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Itinerant ferromagnetism in the repulsive Hubbard chain with spin-anisotropic odd-wave attraction
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The ground-state properties of the Hubbard chain with on-site repulsion and anisotropic nearest-neighbor
attraction are investigated by means of density matrix renormalization group calculations. The nonlocal attraction
acts between fermions of one spin component only, mimicking the effect of p-wave Feshbach resonances in cold-
atom systems. We analyze the onset of itinerant ferromagnetism, pinpointing the critical attraction strength where
partially and fully ferromagnetic states occur. In the cold-atom setup, where the two (pseudo)spin populations are
separately conserved, ferromagnetism occurs with the nucleation of a fully imbalanced band-insulating domain
hosting the attractive component only. The size of this domain grows with the attraction strength, therefore
increasing the (opposite) imbalance of the other domain, until the two spin components are fully separated. In
the presence of a harmonic trap, the ferromagnetic state hosts a partially imbalanced domain in the center with
an excess of the attractive component and filling lower than one. This central region is surrounded by fully
imbalanced domains, located in the trap tails, hosting only fermions belonging to the other component.

DOI: 10.1103/PhysRevA.102.053301

I. INTRODUCTION

In various metals, such as nickel, cobalt, and iron, itiner-
ant electrons display ferromagnetic behavior. The first theory
introduced to characterize this phenomenon, which is usu-
ally referred to as itinerant ferromagnetism, is Stoner’s 1933
continuous-space Hamiltonian [1]. Also the celebrated Hub-
bard model, which describes electrons hopping between the
sites of a discrete lattice, was originally introduced to char-
acterize itinerant ferromagnetism [2]. However, it is still
unclear if and when the conventional Hubbard model—i.e.,
the one including only nearest-neighbor hopping and on-site
repulsion—has a ferromagnetic ground-state [3,4], beyond the
infinite-interaction limit [5,6]. The important role of addi-
tional hopping and interaction terms has been stressed in the
condensed-matter literature (see, e.g., Ref. [7]).

In recent years, cold-atom experiments have emerged
as the ideal platform to investigate quantum magnetism
in strongly correlated systems. In particular, deep optical
lattices have allowed the implementation of Hubbard-type
Hamiltonians [8]. Antiferromagnetism has been unambigu-
ously observed in deep optical lattices close to half-filling
[9–12]. Following early attempts [13–15], signatures of itin-
erant ferromagnetism have been observed too [16,17]. These
latter experiments, performed in a setup without an optical
lattice, addressed the metastable upper branch of a reso-
nantly interacting Fermi gas. The results were consistent with
continuous-space quantum Monte Carlo simulations [18–20].
Several procedures have been proposed to shift the onset of
itinerant ferromagnetism to weaker interactions. This would
allow experimentalists to avoid the three-body collisions that
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plague the strongly interacting regime and prevent the creation
of a more stable ferromagnetic state. The list of proposed
procedures includes tuning the interaction strength via narrow
Feshbach resonances [21,22]; adding shallow optical lattices
[23,24], optical-flux lattices [25], flat-band optical lattices
[26], or correlated disorder [27]; using atomic species with
different masses [28,29]; and trapping atoms in confined low-
dimensional geometries [30–34]. More recently, it has been
proposed to favor itinerant ferromagnetism by means of an at-
tractive intraspecies interaction, tuned via a p-wave Feshbach
resonance [35–37]. This mechanism has been studied only in
one-dimensional continuous-space models and its generaliza-
tion to strongly correlated lattice systems, including atoms
confined in deep optical lattices, remains an open problem.
Furthermore, it is not clear how phase separation would occur
for bulk systems in the standard cold-atom setup, where the
(pseudo)spin populations are separately conserved.

In this article, we investigate the ground-state properties
of a repulsive Hubbard chain augmented with an anisotropic
nearest-neighbor intraspecies attraction. Our calculations are
based on the numerically exact density matrix renormalization
group (DMRG) technique [38]. Due to the splitting between
the Feshbach resonances in the triplet states with different spin
projections, p-wave resonant interactions break spin-rotation
symmetry [39,40]. To describe this scenario, our model in-
cludes attractive interactions between fermions of one spin
component only. Because of the presence of SU(2) symmetry-
breaking interactions, the Lieb-Mattis theorem [41], stating
that the ground state of the one-dimensional Hubbard model
is a singlet, does not apply. Therefore, a ferromagnetic ground
state is in principle possible even in one dimension [42].
To determine if and when ferromagnetism occurs, we deter-
mine the ground-state energy as a function of the attraction
strength and the spin-population imbalance. The spin-resolved
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density profiles as well as the double occupancy are com-
puted. The critical point where ferromagnetism occurs is
pinpointed, considering both the case where the global spin
polarization is free to vary, like for electrons in solids, and
also the standard cold-atom setup where the two (pseudo)spin
populations are individually conserved, thus fixing the global
spin polarization. In the latter case, ferromagnetism manifests
as a phase separation. At the critical point, a band-insulating
domain appears, hosting the attractive species only. The size
of this domain grows with the attraction strength, therefore
increasing the (opposite) population imbalance in the other
domain, until the two spin components are fully separated.
Finally, we show that the presence of an additional harmonic
trap leads to a different scenario for the formation of the
ferromagnetic state. In particular, the band-insulating domain
of the attractive species emerges in the middle of the trap only
after fully polarized domains of the opposite spin component
have formed in the trap tails.

The rest of the article is organized as follows: The Hamil-
tonian we study is described in Sec. II, together with some
details on the DMRG technique. The results for the ground-
state energy, the spin-resolved density profiles, the double
occupancy, and the analysis of the onset of ferromagnetic be-
havior are presented in Sec. III. Section IV reports a summary
of our main findings.

II. MODEL AND COMPUTATIONAL DETAILS

We consider a one-dimensional spin-1/2 Fermi gas de-
scribed by the following generalized Hubbard Hamiltonian:

H = − t
∑

iσ

(c†
iσ ci+1σ + H.c.) + U

∑
i

n↑in↓i

+
∑
iσσ ′

V σσ ′
nσ inσ ′i+1, (1)

where c†
iσ (ciσ ) and nσ i are the creation (annihilation) and

number operators of fermions with spin projection σ =↑,↓,
t is the hopping rate between nearest-neighboring sites, and
U is the strength of the on-site repulsive interaction be-
tween fermions with opposite spins. The model (1) includes
additional spin-dependent nearest-neighbor interactions of
strength V σσ ′

, mimicking the effect of odd-wave (specifically
p-wave) anisotropic interactions. Since the latter are only
relevant for fermion pairs with a given (total) spin projec-
tion, we consider V σσ ′ = V for σ = σ ′ = ↑ and V σσ ′ = 0
otherwise. Importantly, we assume that the nearest-neighbor
interactions are attractive in nature, corresponding to V < 0,
so that they might favor ferromagnetism. In this article, the
Hubbard chain is considered with open boundary conditions,
corresponding to the configuration of a flat box with hard
wall boundaries. This type of configuration can be created
in cold-atom experiments using almost uniform traps, as in
Refs. [43–45]. Below, we will also consider the addition of
a harmonic confinement, which describes the effect of more
conventional magneto-optical traps.

The ground-state properties of the Hamiltonian (1) are
investigated using the DMRG method, expressed in terms
of matrix product states [46]. Specifically, we use the open-
source code of the ALPS library [47]. To ensure proper
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FIG. 1. Ground-state energy E as a function of the spin polar-
ization P = (N↑ − N↓)/(N↑ + N↓), plotted for different values of
the interaction strength V , ranging from V = 0 (upper curve) to
V = −1 (bottom curve). The total number of fermions is fixed to
N = N↑ + N↓ = 40, the length of the chain is L = 60. Here and in
all other figures the on-site Hubbard-repulsion strength is U = 5;
furthermore, the connecting lines are a guide to the eye, unless
otherwise specified.

convergence of the various observables, we allow for bond
dimensions up to 4000 and perform a large number of sweeps
(between 60 and 80).

III. RESULTS

Hereafter, we fix the energy scale by setting t = 1, while
the strength of the on-site repulsion is fixed to U = 5, corre-
sponding to the strongly interacting regime.

Our main aim is to shed light on the effect of the nearest
neighbor attraction on onset and on the stability of itinerant
ferromagnetism. In Fig. 1, we show the ground-state energy as
a function of the spin polarization P = (N↑ − N↓)/(N↑ + N↓),
for different values of the attraction strength V . These data
are obtained by keeping the total number of particles constant
at N = N↑ + N↓ = 40. The length of the chain is L = 60,
so that the total density of fermions is N/L = 2/3. For fi-
nite V , the ground-state energy is no longer a symmetric
function of the spin polarization. Since the nearest-neighbor
attraction affects the spin-up component only, its effect on
the ground-state energy is more sizable for positive spin po-
larizations, where it diminishes the energy. For V > −0.365,
the ground-state energy has a minimum at P = 0, indicating
that the ground state is paramagnetic. For stronger attrac-
tion, however, the minimum shifts to positive values of the
spin polarization. If spin-rotating processes were present, as
in typical condensed-matter systems, the ground state would
turn (partially) ferromagnetic, with a spin polarization corre-
sponding to the position of the energy minimum. By further
increasing the nearest neighbor attraction, so that V � −0.85,
the minimum of the energy occurs at P = 1, implying that the
ground state is fully ferromagnetic.

To precisely determine the critical attraction strength
where the fully ferromagnetic phase occurs, we analyze the
energy cost of adding a spin-up or a spin-down fermion to
a gas of spin-up fermions only. As a reference, in Fig. 2
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FIG. 2. Ground-state energy E as a function of the nearest-
neighbor attraction strength V , for three different sets of population
numbers. The red squares correspond to a fully polarized gas of
spin-up fermions, with N↑ = 40 and N↓ = 0. The other two data
sets represent the energy of the same system upon addition of, re-
spectively, a further spin-up fermion (green circles) or a spin-down
fermion (blue triangles). The dashed vertical segment indicates the
position of the crossing point, V = −0.849(1). This corresponds to
the critical value of the attraction strength for the onset of full ferrro-
magnetism. The inset shows an enlargment of the energy difference
�E between the green circle and blue triangle data sets. The length
of the chain is L = 60.

we show the ground-state energy of a fully polarized gas of
N↑ = 40 fermions, plotted as a function of the interaction
strength V (see red squares). The green and the blue lines
correspond to the ground-state energies with an additional
spin-up or a spin-down fermion, respectively. The two curves
cross at V = −0.849(1). For more negative V , adding a spin-
up fermion reduces the energy by a larger amount than adding
a spin-down fermion, implying that the ground state is fully
ferromagnetic. It is worth reminding that the change in energy
due to the inclusion of an extra fermion with spin σ represents
the chemical potential μσ of the corresponding spin compo-
nent.

So far we have considered how itinerant ferromagnetism
occurs assuming that the global spin polarization can vary
to minimize the ground-state energy. Hereafter, we discuss
the emergence of ferromagnetism under the assumption that
the numbers of spin-up and spin-down fermions are fixed
and coincide, N↑ = N↓ = N/2. Therefore, the global spin
polarization is always zero. This is the common setup in
cold-atom experiments, where the populations of atoms in
the two hyperfine states, which play the role of pseudospin
components, are separately conserved. Here, ferromagnetic
phases correspond to phase-separated states hosting regions
where the local spin densities are finite. The energy reduction
due to the domain with positive spin polarization, induced
by the odd-wave attraction, is partially compensated by the
energy gain due to the other domain with negative spin po-
larization, as shown in Fig. 1. Compared to the case with
variable global spin polarization, a stronger nearest neighbor
attraction is therefore needed to break the paramagnetic phase
by creating the domains. To identify such states, we compute
the density profiles of the two spin components. In Fig. 3,
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FIG. 3. Density profiles of spin-up fermions (upward triangles)
and spin-down fermions (downward triangles) in a chain with L =
120 sites, labeled by the index i. To improve visibility, only every
other point is shown. The four panels (a)–(d) refer to different val-
ues of the nearest-neighbor attraction strength V between spin-up
fermions: V = −0.5, −1.2, −1.3, −1.4 (from top to bottom). The
spin populations are N↑ = N↓ = 40. For large and negative V , a
growing fully imbalanced domain hosting a band insulator of spin-up
particles (i.e., the attractive component) coexists with a partially
ferromagnetic domain with an excess of spin-down fermions.

we show the results for a chain of L = 120 sites, filled with
N = 80 fermions. The four panels correspond to as many
different values of the strength of the nearest-neighbor at-
traction. For V = −0.5 the density profiles of the two spin
components essentially coincide, indicating that the system is
paramagnetic. The two profiles substantially differ only close
to the walls, mainly due to the open boundary conditions
and the on-site repulsion between the two spin components.
One also observes small out-of-phase oscillations, analogous
to Friedel oscillations, which are magnified near the system
boundaries. For V = −1.2, the Friedel-like oscillations dis-
appear; the average densities of the two spin components are
only slightly different away from the boundaries. Simulations
for larger systems show that this small difference vanishes
in the thermodynamic limit, implying that the system is still
paramagnetic. For V = −1.3, the system is no longer ho-
mogeneous. A domain including only spin-up fermions with
nearly unit local filling coexists with a partially imbalanced
phase hosting a majority of spin-down fermions. The domain
with only spin-up fermions migrates toward one edge of the
chain to further decrease the kinetic energy of the system.
Finally, for V = −1.4, the same domain has englobed all
spin-up fermions, forming a band insulator occupying N↑
sites. The latter coexists with a fully polarized gas of spin-
down fermions occupying the remaining sites, with average
density N↓/(L − N↑) = 0.5, as displayed in the bottom panel
of Fig. 3.

The emergence of the ferromagnetic phases has a clear
fingerprint also in the double occupancy d = ∑

i〈n↑in↓i〉/L.
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FIG. 4. Double occupancy d as a function of the nearest-
neighbor attraction strength V . The different curves correspond to
calculations for different system sizes. For each value of L, we
choose the spin populations so that the overall densities are kept con-
stant to N↑/L = N↓/L = 1/3, so that the global spin polarization is
P = 0. Notice the sudden variation around V = −1.25, correspond-
ing to the nucleation of the band-insulator domain hosting spin-up
fermions only, leading to an essentially vertical drop of the double
occupancy. The inset shows the double occupancy as a function of
1/L for V = −1.34, showing that d vanishes for infinite system sizes
as the ground state becomes fully ferromagnetic.

This is plotted in Fig. 4 as a function of the attraction strength
V , for different values of the system size. As expected, d
is an increasing function of the nearest-neighbor interaction
strength V . For large and negative V , where the ground-state
is fully ferromagnetic, the only contribution to the double
occupancy comes from the overlapping tails of the two spin-
polarized domains. Being a surface effect, this contribution
vanishes in the thermodynamic limit.

To verify this point, in the inset of Fig. 4 we plot the double
occupancy for V = −1.34 as a function of 1/L. The dashed
line corresponds to a linear fit of the data obtained by retaining
only the three largest system sizes considered. The intercept
is approximately zero, implying that the double occupancy
vanishes in the thermodynamic limit. In contrast, we see from
Fig. 4 that for V = −1.33 the same quantity saturates to a
finite value for large system sizes.

The value V ∼= −1.34 can then be identified as the critical
attraction strength for the onset of the fully ferromagnetic
state under the constraint of zero global spin polarization. For
intermediate values of V , where the fully polarized domain
of spin-up fermions coexists with the partially ferromagnetic
phase, finite-size effects are almost negligible for the largest
system sizes considered. At the interaction strength where
such domain disappears, the double occupancy displays a sud-
den variation. For weaker nearest-neighbor attractions, where
the ground state is paramagnetic, the density profiles of the
two spin components overlap over the entire chain, leading to
significantly larger values of the double occupancy. In contrast
with what observed for the fully ferromagnetic phase, here d
increases with system size. This is due to the fact that the pres-
ence of the hard walls and the repulsive on-site interactions
cause a depletion of the double occupancy. Being a surface
effect, the depletion diminishes as L increases.
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FIG. 5. Extrapolation to the infinite-size limit of the critical
strength V = Vc for the nucleation of the band-insulating domain,
corresponding to the phase transition to a partially ferromagnetic
state. For each system size L, we extract the value V = VL at which
the double occupancy in Fig. 4 displays the sudden variation and plot
it as a function of 1/L. The position of the critical point is inferred by
fitting the data with a low-order polynomial p(x), with x = 1/L, and
setting Vc = p(0). Specifically, a linear fitting function (continuous
red line), obtained by retaining only the three largest system sizes,
and a quadratic fitting function (dashed green curve) are shown,
yielding Vc = −1.2385(3) and Vc = −1.233(2), respectively.

We also see from Fig. 4 that the position of the sudden vari-
ation of the double occupancy shifts toward weaker nearest
neighbor attractions for larger system sizes, thus broadening
the parameter region where the paramagnetic phase is un-
stable against phase separation. We can estimate the critical
value of the interaction strength V = Vc as the position of
the sudden variation in the thermodynamic limit, L → +∞.
This value is determined by performing a finite-size scaling
analysis. For each system size L, we determine the value
V = VL of the interaction strength at which the reduced double
occupancy in Fig. 4 exhibits an inflexion point in the crit-
ical region. For the largest system sizes, where the sudden
variation is essentially a vertical jump, we simply identify
VL with the position of the jump. The obtained results are
displayed in Fig. 5 as a function of the system inverse size
1/L. The dashed continuous line corresponds to a linear fit of
the data, VL = a + b/L, obtained by retaining only the three
largest system sizes. This gives a critical interaction strength
Vc = a = −1.2385(3). A closer look to the data reveals that a
quadratic fit VL = a + b/L + c/L2 to the entire data set is also
plausible. The result is shown in Fig. 5 by the dot-dashed line,
from which we get Vc = a = −1.233(2). The small difference
between the linear and the quadratic extrapolations provides a
confidence interval of the estimate of the critical point, which
we finally quote as Vc = −1.235(4).

The height of the vertical jump diminishes with the sys-
tem size. However, our data do not allow us to ascertain
if it vanishes in the thermodynamic limit, or if it con-
verges to a small but finite value. For this reason, we cannot
unambiguously identify the order of the phase transition.
It is worth emphasizing that in the cold-atom setup with
fixed global spin polarization the partially and the fully fer-
romagnetic states occur at significantly stronger attraction
compared to the case where the system can vary the global
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FIG. 6. Ground-state energy per particle E/N , extrapolated to the
thermodynamic limit, plotted as a function of the nearest-neighbor
attraction strength V . The asymptotic behavior for large and negative
V , see Eq. (2), is shown as a dashed line. The dot-dashed line is
the prediction from first-order perturbation theory, holding for small
and negative V . The inset shows the dependence of the ground-state
energy per particle on the inverse system size (data symbol) for
V = −1.3; the spin densities are fixed at N↑/L = N↓/L = 1/3. The
infinite-lattice result corresponds to the intercept of the straight line
fitting the data (dashed curve).

spin polarization to minimize its ground-state energy. Fur-
thermore, one notices that the parameter region where the
ground state is partially ferromagnetic, namely −1.34 � V �
−1.235, is quite narrow, indicating that the system rapidly
transitions from the paramagnetic to the fully ferromagnetic
phase.

Next, we analyze the zero-temperature equation of state.
We obtain the ground-state energy per particle E/N in the
thermodynamic limit via a linear extrapolation as a function
of 1/L. This is shown in the inset of Fig. 6 for V = −1.3.
By repeating the same procedure for the different values of
the attraction strength V , we obtain the curve shown in the
main panel of Fig. 6. The dashed and the dot-dashed straight
lines correspond to the asymptotic behavior for strong and
weak nearest-neighbor attraction, respectively. In the regime
of large negative V , the band-insulating domain of the attrac-
tive spin-up fermions only coexists with the fully polarized
ideal gas of spin-down fermions occupying the remaining
L − N↑ lattice sites. Therefore, the ground-state energy per
particle can be computed as

E 
 V
(N↑ − 1)

N
− 2(L − N↑)

πN
sin

πN↓
L − N↑

. (2)

The asymptotic behavior (2) is shown in Fig. 6 by the blue
dashed line (we have neglected the 1/N term which vanishes
in the thermodynamic limit). One notices that the prediction
from Eq. (2) is indeed very close to the DMRG result for
V � −1.34, where the ground state of the system is fully
ferromagnetic. For small negative V , the effect of the nearest-
neighbor interactions in Eq. (1) can be taken into account
within first-order perturbation theory, yielding E 
 E (V =
0) + V

∑
i〈n↑in↑i+1〉, where the expectation value is com-

puted for the Hubbard model, by assuming V = 0 in Eq. (1).
We observe that the perturbative behavior (green dot-dashed
line) is only recovered for relatively small values of V . It
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FIG. 7. Density profiles of the two spin components in a har-
monic trap of intensity K = 0.002. The nearest-neighbor attraction
strength is V = −1.35, which in the flat trap with open boundaries
corresponds to a fully ferromagnetic ground state. The spin popula-
tions are N↑ = N↓ = 40.

is also worth noting that the two asymptotic lines cross at
V = −1.2, which is not far from the critical point Vc for
the onset of the partially ferromagnetic phase through phase
separation.

Finally, we discuss how ferromagnetism forms when the
Hamiltonian includes an additional longitudinal harmonic
confinement. Specifically, we include the additional term,

H ′ =
∑

i

K

(
i − L

2

)2

(n↑i + n↓i ), (3)

where K is a constant. This term is designed to describe the
effect of the most common magneto-optical traps used to
confine ultracold atoms. Figure 7 displays the spin-density
profiles for V = −1.35. Notice that in the flat box trap without
the harmonic confinement this attraction strength is sufficient
to induce full phase separation of the two spin components.
In the harmonic trap, the attractive spin-up fermions occupy
mostly the trap center. This helps decreasing the interaction
energy. Unlike the flat box case, where the spin-up domain
is fully polarized, in the harmonic trap the (central) domain
with the majority of spin-up fermions also hosts a lower
density of spin-down fermions. The trap tails host fully po-
larized domains including spin-down fermions only, apart the
small regions of interface with the central domain. For more
negative V , say V = −1.4, a fully polarized spin-up domain
emerges in the center of the trap, characterized by a flat den-
sity profile with unit filling.

IV. CONCLUSIONS

We have investigated the ferromagnetic properties of a
Hubbard chain with on-site repulsion and nearest-neighbor
attraction between the spin-up fermions. The latter inter-
action term, which mimics the effect of p-wave Feshbach
resonances in cold-atom experiments, breaks spin-rotation
symmetry. This symmetry breaking was previously studied
by considering Raman transitions [48]. The DMRG algo-
rithm allowed us to compute global properties such as the
ground-state energy and the double occupancy, as well as local
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properties such as the spin-resolved density profiles. From
energy calculations as a function of the spin-population im-
balance, we extracted the critical attraction strength for the
transition to partially ferromagnetic and to fully ferromag-
netic phases. By inspecting the density profiles and the
double occupancy, we determined how ferromagnetism oc-
curs in the standard cold-atom setup where the (pseudo)spin
populations are individually conserved. In this case, a signifi-
cantly stronger attraction is needed to induce the separation
of domains with nonzero local spin-population imbalance.
Specifically, in the uniform system with open boundary con-
ditions, ferromagnetism occurs with the nucleation of a fully
spin-polarized domain hosting spin-up fermions only. The
size of this domain grows with the attraction strength until
all spin-up fermions have been absorbed, meaning that the
two spin components are fully separated. The inclusion of
an harmonic confinement substantially modifies the scenario.
In this case, a partially imbalanced domain with an excess
of spin-up fermions is located in the trap center, while the
trap edges host domains with spin-down fermions only. In
contrast, the band-insulating domain of spin-up fermions only
is recovered for stronger nearest-neighbor attractions.

We have presented an application of the DMRG algorithm
to a Hamiltonian relevant to describe cold-atom systems.
The computation of local properties allowed us to investigate

the phase separation of different spin components and the
coexistence of domains with different local spin-population
imbalances. In particular, we have shown that the double
occupancy, which is experimentally accessible with cold-atom
systems, is a key quantity to investigate phase separation and
the formation of different ferromagnetic phases. Our findings
can serve as a guide for future cold-atom experiments focus-
ing on itinerant ferromagnetism in one-dimensional optical
lattices with p-wave resonant interactions, and they comple-
ment previous studies on antiferromagnetic correlations in
optical lattices [10,49–51].
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