shifts are given by

k cot δo =
[
−1

a
+ 1

2
rk2

]
. (A13)

For duality to hold, the phase shifts must be related as δo =
δe + π/2, which is satisfied by Eqs. (A12) and (A13). In
Fig. 5, I plot the corresponding phase shifts for bosons and
fermions with different values of the cutoff, using the full re-
action matrices calculated with the bare coupling constants in
Eqs. (A5), (A6), (A10), and (A11), together with the exact ex-
pression in the limit 	 → ∞ [Eqs. (A12) and (A13)]. There,
it is observed that, as the cutoff is increased, both bosonic and
fermionic phase shifts converge to the desired value.

APPENDIX B: PSEUDOPOTENTIALS AND
REGULARIZATION

In this Appendix, I consider some technical details about
the duality relations, via the STO between noninteracting
bosons and strongly interacting fermions.

Throughout the paper, position-represented interactions are
fully regularized and renormalized by regarding distributions
and their products as members of Shirokov’s algebra, intro-
duced in Sec. II. As is usual with position-represented exact

pseudopotentials, these are not always convenient unless the
exact solution is known [90], and different, equivalent repre-
sentations can yield wildly different results when approximate
solutions are sought [90]. A straightforward example of this
fact can be constructed by considering N spin-↑ and one
spin-↓ fermions in three spatial dimensions interacting via
a LO s-wave potential in the unitary limit, i.e., with infinite
scattering length—the Fermi polaron problem [91]. An ansatz
containing up to one particle-hole term [92] yields, variation-
ally, infinite energy if the Fermi-Huang-Yang pseudopotential
is used [17,93,94]. If one uses instead nonperturbative cutoff
regularization and renormalization, the variational ground-
state energy lies very close to Monte Carlo results [92,95].
These two “different” approaches correspond to two par-
ticular choices in the possible family of equivalent, exact
pseudopotentials of Ref. [90]. Note also that regularized-
renormalized representations of pseudopotentials, including
the Fermi-Huang-Yang interaction [17], are not necessarily
Hermitian, as they aim to reproduce the correct right eigen-
states of an interacting system. What is important is that
they lead to unitary evolution which, in cutoff regularization
schemes, is guaranteed in the large cutoff limit where Her-
miticity is typically restored.

Cutoff regularization and renormalization in the momen-
tum representation has the advantage that it can be used
both perturbatively and nonperturbatively in a consistent man-
ner. While transformations using momentum cutoffs are well
defined and yield exact results, expansions of the resulting
expressions in powers of the (inverse) cutoff need to be dealt
with carefully, and either minimal microscopic input, as is
the case below for only one coupling constant, or a more
involved approach otherwise (see Appendix A), is required.
To illustrate this, the momentum representation of the non-
relativistic statistical interaction W can be obtained from its
position representation (25) as

〈k′|W |k〉 = 2h̄2

mπ
−
∫

dq
k + q

q − k′ . (B1)

Introducing a cutoff 	̃ to regularize the integral above, one
obtains

〈k′|W |k〉 = 4h̄2	̃

mπ
+ 2h̄2

mπ
(k + k′) ln

∣∣∣∣ 	̃ − k′

	̃ + k′

∣∣∣∣. (B2)

So far, the statistical interaction (B2) is exact in the limit 	̃ →
∞, that is, one can solve the problem at hand for finite 	̃ and
the results are exact as 	̃ is taken to infinity. The even- and
odd-wave projections of W are given by

We(k′, k) = 4h̄2	̃

mπ
+ 2h̄2

mπ
k′ ln

∣∣∣∣ 	̃ − k′

	̃ + k′

∣∣∣∣, (B3)

Wo(k′, k) = 2h̄2

mπ
k ln

∣∣∣∣ 	̃ − k′

	̃ + k′

∣∣∣∣. (B4)

For large 	̃, the even-wave statistical interaction (B3) is just
the point hard-core interaction and the momentum dependent
term can be dropped. Even though this might sound trivial,
it actually is not: It is possible to only retain the constant
term ∝ 	̃, unmodified, because that term alone leads to a
well-defined, renormalized T matrix. The odd-wave statistical
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interaction (B4) can be expanded as

Wo(k′, k) = − 4h̄2

mπ	̃
kk′ + O(	̃−3). (B5)

Now consider the Lippmann-Schwinger equation for the T
matrix for the expanded interaction,

T (z; k′, k) = − 4h̄2

mπ	̃
kk′ − 4h̄2

mπ	̃
k′

×
∫

dq

2π

q

z − h̄2q2/m
T (z; q, k), (B6)

which is solved by T (z; k′, k) = τ (z)k′k, yielding

τ (z) = −
[

mπ	̃

4h̄2 +
∫

dq

2π

q2

z − h̄2q2/m

]−1

. (B7)

Since the free boson problem is well defined, and the odd-
wave statistical interaction maps, by construction, fermions to
noninteracting bosons, the T matrix must be renormalizable.
Using a cutoff (	) regularization of the integral in Eq. (B7)
and imposing renormalizability, together with the nonexis-
tence of further momentum scales, one immediately has

	̃ = 4	

π2
, (B8)

which implies that the cutoff regularization of the odd-wave
part of the statistical interaction is given by

Wo(k′, k) = −π h̄2

m	
kk′. (B9)

Note that the difference between cutoffs 	̃ and 	 is natural.
The interaction in Eq. (B4) is regular and no cutoff is needed
as 	̃ acts, for fermions, as a momentum scale that needs to be
sent to infinity at the end of the calculation. When expanding
the interaction, Eq. (B5), the resulting low-energy potential is
singular, and yields UV divergences in the calculation of the T
matrix. This means that the expansion must be supplemented
by regularization, that is, the expansion actually reads

Wo(k′, k) = − 4h̄2

mπ	̃
kk′θ (|k| − 	), (B10)

with 	 a new momentum scale that by no means has to
be equal to 	̃. However, no new momentum scales can be
introduced in the problem, since no new physics is introduced,
which means that 	̃ and 	, while different, must be linearly
related.

APPENDIX C: FADDEEV EQUATIONS

In this Appendix, I provide details of the derivation of the
three-body Faddeev equations for nonrelativistic bosonic and
fermionic bound states.

The three-body T -matrix T is split into four components
using the Faddeev decomposition as [58]

T = T 1 + T 2 + T 3 + U, (C1)

where T i (i �= j �= � �= i) and U satisfy

T i(z) = t i(z) + t i(z)G0(z)(T j (z) + T �(z)) + t i(z)G0(z)U (z),
(C2)

U (z) = u(z) + u(z)G0(z)(T i(z) + T j (z) + T �(z)). (C3)

Above, G0(z) is the three-body noninteracting Green’s func-
tion, t i(z) is a two-body spectator T matrix, i.e.,

t i(z) = Vj� + Vj�G0(z)t i(z), (C4)

and u(z) is the three-body T matrix in the absence of two-body
interactions, i.e.,

u(z) = V (3) + V (3)G0(z)u(z). (C5)

At a bound-state energy, the (operator-valued) residues of the
Faddeev components are denoted by Mi(z) and R(z) for T i(z)
and U (z), respectively, and equations (C2) and (C3) for Mi

and R remain identical except for the inhomogeneous terms
which now disappear. Introducing Eq. (C3) into Eq. (C2), one
easily obtains

Mi(z) = t i(z)G0(z)(M j (z) + M�(z))

+ t i(z)G0(z)u(z)(Mi(z) + M j (z) + M�(z)). (C6)

I now particularize Eq. (C6) to bosons with LO two- and
three-body interactions. Without loss of generality, I will as-
sume that the total momentum vanishes (K = 0) within the
arguments of functions. The spectator two-body T -matrix is
given, for z = E < 0, by

〈k′|t i(z)|k〉 = (2π )2δ(ki − k′
i )δ(K − K ′)t2

(
E − 3h̄2k2

i

4m

)
,

(C7)

t2(E ) = 1
1
g0

+ π
√

m
h̄2|E |

. (C8)

The three-body T matrix in the absence of two-body interac-
tions u(z) (for z = E < 0) is given by [61]

〈k′|u(z)|k〉 = 2πδ(K − K ′)
2π

√
3h̄2

m

1

ln
∣∣E∗

E

∣∣ , (C9)

where E∗ ≡ −h̄2Q2
∗/2m is the location of the three-body Lan-

dau pole, with Q∗ becoming the only momentum scale in
the problem, which defines the strength of the three-body
interaction. The matrix elements of the Faddeev components
Mi(z) can be simplified considerably due to the momentum-
independent nature of t2(E ) and u(E ). By working out the
momentum representation of Eq. (C6), it is observed that

〈k′|Mi(z)|k〉 = M̃i(z, k′
i ), (C10)

i.e., only a function of the spectator particle’s momentum
k′

i . Using bosonic symmetry and defining M̃i(z, k′
i ) ≡ M̃(k),

where I have also redefined the dummy momentum variable
k′

i = k and obviated the energy dependence, Eq. (C6) takes
the simple form

M̃(k) = −t2

(
E − 3

4

h̄2k2

m

)

×
∫

dq

π

[
1

|E | + ε(k, q, k + q)

− 3

2
u(E )I (E , k)I (E , q)

]
M̃(q), (C11)
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where u(z) is given by Eq. (C9) after removing the factor
2πδ(K − K ′),

I (E , k) =
∫

dq

2π

1

E − ε(k, q, k + q)
, (C12)

and where I have defined ε(k1, k2, k3) =∑3
i=1 h̄2k2

i /2m.
I now derive the bound-state equation for the fermionic

case. The Faddeev components Mi(z) have the following mo-
mentum representation, after removing the factor 2πδ(K −
K ′):

Mi = F i(ki )k j�, (C13)

where i �= j �= � �= i, and k j� = (k j − k�)/2. Fermionic statis-
tics dictates that

F i(k j ) = −F j (ki ), (C14)

F i(k�) = F �(ki ), (C15)

F j (k�) = −F �(k j ), (C16)

which, after defining F i(ki ) ≡ F (k), simplifies the Faddeev
equations to

F (k) = α

(
E − 3

4

h̄2k2

m

)∫
dq j

2π
K(k, q j )F (q j ), (C17)

where α(E ) is given by

α(E ) = − 1

m2g0/4h̄2 +
√

m|E |/h̄2/2
, (C18)

and

K(k, q j ) = q j�(qi j − qi�)

E − ε(k, q j, k + q j )

+ �	(E )Ĩ	(E , k)�	(E , q j ). (C19)

Above, I have defined

�	(E , q j ) =
∫

dqi

2π

qi jqi�q j�(q j� + qi j − qi�)

E − ε(qi, q j, qi + q j )
, (C20)

Ĩ	(E , k) = 1

4

∫
dq j�

2π

q2
j�(9k2 − 4q j�)

E − ε(k, q j, k + q j )
. (C21)

1

�	(E )
= 1

g(3)
6

+
∫

dqi

2π

∫
dq j

2π

(qi jqi�q j�)2

|E | + ε(q)
. (C22)

APPENDIX D: SCATTERING IN THE CONTINUUM LIMIT
OF THE SSH MODEL

In this Appendix, I present the renormalization of the two-
boson problem dual to fermions in the continuum limit of the
SSH model and its statistical interaction.

For simplicity and without loss of generality, I consider the
massless case [δ = 0 in Eq. (84)]. Right- (R) and left-moving
(L) single-particle states with energy h̄vk are given by

|kR〉 = 1√
2

[|1〉 + |2〉]|k〉, (D1)

|−kL〉 = 1√
2

[|1〉 − |2〉]|−k〉. (D2)

The matrix structure (Mi j) of the statistical interac-
tion (85) and (86) only gives nonzero matrix elements for
〈LRk′

1k′
2|W |LRk1k2〉 and 〈RLk′

1k′
2|W |RLk1k2〉. For the ∝ k

choice in Eq. (88), the T matrix, after separating the factor
indicating total momentum conservation, takes the simple
form Ti j (z; k′, k) = τa;i, j (z)k, with z = 2h̄vk̄ + iη. Denoting
w(k′, k) = wak/2, the Lippmann-Schwinger equations read

τa;LR(z) = −wa − waτa;LR(z)
∫ 	

−	

dq

2π

q

2h̄v(k̄ + q) + iη
,

(D3)

τa;RL(z) = wa + waτa;RL(z)
∫ 	

−	

dq

2π

q

2h̄v(k̄ − q) + iη
. (D4)

The two equations above, with wa ∝ −1/	, are renormaliz-
able if wa = −2π h̄v/	, i.e., the coupling constant in Eq. (88)
is given by −4π h̄v/	. The solutions to Eqs. (D3) and
(D4) are given by τa;LR(z) = 4ih̄v/k̄ and τa;RL(z) = −4ih̄v/k̄
which give, on-shell, T on

RL = T on
LR = −4ih̄v. The symmetric

choice of statistical interaction w(k′, k) = −(4π h̄v/	)(k′ +
k) gives identical results, albeit the solution of its (now
channel-coupled) Lippmann-Schwinger equation is more in-
volved. The two-boson scattering state |ψk〉 (for a fixed center
of mass momentum K) is constructed as

|ψk〉 = [1 + G0(z)T (z)]
∣∣ψ (0)

k

〉
, (D5)

where |ψ (0)
k 〉 = (1/

√
2)(|kRL〉 + |−kLR〉) is the bosonic

incident state. It is straightforward to see that the position rep-
resentation of (D5) is simply |ψk (x)〉 = S(x)|χ (0)

k (x)〉, where
|χ (0)

k 〉 = (1/
√

2)(|kRL〉 − |−kLR〉) is its free fermionic dual.
Choosing the other version (∝ k′), or the symmetric one
(∝ k′ + k), of the statistical interaction (88) gives identical
results.

Note that, because of the first derivatives in the Hamilto-
nian, bosons in the |RR〉 and |LL〉 channels do not interact.
This implies that free bosonic states composed of only right-
or left- moving particles are eigenstates of the Hamiltonian.
The fact is that, since the statistical interaction does not couple
these states, the bosonic states of the form T |χ〉 are also
eigenstates and, therefore, nothing is a priori wrong. However,
this means that further input—the bosonic wave functions
should be the dual ones—is required (notice that the same
issues occur for free fermions). A neat way to solve this prob-
lem is to introduce infinitesimaly weak contact interactions in
the |RR〉 and |LL〉 channels. The interaction commutes with
the Hamiltonian, and their common eigenstates are just T |χ〉
[75].

I introduce now fermion-fermion interactions of the form
of Eq. (89). In the momentum representation, the interaction
reads 〈k′i′ j′|V |ki j〉 = g0〈i′ j′|Ô|i j〉, with

〈LR|Ô|LR〉 = 〈RL|Ô|RL〉 = 1
2 , (D6)

〈LR|Ô|RL〉 = 〈RL|Ô|LR〉 = − 1
2 . (D7)

The interaction (89) is renormalizable with finite g0. All ele-
ments of the T matrix are constant (momentum independent)
and, while coupled, their Lippmann-Schwinger equations are
straightforward. Defining 〈i′ j′|T |i j〉 = T i′ j′

i j , one gets two
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independent systems of coupled algebraic equations. For con-
creteness, one of these reads

T LR
LR = g0

2
+ g0

2
ILRT LR

LR − g0

2
IRLT RL

LR , (D8)

T RL
LR = g0

2
− g0

2
ILRT RL

LR + g0

2
IRLT LR

LR . (D9)

Above, Ii j are defined as (with z = 2h̄k̄v + iη)

ILR =
∫

dq

2π

1

2h̄v(k̄ + q) + iη
= − i

4h̄v
, (D10)

IRL =
∫

dq

2π

1

2h̄v(k̄ − q) + iη
= − i

4h̄v
. (D11)

The other system of two coupled equations is completely
analogous. For bosons, on the other hand, the dual interaction
Ṽ is, in the momentum representation, given by Eq. (90). To-
gether with the statistical interaction, the system of equations

obtained from the Lippmann-Schwinger equation is rather
formidable, and its renormalization, which is ensured by the
duality transformation, is quite tedious. For instance, with the
choice of statistical interaction ∝ k, one has

T LR
LR = τ+k + τ+−k′k, (D12)

T RL
LR = τ̃+−k′k. (D13)

It can be shown that τ+− → 0 when 	 → ∞ as ∼	−1. This
UV behavior, however, must be kept to produce a finite T
matrix before taking the limit 	 → ∞. It then follows that
τ+ is finite and takes the functional form

τ+ = − 1

k̄/4ih̄v + α
, (D14)

where α is real and momentum independent.
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