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Interplay between shell structure and trap deformation in dipolar Fermi gases

J. Bengtsson ,* G. Eriksson , J. Josefi, J. C. Cremon, and S. M. Reimann
Mathematical Physics and NanoLund, Lund University, Box 118, 22100 Lund, Sweden

(Received 5 April 2020; accepted 21 September 2020; published 4 November 2020)

Finite fermion systems are known to exhibit shell structure in the weakly interacting regime, as is well known
from atoms, nuclei, metallic clusters, or even quantum dots in two dimensions. All these systems have in
common that the particle interactions between electrons or nucleons are spatially isotropic. Dipolar quantum
systems as they have been realized with ultracold gases, however, are governed by an intrinsic anisotropy
of the two-body interaction that depends on the orientation of the dipoles relative to each other. Here we
investigate how this interaction anisotropy modifies the shell structure in a weakly interacting two-dimensional
anisotropic harmonic trap. Going beyond Hartree-Fock analysis by applying the so-called importance-truncated
configuration-interaction (CI) method as well as quadratic CI with single and double substitutions, we show how
the magnetostriction in the system may be counteracted upon by a deformation of the confinement.
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I. INTRODUCTION

Atomic alkali-metal clusters are one of the first experimen-
tally realized man-made artificial quantum systems with mass
spectra revealing pronounced electronic shells [1,2] analogous
to the closed shells in atomic noble gases, or the “magic num-
bers” of increased stability well known from nuclear structure
[3]. Another example is semiconductor quantum dots where
the low-dimensional electron gas in a heterostructure can be
electrostatically confined to small electron puddles exhibit-
ing shell structure [4]. A third, yet very different, category
of finite quantum systems is offered by the advances with
trapped cold atomic quantum gases (see, for example, the
reviews and books in Refs. [5–8]). These systems offer ap-
pealing possibilities to realize and simulate a wide range of
quantum many-body phenomena [9], for bosonic as well as
for fermionic atoms. In contrast to clusters or nanostructures,
there is a very high degree of tunability: Not only can one
design the shape and dimensionality of the confinement, but
one can also modify both strength and shape of the particle
interactions. It also became possible to reach the few-body
limit [10–13], even down to single-atom control in experi-
ments with fermionic 6Li [13].

Initially, studies of ultracold and dilute atomic quantum
gases mainly considered isotropic short-range interactions
[6,7]. Atoms such as chromium have a large magnetic dipole
moment, but usually the isotropic van der Waals interactions
dominate. However, tuning these interactions by Feshbach
resonances may enhance the relative strength of the dipole-
dipole interactions [14,15], bringing their long-range nature
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and spatial anisotropy into play. After reaching the mile-
stone of realizing a dipolar Bose-Einstein condensate [16,17],
many other experiments followed [18,19], also for dyspro-
sium [20–22] and erbium [23] and polar molecules [24–30].
Also dipolar Fermi gases of dysprosium [31], fermionic er-
bium [32], and a chromium dipolar Fermi sea [33] were
reported. (For early reviews on dipolar gases, see, e.g.,
Refs. [19,34,35]). More recently, with erbium atoms it also
became possible to realize two-component Fermi gases with
strong and tunable interactions [36].

On the theory side, trapped dipolar Fermi gases have
been studied extensively within variational approaches such
as Hartree-Fock and beyond (see, for example, Refs. [37–48]).
Reference [37] showed that the Fock exchange term leads to
a deformation in momentum space. The Hartree term alone
resulted in a deformation in position space [49], leading to an
instability of spherically trapped gases, but stabilizing prolate
or oblate ones. The spheroidal distortion of the Fermi surface
predicted in Ref. [37] was then also observed experimentally
(see Ref. [50]).

In a most simple description, shell structure occurs as a
consequence of the distribution of single-particle energies that
are associated with the approximation by an effective mean-
field potential. The underlying principle is similar in cases
where the interactions are relatively weak, in other words,
when correlation effects are not too strong. A high degree
of symmetry of the system initially leads to degeneracies
and a “bunchiness” of levels in the mean-field single-particle
spectrum. When the fermion number is such that a bunch
of energy levels can be fully occupied and there is a gap at
the Fermi surface, i.e., when a “shell” is filled, the system is
particularly stable. In an open-shell scenario, however, where
the particle number is insufficient to fill the shell, the system
will undergo a breaking of symmetry to reach stability at
different level fillings by lowering the degree of degeneracy.
In self-bound fermion systems such as nuclei or metallic
clusters where interactions are mainly spatially isotropic, this
leads to the well-known Jahn-Teller shape deformations [2,3].
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In dipolar quantum gases, in contrast, the dipole-dipole two-
body interaction itself is spatially anisotropic and depends on
the orientation of the dipoles relative to each other. In this case
an anisotropy of the effective mean field may originate rather
from the intrinsic structure of the two-body force than from
the trap, confining the gas by a potential with an externally
determined shape.

We here thus pose the question, whether shell effects may
occur for fermionic dipolar gases where (electric or mag-
netic) dipole moments may be aligned by a corresponding
external field, and how the shell structure modifies upon a
tilt of the dipole direction. In three dimensions, the unavoid-
able head-to-tail attraction would prevent the realization of a
purely repulsive system. We thus here restrict our analysis to
a quasi-two-dimensional harmonic trap, where the azimuthal
symmetry yields a strong shell structure despite the reduced
dimensionality [4], but where for moderate tilt angles the
otherwise dominant head-to-tail attraction can be avoided
[25,26].

Early studies of both energy- and density-shell structures in
trapped Fermi gases were reported in Refs. [51–53], followed
by a time-dependent Hartree-Fock analysis of shell structure
in three dimensions in Ref. [54]. Importantly, in the latter
work it was shown that quadrupole and breathing modes are
less affected in the cases of closed spherical shells. References
[47,48,55] more recently investigated the effect of the dipolar
anisotropy on the time-of-flight expansion and on the angular
dependence of the Fermi surface deformation of the ground
state in relation to the trap anisotropy, and found that the Fermi
surface deforms maximally when the dipoles are tilted along
the less confined trap direction. Here, we analyze the interplay
of this effect with the otherwise predominant shell structure in
the weakly interacting regime.

The enhancement of interaction effects in two-dimensional
dipolar Fermi gases and the importance to go beyond Hartree-
Fock analysis was discussed in Refs. [56–58]. We here apply
the so-called importance-truncated configuration-interaction
(CI) method [59] as well as quadratic CI [60] with single and
double substitutions, allowing us to go beyond Hartree-Fock
analysis.

The paper is organized as follows: In Sec. II we describe
the setup and the effective dipole-dipole interaction in a quasi-
two-dimensional confinement, and describe in Sec. III the
methodology. In Sec. IV we discuss the low-lying energy
eigenstates as a function of the dipolar anisotropy for a de-
formed confinement, mapping out the interplay between the
trap confinement and the magnetostriction associated with the
dipolar two-body interaction. We finally analyze the second
differences in the ground-state energies, which is a mea-
sure for the strength of the shell structure in the symmetric,
anisotropic, and symmetry-restored cases, in Sec. V, and con-
clude in Sec.VI.

II. DIPOLES IN A QUASI-TWO-DIMENSIONAL
HARMONIC TRAP

Let us now consider N spin-polarized fermions in a trap-
ping potential V trap(r) = V trap

z (z)V trap
⊥ (r⊥), where r = (x, y, z)

and r⊥ = (x, y). Here, V trap
z is a tightly confined harmonic

oscillator (with angular frequency ωz), such that all particles

may be described by the (single-particle) Gaussian ground
state in the z direction, and

V trap
⊥ (r⊥) = 1

2 Mω2
⊥(αx2 + α−1y2) (1)

is a parity-conserving potential, where M is the particle mass,
ω⊥ = 0.01ωz, and α = 1.15. The constant α determines the
anisotropy of the trap in the xy plane. The dipole moment
vectors d associated with the fermions are aligned by an
external field. The interaction potential V int between two par-
ticles, with identical vectors d, respectively at positions r
and r′, reads

V int(r̃) = D2 1 − 3 cos2 θr̃d

|r̃|3 , (2)

where D2 = 0.82 h̄ω⊥l3
⊥ is the coupling (or interaction)

strength, l⊥ = √
h̄/(Mω⊥) is the oscillator length in the xy

plane, r̃ = r − r′ is the relative position, and θr̃d is the angle
between r̃ and d. The tight confinement in the z direction
effectively reduces the three-dimensional potential, V int, to a
quasi-two-dimensional one, V int

⊥ . As in Ref. [61] we assume
that d is oriented in the xz plane by an angle � to the x axis,
and obtain

V int
⊥ (r̃⊥) = D2eξ̃

2
√

2π l3
z

{(2 + 4ξ̃ )K0(ξ̃ ) − 4ξ̃K1(ξ̃ )

+ cos2 �[−(3 + 4ξ̃ )K0(ξ̃ ) + (1 + 4ξ̃ )K1(ξ̃ )]

+2 cos2 � cos2 φ̃[−2ξ̃K0(ξ̃ ) + (2ξ̃ − 1)K1(ξ̃ )]},
(3)

where ξ̃ = r̃2
⊥/(4l2

z ) = (x̃2 + ỹ2)/(4l2
z ), lz = √

h̄/(Mωz ) is
the oscillator length in the z direction, and φ̃ = arctan(ỹ/x̃),
and where K0 and K1 are modified Bessel functions of the
second kind. The effective dipole-dipole interaction is spa-
tially isotropic when � = 90◦, but for smaller angles �,
it has a pronounced spatial anisotropy. In particular, for
� < 90◦ a region is formed where V int

⊥ (r̃⊥) < 0. For angles in
the interval arccos(1/

√
3) < � < 90 [where arccos(1/

√
3) ≈

54.7◦ is the so-called magic angle] the dipole-dipole inter-
action is attractive only for r̃⊥ within a bounded region in
R2, whereas for � < arccos(1/

√
3) the corresponding re-

gion is unbounded. The interaction potential is sketched in
Fig. 1 for � = 50◦. (The inset shows the shell degeneracies
in a two-dimensional isotropic harmonic trap). The effective
Hamiltonian of the system here thus reads

Ĥ =
N∑

i=1

[
p̂2

⊥,i

2M
+ V trap

⊥ (r̂⊥,i )

]
+

N∑
i> j

V int
⊥ (r̂⊥,i − r̂⊥, j ), (4)

where V trap
⊥ was given in Eq. (1) above, V int

⊥ in Eq. (3), and
p̂⊥,i = ( p̂i,x, p̂i,y ) and r̂⊥,i = (x̂i, ŷi ) are respectively the mo-
mentum and the position operator of the ith particle in the
xy plane. For the considered system, we observe that parity is
preserved. The individual many-body eigenstate to Ĥ has thus
either even or odd parity.

III. GOING BEYOND HARTREE-FOCK

We now search for the low-energy eigenstates to Ĥ in
Eq. (4) for N = 1, 2, . . . , Nmax fermions and for different

053302-2



INTERPLAY BETWEEN SHELL STRUCTURE AND TRAP … PHYSICAL REVIEW A 102, 053302 (2020)

FIG. 1. Effective interaction potential V int
⊥ , given by Eq. (3),

for interaction strength D2 = 0.82 h̄ω⊥l3
⊥, oscillator length l⊥ = 10lz,

and a dipolar angle of � = 50◦. The inset to the upper right shows
a schematic picture of the quasi-two-dimensional harmonic trap-
ping potential (α = 1) and its single-particle states in the first four
shells, where the white circles schematically represent the single
orbitals with shell degeneracies dN0 = N0 + 1, N0 = 0, 1, 2, . . . , in
two dimensions.

dipolar orientations �. Depending on Nmax, two different
numerical methods are employed for N > 1: the so-called
importance-truncated configuration interaction (ITCI) [59]
and the quadratic configuration interaction with single and
double substitutions (QCI-SD) [60]. (For N = 1, the solution
is trivially known from the single-particle oscillator ground
state). In all methods, the same primitive one-body basis

ϕm, j (r⊥, φ) = eimφB(k)
j (r⊥) (5)

is used at the most fundamental level, where (r⊥, φ) are the
polar coordinates, m is an integer, and B(k)

j is a kth-order
B-spline. The B-splines are piecewise polynomials defined
by their order k and by their so-called knot-point sequence
τ j � τ j+1 (see, e.g., Ref. [62]),

B(1)
j (r⊥) =

{1 if τ j � r⊥ < τ j+1

0 otherwise, (6)

B(k)
j (r⊥) = r⊥ − τ j

τ j+k−1 − τ j
B(k−1)

j (r⊥)

+ τ j+k − r⊥
τ j+k − τ j+1

B(k−1)
j+1 (r⊥). (7)

In total, we use 702 single-particle basis states. The angular
part of ϕ is limited to m ∈ [−13, 13] and 26 B-splines are
used to sample the radial part. We chose fifth-order B-splines,
i.e., k = 5, defined by a linear distribution of knot points
with �τ = 0.15l⊥ in an inner region, 0 � r⊥/l⊥ � 3, and an
exponentially increasing distance between the knot points in
an outer region, 3 � r⊥/l⊥ � 5. The last knot point, located
at r⊥ = 5l⊥, sets the radius of our computational box. The
computational basis is carefully chosen to ensure an adequate
description of systems within a rather wide range of dipolar

orientations (45◦ � � � 90◦) and particle numbers (N � 16),
while keeping the basis size down and the computational
time tractable. We note that the systems with predominantly
repulsive dipole-dipole interactions, i.e., where � ≈ 90◦, will
effectively determine the required computational box radius.
Naturally, the lower limit on the box radius grows with the
particle number N of the system (as well as with a possible in-
crease in the interaction strength D2). A decrease in �, on the
other hand, makes it increasingly important (particularly for �

below the magic angle) to numerically resolve the effects of
the attractive dipole-dipole interaction region. Consequently,
the systems with � = 45◦, i.e., the lowest � here considered,
effectively sets the upper limit on �τ .

For a systematic comparison of systems with only a hand-
ful of fermions (here for N � 4), the eigenenergies and
eigenstates of Ĥ are here retrieved using the method of ITCI.
We divide the full many-body Hilbert space H into a model (or
reference) subspace HM and the orthogonal complementary
HC . To reduce the computational workload, the diagonal-
ization of Ĥ is performed within HM alone. ITCI is thus
variational, with the many-body eigenenergies E obtained
with HM replacing (as estimates of) the eigenenergies using
the full H. Furthermore, we explore the possibility to tailor
HM for one specific many-body solution at a time, with the
purpose of keeping the dimensionality of HM (for each re-
trieved eigenenergy) to a minimum. For the singly targeted
many-body solution, the validity of the model space is es-
timated using perturbation theory. In particular, we expand
the desired many-body solution (retrieved with HM) to HC

following the prescription of multiconfigurational first-order
perturbation theory (here based on an Epstein-Nesbet-like
[63,64] partitioning, as discussed in, e.g., Ref. [59]). The
corresponding second-order energy correction δE (2) to the
many-body eigenenergy E serves as an error estimate of
HM . (The first-order correction δE (1) = 0 by construction).
Of course, the perturbative correction to the many-body solu-
tion also identifies the most important basis states belonging
to HC . This information promotes an iterative construction
of HM , starting from an initial guess spanned by only a
few many-body basis states, and transferring the most im-
portant states from HC to HM in each iteration. Here, the
many-body basis is given by Fock states, constructed from
orthogonal one-body functions. However, since the B-splines
are nonorthogonal, we chose (for simplicity) to diagonalize
the single-particle (isotropic) harmonic oscillator Hamiltonian
in the ϕ basis [given by Eq. (5)] and use these solutions when
constructing the many-body basis. A subset of the hereby
acquired Fock states will furthermore span HM and its com-
plementary will span HC . In each iteration, the latter Fock
states are assessed based on the sizes of their individual over-
laps with the latest computed desired (first-order corrected)
many-body solution. Next, we transfer all Fock states from
HC to HM with large enough overlap magnitudes (here we
chose a threshold of 5% compared to the largest sized overlap
identified among all Fock states in HC). With this approach,
HM systematically approaches H. In principle, the eigenener-
gies retrieved with ITCI thus converge to that obtained with
full configuration interaction (using H). In practice, however,
we stop the incorporation of new basis states into HM when
the model space is deemed adequate, with an error estimate
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below some predefined threshold. If the final estimate of the
error is small, then the computed eigenstates and eigenen-
ergies are still expected to be close to those obtained with
full configuration interaction. In this case, since the latter
method is size extensive (i.e., the computed energies scale
properly with the number of particles [65]), this in practice
permits a direct comparison between states of contrasting
particle numbers even though ITCI is strictly speaking not
size extensive by construction. In this work, the presented
eigenenergies retrieved with ITCI (see Sec. IV) all have rel-
ative error estimates |δE (2)/E | < 2.5 × 10−5, if not explicitly
stated otherwise. Still, in general, the rapid increase in the
size of the Hilbert space H with N effectively puts a limit to
the applicability of the considered method. Even though not
all Fock states belong to HM (in which the diagonalization
takes place), the importance of all (or at least a substantial
part of) the Fock states in HC also needs to be assessed in
each iteration. With 702 one-body basis states, there are for
instance already ∼1.00 × 1010 possible many-body states to
consider for N = 4 (even though not all of them have the
desired parity). A full configuration interaction calculation is
thus here not feasible in practice. With the method of ITCI,
on the other hand, after only a handful of iterations (starting
with HM spanned by the ∼103 lowest-energy Fock states) the
dimensionality of HM will, in this case, typically have grown
to ∼5 × 105 (which is substantially lower than that of H)
with errors of the individual eigenenergies decreased below
the chosen threshold |δE (2)/E | = 2.5 × 10−5.

For slightly larger particle numbers (here for N � 16), we
instead make use of the method of quadratic configuration in-
teraction with single and double substitutions, QCI-SD. Here,
the mean-field (Hartree-Fock) orbitals are first retrieved in the
ϕ basis given by Eq. (5). Next, to go beyond the mean-field
descriptions, we compute (in a self-consistent procedure) the
contributions connected to the many-body states constructed
from the mean-field solution by single and double excitations,
while at the same time enforcing size extensivity. The consid-
ered method can be seen as a modification of the configuration
interaction with single and double substitutions, making it
size extensive by adding appropriate terms in the projec-
tion equations [60]. Alternatively, QCI-SD may be thought
of as a simplified version of the corresponding coupled-
cluster method with single and double substitutions. With
QCI-SD and given the considered one-body basis size, only
∼1.46 × 106 many-body basis-states are, e.g., referenced for
N = 4 and ∼2.82 × 107 states for N = 16. To speed up
(and in some cases to facilitate) the convergence of the
self-consistent QCI-SD calculation, the frequently used di-
rect inversion of the iterative subspace (DIIS) method [66]
is here implemented. Note also that, in order to construct
the many-body low-energy spectrum, in addition QCI-SD is
here applied to the excited Hartree-Fock solutions, converging
to local minima in the energy surface. Even when only the
many-body ground state is desired, for systems where the
many-body ground and first excited states are close to one
another in energy, we stress the necessity of also considering
the excited Hartree-Fock solutions. When correcting for the
correlation energy, an excited mean-field state may produce
the lowest energy; i.e., an excited Hartree-Fock solution could
be the mean-field approximation of the actual many-body

ground state. To find the excited mean-field solutions, we here
start the self-consistent iteration from different excitations of
the mean-field ground state and use the method of maxi-
mum overlap [67] together with DIIS to support the desired
convergences. Alternatively, in some cases, we instead map
out the different mean-field (excited) solutions by following
them individually during a numerical sweep in the dipolar
orientation �. A converged mean-field solution at one angle,
�, is thus used as the initial guess for the subsequent solution
at a slightly larger, or smaller, angle.

Finally, we demonstrate that the choice of 702 single-
particle states of the form given in Eq. (5), with 26 B-splines
for the radial description and m ∈ [−13, 13] for the angular
one, is sufficient for an adequate description of the consid-
ered systems (where α = 1.15, D2 = 0.82 h̄ω⊥l3

⊥, N � 16,
and 45◦ � � � 90◦). In particular, we increase the number
of B-splines from 26 to 39 and investigate the effects on the
numerically retrieved many-body ground-state energies using
QCI-SD for N = 16, which is the computationally most de-
manding case considered. Both the energy convergence with
respect to an increase in the computational box radius and a
decrease in the knot-point separation �τ (enabling solutions
with higher frequency modulations) are studied numerically.
In the former case, we find that the many-body ground-state
energy retrieved for � = 90◦ shifts from ∼79.770h̄ω⊥ to
∼79.758h̄ω⊥ when extending the computational box radius
from r⊥ = 5l⊥ (using 26 B-splines) to r⊥ = 7.5l⊥ (using 39
B-splines), while keeping �τ = 0.15. We recall that, as dis-
cussed already in connection to Eqs. (6) and (7), the largest
computational box radius is generally required for, and thus
the largest energy shift (or error) will here be observed for,
isotopic dipole-dipole interactions, i.e., for � = 90◦. Simi-
larly, for � = 45◦ (where we expect the highest density of
knot points to be needed), the energy shifts from ∼65.557h̄ω⊥
to ∼65.524h̄ω⊥ when reducing �τ from �τ = 0.15 (using
26 B-splines) to �τ = 0.1 (using 39 B-splines) while keeping
the box radius fixed at 5l⊥. The rather small energy shifts en-
countered in both scenarios indicate that the considered basis
of 702 single-particle states successfully captures the physical
features of systems where 45◦ � � � 90◦ and N � 16.

IV. LOW-ENERGY EIGENSTATES

Let us now first examine the properties of the ground
and the first excited state in the case of a few dipolar
fermions, with interaction strength D2 = 0.82 h̄ω⊥l3

⊥, confined
in a slightly anisotropic trap that is elongated in the y direction
(α = 1.15). For N = 1, the ground- and the first-excited-state
energies are E0/(h̄ω⊥) ≈ 1.0024 and E1/(h̄ω⊥) ≈ 1.9349, re-
spectively. Recalling the corresponding energies E0/(h̄ω⊥) =
1 and E1/(h̄ω⊥) = 2 for an isotropic harmonic trap, we here
note that the anisotropic deformation shifts the two single-
particle energies in opposite directions, bringing them closer
to one another. For larger particle numbers, the energy struc-
ture becomes more complex (owing to the interaction between
the particles) and depends explicitly on the dipolar orien-
tation angle � [61]. In the left panels of Fig. 2, we show
the low many-body energies retrieved with the ITCI method,
described in Sec. III above, for N = 2, 3, and 4, and a trap
deformation of strength α = 1.15. The right panels show the

053302-4



INTERPLAY BETWEEN SHELL STRUCTURE AND TRAP … PHYSICAL REVIEW A 102, 053302 (2020)

FIG. 2. The many-body energy associated with the ground state
(red line) and the excited states (blue lines) for 2 � N � 4 and for
45◦ � � � 90◦. The panels to the right show the single-particle
densities of the ground (last row) and first excited (first row) states at
� = 45◦ (left column) and � = 90◦ (right column), for |x/l⊥| � 2.5
and |y/l⊥| � 2.5. The densities are normalized to N .

density distributions of the two-dimensional single-particle
densities ρ(x, y) for the many-body ground state and the first
excited state at � = 45◦ and � = 90◦, corresponding to the
larger squares seen in the left panels of the figure. For � =
90◦, the isotropic repulsive dipole-dipole interaction results in
ground-state densities that are shaped by the trap geometry.
The larger extension of ρ in the y direction (when � = 90◦)
is clearly seen for N = 2 and N = 4, but also holds for
N = 3. Upon reduction of �, the anisotropy of the interaction
potential increases. In particular, the effective dipole-dipole
interaction becomes attractive for configurations where the
particles are oriented “head-to-tail,” i.e., for particles lined
up in the x direction. With the decrease in � follows thus
a possible decrease of the effective interaction energy, and
consequently of the energy of the many-body ground and low-
lying states. Indeed, for � = 45◦ and for N = 2 and N = 4,
we see that the ground-state densities are elongated in the

x direction instead, favoring head-to-tail configurations. The
drastic change in ground-state density profiles are attributed
to the (avoided) crossings seen around � ≈ 50◦ for N = 2
and N = 4. Actually, for N = 4, there are three states of
the same (even) parity and close in energy in the vicinity of
� ≈ 50◦, which explains the different structure in ρ between
the first excited state at � = 90◦ and the ground state at
� = 45◦. The higher-energy states for N = 4 seen in the top
left corner in the top panel, with E/(h̄ω⊥) > 9 for � = 45◦,
all have odd parity and error estimates |δE (2)/E | < 6 × 10−5,
in contrast to that of all other shown states where |δE (2)/E | <

2.5 × 10−5. For N = 3, the corresponding lowest excitation
energy is larger and the change in the ground-state density
distribution with � is less pronounced. However, the den-
sity profile of the first excited state changes greatly. Once
again, (avoided) crossings are responsible for this particular
change in ρ, making the density of the first excited state
elongated in the x direction at lower �. Intriguingly, for
the ground state, a similar decrease in � triggers a funda-
mentally different response in ρ. First of all, a closer look
at the ground-state density reveals a minor increase in ρ

at the center of the trap for � = 45◦ compared to that for
� = 90◦. In addition, a slightly lower value of 〈x2 − y2〉/
〈x2 + y2〉 is found numerically for � = 45◦ compared
to � = 90◦, where 〈x2 ± y2〉= ∫∫

(x2 ± y2)ρ(x, y) dx dy.
Even though it is hardly visible in Fig. 2, a decrease from
� = 90◦ to � = 45◦ thus effectively increases the relative
elongation of the ground-state density in the y direction, i.e., in
the orthogonal direction to what is favored by the anisotropic
dipole-dipole interaction.

Let us now increase the number of fermions, N , to inves-
tigate if the system responds in a similar manner to a change
in �. In Fig. 3, the lowest excitation energies, E1 − E0, re-
trieved with the method of QCI-SD (as discussed in Sec. III),
are shown for N � 10. In general, we observe two different
categories of many-body systems; those with large excitation
energies (similar for N = 3, 6, and 10), and those with lower
energy differences (similar for N = 2, 4, 5, 7, 8, and 9).
We also note that the latter systems all have minima in the
excitation energy E1 − E0 located somewhere in the region
50◦ � � � 55◦. The inset in Fig. 3 shows the relative differ-
ence between the ground-state energies for N � 4 computed
with ITCI (which is considered to be close to numerically
exact) and QCI-SD. For N = 2, QCI-SD will, by construction,
replicate that of full configuration interaction. Clearly, the low
deviations between the two methods also when N = 3 and
N = 4 justifies the usage of QCI-SD (at least for low enough
particle numbers).

We recall that the many-body ground state is charac-
terized by the intricate interplay between the minimization
of the (dipole-dipole) interaction energy and that of the
single-particle energy dictated by the trapping potential. Fur-
thermore, for certain N , an (avoided) energy crossing marks
the transition from the single-particle density elongated in the
y direction (as favored by the trap) to one elongated in the
x direction (as favored by the dipole-dipole interaction when
� < 90◦). For a larger interaction strength D2 (not shown
here), the crossing shifts closer to � = 90◦; i.e., a stronger
contribution from the dipole-dipole interaction causes the
system to respond already at smaller differences of the tilt
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FIG. 3. The energy difference E1 − E0, between the first excited
and the ground state of the system, for N � 10. (Note the change of
scale for the energies in the upper and lower part of the figure). For
the given values of the dipolar orientation �, the gaps are largest in
the closed-shell configurations with N = 1, 3, 6, and 10. The inset
shows a comparison between the ground-state energies computed
with ITCI and QCI-SD for N = 3 and N = 4.

angle from the isotropic case � = 90◦. Similarly, a larger
trap deformation (α > 1.15) shifts the crossing further away
from the value � = 90◦. Naturally, for α < 1 both the trap
deformation and the tilt of the dipolar orientation (occurring
in the xz plane) favors systems elongated in the x direction.
The two effects thus enhance, rather than counteract, one
another and no similar crossing, i.e., marking the transition be-
tween ground-state densities elongated in different directions,
is expected.

V. ENERGY SHELL STRUCTURE

For comparison we now first briefly discuss the trivial case
of noninteracting fermions in an isotropic harmonic confine-
ment, i.e., a system where D2 = 0 and α = 1. In this case, the
system displays a pronounced energy shell structure, trivially
reflecting the azimuthal symmetry of the one-body problem
that leads to the degeneracies dN0 = N0 + 1 with shell in-
dex N0 = 0, 1, 2, . . . . The N-body ground state adheres to
the aufbau principle, with fermions occupying the N single-
particle states of lowest energy. For spin-polarized fermions,
closed energy shell systems are consequently found for N =
1, 3, 6, 10, 15, . . . in agreement with the single-particle orbital
degeneracy and with the Pauli exclusion principle.

Weakly interacting trapped fermions may exhibit energy
shells reminiscent of those of the noninteracting particles
if the states are not too strongly correlated, which has
been observed for example also in quasi-two-dimensional

and azimuthally symmetric quantum dots (see the review in
Ref. [4]). For dipolar fermions in an isotropic harmonic trap,
similar energy shells are thus to be expected in the purely re-
pulsive case at � = 90◦ where the isotropic repulsion between
particles renders the many-body problem rotationally invari-
ant about the z axis. The particle interaction, however, makes
the description of distinct energy shells an approximate one,
applicable only in a mean-field picture: The single-particle
mean-field energies, although not necessarily being degener-
ate, may cluster around certain energy values, i.e., in different
energy shells, with larger energy gaps in between them. For
a fixed confinement, the interaction energy contribution to
the many-body energy grows with N , typically reducing the
resemblance between the interacting and the noninteracting
systems.

Let us now return to the case of dipolar fermions with
interaction strength D2 = 0.82 h̄ω⊥l3

⊥ in an anisotropic trap
with α = 1.15. As a consequence of the trap deformation, the
energy shell structure for � = 90◦ will (at least partly) be de-
stroyed. As the single-particle orbital degeneracies associated
with the isotropic harmonic oscillator are lifted, the energy
shell structure is distorted already for noninteracting fermions.
A reduction in � renders the effective dipole-dipole inter-
action anisotropic; i.e., also the rotational symmetry of the
two-body part of the Hamiltonian gets broken. In the special
case of an isotropic harmonic trap (α = 1), such symmetry
breaking necessarily weakens the energy shell resemblance
for the system. For the deformed trap, however, the effect
of changing � is more complex. The anisotropic interaction
potential V int

⊥ can here, in principle, counteract the effects of
the trap deformation and largely restore the energy shell struc-
ture. Intriguingly, this revival of shell structure originates from
the elaborate interplay between one-body physics (governed
by the anisotropic trap) and two-body physics (where the
anisotropy is an intrinsic property of the dipolar interaction).

For systems exhibiting a clear energy shell structure, the
many-body ground states are (nearly) degenerate for the open-
shell systems. In other words, the lowest excitation energies
observed for the open-shell systems are significantly lower
than the corresponding ones for the closed-shell systems. In
Fig. 3, such a feature in E1 − E0 is observed (particularly
for 50◦ � � � 55◦) which hints at closed energy shells for
N = 1, 3, 6, 10, . . ., similar to the case of noninteracting spin-
polarized fermions in a two-dimensional isotropic harmonic
confinement.

To characterize the shell structure in the different many-
body systems characterized by the particle number N , we
compute the addition energy difference [68,69]

�2(N ) = [E0(N + 1) − E0(N )] − [E0(N ) − E0(N − 1)],
(8)

where E0(N ) is the energy of the N-fermion ground state.
When the shell structure is strong, one expects a series of
pronounced peaks in �2 at the shell fillings which for a
system close to a two-dimensional isotropic harmonic oscil-
lator should occur at N = 1, 3, 6, 10, 15, . . . , as we argued
for above. Noninteracting fermions in an isotropic harmonic
trap have �2(N )/(h̄ω⊥) = 1 for the closed-shell N-particle
systems and �2(N )/(h̄ω⊥) = 0 for the open ones. In Fig. 4,
we show the �2 obtained with the method of QCI-SD for
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FIG. 4. The difference in addition energies, �2(N ), for dipolar
fermions in the anisotropic confinement α = 1.15. Two different
dipolar orientations are considered: � = 90◦ (yellow line) and � =
52.5◦ (red line) with interaction strength D2 = 0.82 h̄ω⊥l3

⊥. In addi-
tion, the case of noninteracting fermions (D2 = 0, black dotted line)
is shown as a reference.

D2 = 0.82h̄ω⊥l3
⊥, N = 1, 2, . . . , 15, and for � = 52.5◦ (red

solid line), i.e., for the dipolar orientation where we expect
energy shells to manifest. For comparison, we also include
�2 for the case where � = 90◦ (yellow solid line) as well as
for noninteracting fermions (black dotted line). Note that the
latter two cases both show a rapid decline in the peak heights
of �2 with N , indicating a loss of energy shell structure due to
the deformation of the trap. For � = 52.5◦, on the other hand,
a remarkable revival of the energy shell structure can be seen,
also showing a smaller decrease in peak height in �2 with N .
(We here recall that, for a fixed confinement, a zero decay rate
is, in general, not possible due to the increased contribution
from the interaction energy with N).

Finally, in Fig. 5, we examine the properties of �2 for
different dipolar orientations in the moderately deformed
trap with α = 1.15 in more detail. We find that the largest
peak heights of �2 associated with the closed-shell systems
are indeed obtained for 50◦ � � � 55◦, i.e., the dipolar
orientation giving rise to the lowest excitation energies in
Fig. 3. We also note the slight shift in the peak heights in
�2 (for N = 3, 6, 10, 15) towards higher � for larger N . A
similar tendency can be seen in the corresponding maxima in
the excitation energies in Fig. 3. We repeat, the larger number
of particles increases the influence from the dipole-dipole
interaction, which makes an angle closer to the isotropic
� = 90◦ favorable for shell structures. In Fig. 5 we also
observe that correlations enhance the peaks in �2 making
the shell structure more pronounced. Next, we compare the
shell structure retrieved for tilted dipoles, � = 52.5◦, in a
deformed trap, α = 1.15 (middle panel), to the corresponding
one for dipoles with � = 90◦ in an isotropic harmonic
confinement where α = 1.0 (right panel). Clearly, for the
isotropic trap, the peaks in �2 for closed shells are, at least
for the first shells, higher than the corresponding ones for
the deformed trap. On the other hand, the peak height in �2

decreases more rapidly with N for the isotropic harmonic trap
and drops already at N = 10 below the corresponding one for
α = 1.15 and � = 52.5◦. In other words, tilted dipoles in a

FIG. 5. Addition energy differences as a function of � for
fermions in a deformed trap with α = 1.15 (left panel). The addition
energy difference is shown for � = 52.5◦ (middle panel) where the
shell structure is most pronounced (see the dashed vertical line in the
left panel) and, as a reference, for fermions with fixed dipolar orien-
tation, � = 90◦, in an isotropic harmonic confinement, α = 1 (right
panel). In all three cases, the interaction strength is D2 = 0.82 h̄ω⊥l3

⊥.
The purple solid lines are obtained using QCI-SD, whereas the blue
dashed lines correspond to �2 computed directly from the Hartree-
Fock energies for N = 1, 3, 6, 10, 15. The purple lines associated
with closed-shell systems are labeled by their particle numbers N
for α = 1.15. Although not shown explicitly, in both panels to the
right the descending order of �2 is also given by N = 1, 3, 6, 10, 15.

deformed trap seem to extend the shell structure to slightly
higher particle numbers. Here, the anisotropy of the tilted
dipole-dipole interaction effectively reduces the interaction
energy (by introducing attractive regions) and thus prolongs
the energy shell structure of the system.

VI. CONCLUSIONS

To summarize, we here investigated the effect of an
anisotropic dipole-dipole interaction between (polarized)
fermions on the shell structure in a quasi-two-dimensional
harmonic oscillator confinement. The interplay between mag-
netostriction caused by a tilt in the dipolar angle [37], and the
stability of shells following a break in the rotational symmetry
triggered by a quadrupole deformation of the isotropic trap,
was examined. Even though both considered processes lower
the symmetry of the Hamiltonian in effectively similar ways,
their nature is inherently different: A deformation of the trap
alters directly the one-body part of the problem, whereas
a change in the interaction instead modifies the two-body
physics.

We found that, also for weakly deformed traps, the un-
derlying shell structure of the isotropic harmonic oscillator
persists for modest interaction strengths and tilt angles, at
least for lower particle numbers (in the present work for
N ∼ 10). At open shells, however, there is generally a notable
deformation of the density distribution, caused by the dipolar
magnetostriction [47,55]. However, this deformation can be
counteracted upon by the corresponding quadrupolar defor-
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mation of the isotropic trap and thus leading to a revival of
energy shell structure resembling the azimuthally symmetric
case of aligned dipoles perpendicular to the trap plane.

Giving an outlook, it would be interesting to investigate the
modifications and breakdown of shell structure for stronger
interactions, and especially to study the interplay with the
two-component properties of isospin in mixtures, such as
recently experimentally realized with erbium [36]. Especially
in the mid-shell regime, where for weakly interacting gases
Hund’s rules prevail, tunable interspin interactions in combi-
nation with the dipolar anisotropy here offer new perspectives.
Likewise, the extension to spin-orbit-coupled dipolar Fermi
gases (see Ref. [70] and references therein) appears highly
relevant. We finally note that it would be most interesting to

bring current experiments with dipolar Fermi gases into the
few-body regime. For nondipolar fermions, new atom imaging
schemes in two dimensions [71,72] recently revealed a phase
transition precursor. Their combination with long-ranged in-
teractions may also open new avenues to explore the interplay
between shell structure and interactions in low-dimensional
fermion systems.
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