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Spin polarization of photoelectrons in bichromatic extreme-ultraviolet atomic ionization
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Spin polarization of photoelectrons is considered in the ionization of atoms by a laser field and its second
harmonic, concentrating on the effects of interference between the two ionization paths. The possibility for a
crucial increase of the spin polarization by manipulating the relative phase of the harmonics is demonstrated.
Observation of these effects, exemplified by the ionization of neon atoms, is accessible by modern free-electron
lasers working in the extreme-ultraviolet wavelength regime.
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I. INTRODUCTION

The spin of an electron is a property of highest importance
in both fundamental science and applications. Generally, ev-
ery photoinduced electron emission is spin polarized [1]. This
phenomenon is used in studies of the magnetic properties of
matter [2,3], surfaces and thin films [4], single-molecule mag-
nets [5], topological materials [6], spin-dependent quantum
interference [7], photoemission chronoscopy [8,9], as well
as in the production of polarized electron beams [10,11], to
name just a few. Spin-sensitive photoelectron spectrometry
of atoms and molecules in the gas phase provides detailed
information on the dynamics of photoionization and Auger
decay [12,13]. It is an important attribute of the “complete
experiment” to determine all amplitudes related to the pro-
cess [14–16]. Recently a new incentive for spin measurement
appeared in connection with spin-resolved Wigner time-delay
[17,18]. Furthermore, spin polarization of photoelectrons in
strong-field ionization probes the dynamics of ionization in
the tunneling and over-barrier regimes [19–22]. Experimen-
tally, the measurement of spin polarization has always been
a challenging endeavor. Due to the generally low efficiency
of spin detectors, the required acquisition times are long and
limit to some extent the broad application of spin-resolved
measurements at synchrotron radiation sources, especially
with dilute targets.

Short-wavelength free electron lasers (FELs) have started
now to provide intense femtosecond radiation pulses with lon-
gitudinal coherence, variable polarization, and intensities high
enough to observe nonlinear effects in the extreme ultraviolet
(XUV). In particular, coherent control of the photoelectron
angular distribution (PAD) in the bichromatic XUV ionization
of atomic neon has been demonstrated at FERMI in Trieste
(Italy) [23], and this field is growing rapidly [24–27]. For-
merly, the coherent control was usually realized by lasers
operating in the optical wavelength regime, which can easily
be rearranged in phase, wavelength, and polarization.

The concept of coherent control is based on the interfer-
ence of amplitudes of two or several pathways from an initial
state of a system to its final state. By changing the phase

between the amplitudes, the desired result of the process is
achieved [28]. In the bichromatic atomic ionization,

A +
{

h̄ω + h̄ω

h̄(2ω)

}
→ A+ + e−, (1)

these two reaction pathways are the two-photon ionization
at the fundamental frequency (ω) and the one-photon ioniza-
tion at the second-harmonic frequency (2ω). The two-photon
pathway can be enhanced by exciting an intermediate reso-
nance, which brings the signal of both pathways to a similar
level. The two-pathway interference in the (ω + 2ω) process
results in novel features in the PAD [29–34]. For example,
the asymmetry of the PAD along the direction of the linear
polarization of the FEL was used to demonstrate the phase
correlation of the two colors, to manipulate it [23,25], and
thereby to characterize completely the phase and amplitude
of the bichromatic XUV light [35].

The coherent control of the spin in the electron emission
from atoms has not been realized experimentally yet. It has
been discussed for the (ω + 2ω) process with a significant
level of abstraction in Refs. [36,37] in the general context
of the relationship between classical and quantum interpre-
tations of the coherent control. An experimental evidence of
controlling the spin of electronic carriers in semiconductors
by bichromatic fields with crossed linear polarizations was
detected [38,39], representing a promising effect for creating
an ultrafast spin switch in spintronics [40].

In this paper we consider photoelectron spin polarization
in the (ω + 2ω) process with closed-shell atoms in the XUV,
concentrating on the effects of the two-pathway interference.
As demonstrated below, additional features, not observed in
the single-color case, for example, additional electron-spin
components, appear in the (ω + 2ω) ionization. The numer-
ical calculations are performed for the Ne atom at frequencies
ω in the region of the 2p6 → 2p54s resonances.

In the next section we present our theoretical model,
which is followed by our results and discussion for lin-
early and circularly polarized radiation in Secs. III and IV,
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FIG. 1. (a) Scheme of the (ω + 2ω) ionization in Ne. (b) Coordinate system. Results for linearly polarized photons: (c) 3D plot of the
NPAD, demonstrating axial symmetry with respect to the z axis according to Eq. (4); (d) NPAD and Sy at ω = 19.69 eV and phase φ = 120◦

between the harmonics. Curves in panel (d): black - NPAD, red - positive Sy; blue - negative Sy; solid - with the two-pathway interference;
dashed - without the two-pathway interference; (e) 3D plot of Sy in the region of the 4s and 4s′ resonances as a function of the laser frequency
and relative phase of the harmonics. (f) Cuts of the 3D plot in panel (e) at ω = 19.55 eV, ω = 19.69 eV (at the 4s resonance), ω = 19.73 eV
(between the 4s and 4s′ resonances), ω = 19.78 eV (at the 4s′ resonance), ω = 19.95 eV. (g) Ionization probability (per pulse per atom),
corresponding to the cuts in panel (f). The value of φ corresponding to figures in panels (c) and (d) is marked by small circles on the red curves
in panels (e) and (f).

respectively. The final section is devoted to the conclusions.
Cumbersome formalism is shifted to the Appendix.

II. THEORETICAL MODEL

The lowest nonvanishing order of perturbation theory
(LOPT) with respect to the interaction of the radiation field
with matter is normally sufficient for the description of pho-
toelectron spin polarization in the XUV in one-, two- and
multiphoton ionization [12,41].

Similar to Refs. [23,31,32,42], we consider, as an example,
the (ω + 2ω) ionization of neon in the region of the inter-
mediate resonance states 2p54s[3/2]1 ≡ 4s (19.69 eV) and
2p54s[1/2]1 ≡ 4s′ (19.78 eV) [43], see Fig. 1(a). Therefore,
in our numerical illustrations we use a model applicable to
light noble gases, which are convenient targets for current
experiments with FELs. Below we assume a flat continuum,
in the energy far enough from Cooper minima and autoion-
izing resonances, which allows us to neglect the spin-orbit
interaction in the continuum. These conditions are very well
fulfilled in our case: The lowest (non-Rydberg) autoionizing
state in Ne is at an excitation energy of 45 eV [44] and Cooper
minima are absent [45]. Additionally, we assume that the
fine-structure components of the final ion np5 2P1

2 , 3
2

are not
resolved. The latter is usually fulfilled for XUV experiments
in Ne and Ar. With these approximations, the spin polarization

of photoelectrons vanishes unless a mechanism allows one to
distinguish between the different spin states. In our case this
mechanism is provided by the spin-orbit interaction, which
causes fine-structure energy splitting of the intermediate state
resonantly excited by the fundamental frequency in the upper
pathway in Eq. (1), while the single-photon 2ω pathway alone
cannot produce the spin polarization.

The bichromatic electric field is described by

E(t ) = F (t )Re
[√

Iωe1e−iωt +
√

I2ωe2e−i(2ωt+φ)], (2)

where e1(e2) is the unit polarization vector of the first (second)
harmonic, φ denotes the relative phase between the har-
monics. In all numerical examples below the pulse envelope
was taken in the form F (t ) = sin2 �t (� = ω/2N, 0 � t �
2πN/ω). The number of optical cycles was set to N = 500,
which corresponds in our case to a pulse duration of ≈120
fs. The ratio of the amplitudes of the harmonics was taken
as I2ω/Iω = 10−3 with Iω = 1012 W/cm2, preserving the va-
lidity of the LOPT [31]. Note that, for heavier atoms, where
spin-orbit interaction in the continuum is essential and spin
polarized electrons are emitted both in single- and two-photon
ionization, the incoherent control over the spin polarization
is possible through the modulation of the harmonic intensity
ratio. Therefore, one of the reasons to limit ourselves to light
atoms is to clearly distinguish the coherent control of the
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photoelectron spin polarization due to changing the relative
phase between the amplitudes of the two pathways in process
(1).

In the LOPT, the ionization amplitude is a sum U = U (1) +
U (2), where U (1) (U (2)) is the first-order (second-order) ampli-
tude of ionization by the second (first) harmonic. Expanding
U (1) and U (2) in terms of partial-wave amplitudes (A5), (A6)
proceeds as described in Refs. [31,32] in the long-wave dipole
approximation with further expressing the observable quan-
tities in terms of the bilinear combinations of the partial
amplitudes. Some details of the formalism is presented in the
Appendix. Note that all parametric formulas below remain
valid for arbitrary (initially unpolarized) atoms, while particu-
lar expressions in the Appendix are obtained within the above
described approximations.

The atom (ion) is described in the multiconfigurational
Hartree-Fock (MCHF) approximation in the intermediate
angular-momentum coupling scheme with mixing coefficients
obtained by diagonalization of the Breit-Pauli Hamiltonian
[46]. The term-dependent photoelectron wave functions were
calculated in the frozen-core Hartree-Fock approximation.
In the second-order amplitude, all essential intermediate
states (2p53s[3/2]1, 2p53s[1/2]1, 2p54s[3/2]1, 2p54s[1/2]1,
2p53d[3/2]1, 2p53d[3/2]1, 2p53d[1/2]1) with total angular
momentum J = 1 were taken into account. In our model, spin
polarization arises as result of fine-structure splitting, which is
important in the vicinity of intermediate resonances. Outside
of this small region of frequencies, the spin polarization of
the electrons vanishes. It results in a faster convergence of the
spin polarization with respect to inclusion of additional inter-
mediate states, compared with calculations of PADs [31,32].

Further analysis is carried out separately for linear and
circular polarization.

III. LINEARLY POLARIZED RADIATION

In the photoionization by a linearly polarized beam, e1 =
e2 ≡ e = e∗ in Eq. (2). Figure 1(b) shows the corresponding
geometry. The spin polarization can be derived in the form

Sy(ϑ ) = [W (ϑ )]−1 sin ϑ

4∑
k=1

pk cosk−1 ϑ, (3)

where ϑ is the electron emission direction with respect to
the electric field of the radiation, pk are real parameters
expressed in terms of bilinear combinations of the partial-
wave components, see Eqs. (B13)–(B16) of the Appendix.
For convenience we introduced the normalized dimensionless
photoelectron angular distribution (NPAD)

W (ϑ ) = 1 +
4∑

k=1

βkPk (cos ϑ ), (4)

where βk are anisotropy parameters, Eqs. (B9)–(B12). Fig-
ure 1(c) shows a three-dimensional (3D) plot of the NPAD,
which is characterized by a strong asymmetry due to the
two-pathway interference. The spin polarization is normal to
the reaction plane, spanned by the electric-field vector and
the direction of electron emission, and preserves axial sym-
metry with respect to the electric vector. This is similar to

the general case of separate one- and two-photon ionization
[47,48]. Figure 1(d) shows Sy, Eq. (3), and NPAD, Eq. (4),
as a function of ϑ for a selected value of the relative phase
φ = 120◦ between the harmonics. New features of the spin
polarization and the possibility of its coherent control are
related to the terms with k = odd in Eqs. (3) and (4), which
represent the contribution of the two-pathway interference in
process (1). Qualitatively, these terms violate the symmetry
with respect to the plane perpendicular to the electric field and,
therefore, give nonzero spin polarization for electrons emitted
in this plane. High values of the spin polarization are predicted
near to the maxima of the ionization probability as a function
of the relative phase of the harmonics φ [Figs. 1(e)–1(g)].
For example, Sy may reach the value of 0.7 for the photon
energy at the 4s resonance at φ = 120◦ in comparison with
a value of Sy < 0.2 without the two-pathway interference
(independent of φ). Thus, a very efficient coherent control of
the photoelectron spin is predicted. It follows from Eq. (3)
that terms with k = even for ϑ and π − ϑ have equal absolute
values with the opposite signs, while terms with k = odd have
the same sign. Therefore, detectors placed at ϑ and π − ϑ

allow us to separate the two-pathway interference effects on
the spin polarization.

IV. CIRCULARLY POLARIZED RADIATION

For circularly polarized beams, we select cases with fixed
positive chirality of the fundamental, e1 = −(ex + iey)/

√
2,

and variable, i.e., equal and opposite, chirality of the second
harmonic, e2 = ∓(ex ± iey)/

√
2, where ex (ey) is the unit

vector along the xlab (ylab) axis. To clearly separate the effects
of interference between the two ionization paths in Eq. (1),
we first write down the NPAD and the components of the spin
polarization for incoherent harmonics:

W 0(ϑ ) = 1 +
∑

k=2,4

β0
k Pk (cos ϑ ), (5)

s0
z (ϑ ) = z0 +

∑
k=2,4

zkPk (cos ϑ ), (6)

s0
x (ϑ ) = sin 2ϑ

(
εx + ζx sin2 ϑ

)
, (7)

s0
y (ϑ ) = sin 2ϑ

(
εy + ζy sin2 ϑ

)
, (8)

where the angle ϑ is counted from the propagation direction
of the photon beam (z ‖ k) and superscript “0” indicates the
incoherent harmonics. The zx plane, rotating around the z
axis, is spanned by the directions of the photon beams and the
linear momentum of the electron [Fig. 2(a)]. In Eqs. (5)–(8),
β0

k [32] and z0,2,4, εx,y, ζx,y are model-dependent dynamical
parameters, expressed by Eqs. (C7)–(C15). Both NPAD and
spin components possess axial symmetry with respect to the
photon beam propagation.

In the case of coherent harmonics with opposite helicity,
the NPAD and the components of spin polarization are de-
scribed by the equations

W −(ϑ, ϕ) = W 0(ϑ ) + β−
3 sin3 ϑ cos (3ϕ − ψ−

3 ), (9)

S−
ν (ϑ, ϕ) = [W −(ϑ, ϕ)]−1[

s0
ν (ϑ ) + s−

ν (ϑ, ϕ)
]
, (10)
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FIG. 2. Results for circularly polarized photons at ω = 19.69 eV
(at the 4s resonance). (a) Coordinate system, (b) NPAD, (c) NPAD
(dashed) and S−

z (solid) in the plane perpendicular to the beam (ϑ =
90◦) for counter-rotating harmonics. Panels (d) and (e) show the same
as panels (b) and (c) for corotating harmonics. Zero angle in panels
(c) and (e) corresponds to t = 0 and φ = 0 in Eq. (2).

where ν = x, y, z and

s−
z (ϑ, ϕ) = 2γ − sin3 ϑ cos (3ϕ − ξ−), (11)

s−
x (ϑ, ϕ) = −γ − sin 2ϑ sin ϑ cos (3ϕ − ξ−), (12)

s−
y (ϑ, ϕ) = γ − sin 2ϑ sin ϑ sin (3ϕ − ξ−). (13)

The superscript “−” indicates opposite helicity and γ −, ξ−,
β−

k , ψ−
k (k = 3) are dynamical parameters (C20), (C21).

The detailed analysis of equations (9)–(13) allows us to
draw the following conclusions: (a) The spin components as
functions of the azimuthal angle ϕ of the electron emission
show three lobes, like the angular distribution of the emission
[32] [Figs. 2(b) and 2(c)] following the total electric-field
vector. (b) The two-pathway interference contribution into all
components of the spin polarization is described by only one
additional term and two real parameters, γ − and ξ−. A close
inspection shows that this is dictated by conservation of the
total angular momentum and its projection [see Eqs. (C16)
and (C21)]. (c) The influence of the two-pathway interference

on the s−
z component (11) is maximal in the plane perpen-

dicular to the beam (ϑ = 90◦), where the cross section (9)
is also maximal [see, for example, Fig. 2(b) [32] for more
detail]. The degree of spin polarization along the beam can
reach a value of about 0.75, depending on ϕ [Fig. 2(c)], in
contrast with the constant value of s0

z ≈ 0.4, which is obtained
without the two-pathway interference for both chiralities [not
shown in Figs. 2(c) and 2(e)]. (d) Variation of the phase φ

between the harmonics causes the rotation of the patterns
described by Eqs. (9)–(13) around the direction of the beams
[see Eqs. (C17)–(C19) and the comment after them]. (e) Max-
imal contributions of the two-pathway interference into the
spin components normal to the beams, Eqs. (12) and (13), are
observed at the polar “magic angle” of the electron emission
ϑ = 54.74◦. In our calculations it reaches +0.35 for s−

x and
+0.25 for s−

y . (f) The rotation of (11) and (12) around the
y axis by the angle ϑ shows that the spin component along
the electron emission is not influenced by the two-pathway
interference: s−

z (ϑ, ϕ) cos ϑ + s−
x (ϑ, ϕ) sin ϑ = 0.

For the case of equal helicities, the NPAD and the spin
components of the photoelectrons are described by the expres-
sions

W +(ϑ, ϕ) = W 0(ϑ ) +
∑

k=1,3

β+
k sink ϑ cos (ϕ − ψ+

k ),(14)

S+
ν (ϑ, ϕ) = [W +(ϑ, ϕ)]−1[

s0
ν (ϑ ) + s+

ν (ϑ, ϕ)
]
, (15)

where the superscript “+” indicates equal helicities,

s+
z (ϑ, ϕ) = −2γ + sin3 ϑ cos (ϕ − ξ+)

+κ sin ϑ cos (ϕ − χ ), (16)

s+
x (ϑ, ϕ) = γ + sin 2ϑ sin ϑ cos (ϕ − ξ+)

+η cos ϑ cos (ϕ − δ), (17)

s+
y (ϑ, ϕ) = −γ − sin 2ϑ sin ϑ sin (ϕ − ξ−)

−η cos ϑ sin (ϕ − δ). (18)

The contribution of the two-pathway interference is deter-
mined in Eqs. (16)–(18) by eight dynamical parameters κ , χ ,
δ, η, γ ±, ξ±, given by Eqs. (C25)–(C29), with two of them
(γ − and ξ−) determining the components s−

x,y,z, see Eqs. (11)–
(13).

The NPAD shows a pattern with one lobe as a function of ϕ

[Figs. 2(d) and 2(e)], while the spin components may change
sign, as demonstrated in Fig. 3. The maximal influence of the
two-pathway interference on the S+

z component is expected
for electron emission perpendicular to the beam [Fig. 2(e)].
The spin components S+

x and S+
y normal to the radiation

beam and shown in Fig. 3 possess an interesting feature,
specific for the case of equal helicities and illustrated on top
of Fig. 3. Namely, the normal component S+

⊥ = {S+
x ,S+

y }
contains the contribution s+

⊥ = {s+
x , s+

y } from the two-pathway
interference (green arrows in Fig. 3), which is oriented at an
almost fixed direction in the laboratory system upon varying
the azimuth angle ϕ of the electron emission. At the same
time, s0

⊥ = {s0
x , s0

y} strictly follows the azimuthal direction of
the electron emission. Therefore, integrating S+

⊥ over either
the entire upper (0◦ � ϑ � 90◦) or lower (90◦ � ϑ � 180◦)
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FIG. 3. Spin components S+
x (dotted), S+

y (dashed), and NPAD
(solid) as a function of ϕ at ϑ = 54.74◦ for the relative phase φ = 0
of the corotating fields. (top) Normal to the beam spin components
due to the two-pathway interference, s+

⊥, and for incoherent harmon-
ics, s0

⊥, are shown in the laboratory system {xlab, ylab} at selected
angles ϕ of the electron emission. The component S+

y reaches maxi-
mum absolute values at points b and d.

half eliminates the contribution from independent ω and 2ω

ionization, leaving only the contribution from their interfer-
ence. This makes observation of the spin polarization due to
the two-pathway interference more affordable.

Our calculations show that some of the parameters in
Eqs. (3), (11)–(13), (16)–(18) are very small. To find the
origin of this, consider a simplified model neglecting the
contribution from the 2p53d intermediate states and the term-
dependence of the electron wave functions in the continuum
2p5εl2S+1L. In this approximation, the two-photon ionization
proceeds into a p wave and sums in (B3), (B6), (C3), and
(C16) over total and orbital angular momentum J and L can
be taken analytically. In this single-configuration approxima-
tion, one can obtain equalities p1 = p2 = p4 = 0 in Eq. (3),
η = 0, γ + = γ −, ξ+ = ξ− in Eqs. (11)–(13) and (16)–(18),
and εx = εy = ζx = ζy = 0 in Eqs. (7) and (8). Thus, in this
simple model, the spin polarization for linearly polarized field
as well as any spin component normal to the field propagation
for circularly polarized field, is the result of the two-pathway
interference.

V. CONCLUSION

The advent of high brilliant seeded FELs and recent
progress in electron-spin-sensitive detectors [49,50] make
spin-resolved measurements in the XUV feasible in the (ω +
2ω) arrangement. We predict and back up with numerical
calculations some new features of the spin polarization of
electron emission in the bichromatic (ω + 2ω) ionization by
linearly and circularly polarized radiation. Interference be-
tween the one-photon and two-photon ionization pathways
leads to new spin components and crucially changes other
components. In the example of neon, efficient coherent control
of spin polarization is predicted in the XUV in the region of
excited atomic states.
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APPENDIX A: DEFINITIONS

Our approach is based on statistical tensor formalism
[51,52]. The statistical tensor of spin 1

2 is defined as

ρcγ

(
1

2
,

1

2

)
=

∑
μμ′

(−1)
1
2 −μ′( 1

2μ, 1
2 − μ′ | cγ

)〈 1
2μ | ρ | 1

2μ′〉,

(A1)
where μ (μ′) is the spin projection, 〈 1

2μ | ρ | 1
2μ′〉 is the spin

density matrix, and standard notation for the Clebsch-Gordan
coefficient is used. Below we abbreviate ρcγ ≡ ρcγ ( 1

2 , 1
2 ). The

tensor components ρ00 and ρ10 are real and ρ11 = −ρ∗
1−1. The

Cartesian components of electron-spin polarization are related
to the statistical tensors (A1) (given in the same coordinate
system):

Sz = 2ρ10/ρ00, (A2)

Sx = −
√

2(ρ11 − ρ1−1)/ρ00, (A3)

Sy = −i
√

2(ρ11 + ρ1−1)/ρ00. (A4)

Because we intrusted in dimensionless parameters of angular
anisotropy and spin polarization, we do not normalize the
density matrix and its trace is proportional to the ionization
probability.

Following the approach of Refs. [31,32] we introduce sim-
ilar brief notations for the reduced amplitudes of single- and
two-photon ionization, respectively:

Dl ≡ ei�(1)
l T (1)D(0)

0→L f l,1, (A5)

DlLJ

≡ ei�(2)
l

(∑
nLn

α
ζn∗
10 α

ζn
LnST (2)

En

{
S L J
1 1 Ln

}
D(0)

0→n,1D(S)
n,Ln→L f l,L

)
.

(A6)

Here l is the orbital momentum of the electron, ei�(1)
l ≡

−ii−l eδl , ei�(2)
l ≡ −i−l eδl with δl being the scattering phase in

the photoionization channel with orbital angular momentum
l , L f is the orbital angular momentum of the final ion, S, L,
J are spin, orbital and total angular momenta of the system
“ion + electron,” respectively. The value of S is indicated in
parentheses in the superscript of D and “0” in its subscript
denotes the ground state of a closed-shell atom. It is implied
that the intermediate state is described by the wave function
of the form

| ζnJn 〉 =
∑
LnSn

α
ζn
LnSn

| ζnLnSnJn 〉, (A7)

where Ln, Sn, and Jn are orbital, spin, and total angu-
lar momenta of the intermediate state with the energy En,
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respectively, and ζn is a set of quantum numbers that may
be needed to further identify this state. Here and below the
standard notations for the Wigner n j symbols are used, and

D(0)
0→L f l,1 ≡ 〈ζ f L f l, L = 1 || D || 0〉, (A8)

D(S)
n,Ln→L f l,L ≡ 〈ζ f L f l : L || DS || ζnLn〉 (A9)

are the reduced dipole matrix elements. The time factors,
which depend on the pulse parameters, are given by

T (1) = κ1F0e−iφ
∫ NT

0
sin2 (�t ′)ei(E−E0−2ωt ′ )dt ′, (A10)

T (2)
En

= κ2F 2
0

∫ NT

0
sin2 (�t ′)ei(E−En−ω)t ′

×
∫ t ′

0
sin2 (�t ′′)ei(En−E0−ω)t ′′

dt ′′, (A11)

where E is the electron energy and E0 is the energy of the
initial state. κ1 = 1/

√
2 for right-polarized (left-polarized)

second harmonic, and κ1 = 1/2 for the linearly polarized
harmonic. κ2 = 1/2 and κ2 = 1/4 for circularly and linearly
polarized fundamental, respectively.

Components of statistical tensors of the electron spin, as
a function of the electron emission angle, can be expanded
in terms of spherical harmonics. We write it down in the
coordinate system xyz, associated with the electron emission,
see Figs. 1(b) and 2(a):

ρcγ =
∑
kqd

(kq, cγ | dq + γ )B[k, c, d]Ykq(ϑ, ϕ)eiγ ϕ, (A12)

where Ykq(θ, ϕ) is the spherical harmonic, angles θ, ϕ de-
termine the direction of the electron emission. We use this
coordinate system throughout the whole Appendix. B[k, c, d]
are dynamical parameters, independent of the coordinate sys-
tem. It is convenient to separate the statistical tensor into
three parts, corresponding to contributions from single-photon
ionization by the second harmonic ρ2ω, two-photon ionization
by the fundamental harmonic ρω, and the interference part
ρω,2ω:

ρcγ = ρ2ω
cγ + ρω

cγ + ρω,2ω
cγ . (A13)

Omitting laborious but straightforward derivations in the
spirit of Refs. [31,32] we present below a list of expressions
for the dynamical parameters for the particular polarization
of photons together with expressions for the electron angular
anisotropy and spin-polarization parameters.

APPENDIX B: LINEARLY POLARIZED PHOTONS

The dynamical parameters for single-photon ionization are
expressed as

B2ω[k, 0, k] = 1√
2

∑
ll ′

l̂ l̂ ′(l0, l ′0 | k0)(10, 1 − 0 | k0)

×
{

l l ′ k
1 1 L f

}
DlD

∗
l ′ , (B1)

where â = √
2a + 1. The dynamical parameters (B1) are real

and only the scalar component of the spin statistical tensor is

nonvanishing:

ρ2ω
00 =

∑
k=0,2

B2ω[k, 0, k]k̂−1Yk0(ϑ, ϕ). (B2)

For the two-photon ionization,

Bω[k, c, d] =
∑
ll′JJ′
LL′SS′

(−1)S′+L′+k+ck̂ĉl̂ l̂ ′L̂L̂′ŜŜ′Ĵ Ĵ ′

×(l0, l ′0 | k0)(J0, J ′0 | d0)(10, 10 | J0)

×(10, 10 | J ′0)

{
L L′ k
l ′ l L f

}{ 1
2

1
2 c

S′ S S f

}

×
⎧⎨
⎩

S J L
S′ J ′ L′

c d k

⎫⎬
⎭DlLJD∗

l ′L′J ′, (B3)

where S f is the spin of the final ion. Because of the properties
of the Clebsch-Gordan coefficients both k and y are even,
and therefore ρω

10 = 0. Other components of the electron spin
statistical tensor can be derived as

ρω
00 =

∑
k=0,2,4

Bω[k, 0, k]k̂−1Yk0(ϑ, ϕ), (B4)

ρω
11 =

∑
k,d=0,2,4

(k − 1, 11 | d0)Bω[k, 1, d]k̂−1Yk−1(ϑ, ϕ)eiϕ,

(B5)

where Bω[k, c, d] = (−1)(k+c+d )Bω∗[k, c, d] and are either
real (c = 0) or imaginary (c = 1).

For the interference between single- and two-photon ion-
ization,

Bω,2ω[k, c, d] = 1√
2

∑
ll ′L′J ′

(−1)ck̂l̂ l̂ ′L̂′Ĵ ′(l0, l ′0 | k0)

×(J ′0, 10 | d0)(10, 10 | J ′0)

×
{

l l ′ k
L′ 1 L f

}{
d k c
L′ J ′ 1

}
DlD

∗
l ′L′J ′ ,

(B6)

and Bω,2ω[k, c, d] = (−1)(k+c+d )(B2ω,ω[k, c, d])∗. Both k and
d are odd and therefore ρω,2ω

10 = 0. Other components of the
statistical tensors are

ρω,2ω
00 =

∑
k=1,3

(
Bω,2ω[k, 0, k] + B2ω,ω[k, 0, k]

)
k̂−1Yk0(ϑ, ϕ),

(B7)

ρω,2ω
11 =

∑
kd=1,3

(
Bω,2ω[k, 1, d] + B2ω,ω[k, 1, d]

)
× (k − 1, 11 | d0)k̂−1Yk−1(ϑ, ϕ)eiϕ. (B8)

Furthermore, the angular anisotropy parameters

β2 = Bω[2, 0, 2] + B2ω[2, 0, 2], (B9)

β4 = Bω[4, 0, 4], (B10)

β1 = 2Re
(
Bω,2ω[1, 0, 1]

)
, (B11)
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β3 = 2Re
(
Bω,2ω[3, 0, 3]

)
, (B12)

and the electron-spin polarization parameters

p2 = Im

(
−

√
6Bω[2, 1, 2] + 3

√
5

2
Bω[4, 1, 4]

)
, (B13)

p4 = −7
√

5

2
Im(Bω[4, 1, 4]), (B14)

p1 = Im
(−2

√
2Bω,2ω[1, 1, 1] +

√
3B2ω,ω[3, 1, 3]

)
,(B15)

p3 = −5
√

3Im
(
Bω,2ω[3, 1, 3]

)
, (B16)

where we introduced the dimensionless dynamical parameters

Ba[k, c, d] = Ba[k, c, d]

Bω[0, 0, 0] + B2ω[0, 0, 0]
, (B17)

with three options for superscript a: a = ω (for two-photon
process), 2ω (for single photon process) and ω, 2ω (for the
interference tem).

APPENDIX C: CIRCULARLY POLARIZED PHOTONS

Denoting λ = ±1 for positive (+) and negative (−) helic-
ity, for the single-photon ionization one obtains

B2ω[k, 0, k] = 1√
2

∑
ll ′

l̂ l̂ ′(l0, l ′0 | k0)

× (1λ, 1 − λ | k0)

{
l l ′ k
1 1 L f

}
DlD

∗
l ′ . (C1)

Similar to the linearly polarized photon, the dynamical pa-
rameters (C1) are real and only the scalar component of the
statistical tensor is nonvanishing:

ρ2ω
00 =

∑
k=0,2

B2ω[k, 0, k]k̂−1Yk0(ϑ, ϕ), (C2)

where now the dynamical parameter is given by (C1). For the
circularly polarized fundamental, only J = J ′ = 2 channels
are allowed. The dynamical parameters and the spin statistical
tensors take the form

Bω[k, c, d] = 5
∑

ll′
LL′SS′

(−1)S′+L′+k+ck̂ĉl̂ l̂ ′L̂L̂′ŜŜ′

×(l0, l ′0 | k0)(22, 2 − 2 | d0)

{
L L′ k
l ′ l L f

}

×
{ 1

2
1
2 c

S′ S S f

}⎧⎨
⎩

S 2 L
S′ 2 L′

c d k

⎫⎬
⎭DlL2D∗

l ′L′2,

(C3)

ρω
00 =

∑
k=0,2,4

Bω[k, 0, k]k̂−1Yk0(ϑ, ϕ), (C4)

ρω
10 =

∑
k=0,2,4
d=1,3

Bω[k, 1, d](k0, 10 | d0)k̂−1Yk0(ϑ, ϕ), (C5)

ρω
11 =

∑
k=0,2,4
d=0,4

Bω[k, 1, d](k − 1, 11 | d0)k̂−1Yk−1(ϑ, ϕ)eiϕ.

(C6)

Similar to linearly polarized photons, Bω[k, c, d] =
(−1)(k+c+d )(Bω∗[k, c, d])∗ and can be either real or imaginary.
The nonvanishing angular anisotropy parameters are of the
form

β2 = Bω[2, 0, 2] + B2ω[2, 0, 2], (C7)

β4 = Bω[4, 0, 4], (C8)

where reduced dynamical parameters Ba[k, c, d] are given by
Eq. (B17). The electron-spin polarization parameters are

z0 = 2Bω[0, 1, 1], (C9)

z2 = −2

√
2

5
Bω[2, 1, 1] + 2

√
3

5
Bω[2, 1, 3], (C10)

z4 = −4

3
Bω[4, 1, 3], (C11)

εx = −
(

3√
10

Bω[2, 1, 1] +
√

3

5
Bω[2, 1, 3] + 5

3
Bω[4, 1, 3]

)
,

(C12)

ζx = 35

12
Bω[4, 1, 3], (C13)

εy = −Im

(√
3

2
Bω[2, 1, 2] +

√
5Bω[4, 1, 4]

)
, (C14)

ζy = 7
√

5

4
Im(Bω[4, 1, 4]). (C15)

For the interference term,

Bω,2ω[k, c, d] =
√

5

2

∑
ll ′L′

(−1)1+ck̂l̂ l̂ ′L̂′

×(l0, l ′0 | k0)(22, 1 − λ | d2 − λ)

×
{

l l ′ k
L′ 1 L f

}{
d k c
L′ 2 1

}
DlD

∗
l ′L′2.

(C16)

Here we suppose that the fundamental is right polarized (λ =
+1), and the second harmonic is λ = ±1. Thus, Eq. (C16)
covers both cases, corotating and counter-rotating beams. The
relation Bω,2ω[k, c, d] = (−1)(k+c+d+1)(B2ω,ω[k, c, d])∗ holds
and Bω,2ω for λ = −1 is

√
15 times larger than for λ = +1.

If the helicity of the second harmonic is λ = −1, i.e., for
counter-rotating beams, the spin statistical tensors are of the
form

ρω,2ω
00 = 1√

7

{
Bω,2ω[3, 0, 3]Y33(ϑ, ϕ) + B2ω,ω[3, 0, 3]Y3−3(ϑ, ϕ)

}
, (C17)
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ρω,2ω
10 =

√
3

2
√

7

{
Bω,2ω[3, 1, 3]Y33(ϑ, ϕ)−B2ω,ω[3, 1, 3]Y3−3(ϑ, ϕ)

}
, (C18)

ρω,2ω
11 = − 1

2
√

7
Bω,2ω[3, 1, 3]Y32(ϑ, ϕ)eiϕ. (C19)

The dynamical parameter (C16) varies with the phase between the harmonics as exp[−iφ] [see Eqs. (A5), (A6) and (A10),
(A11)] and then from Eqs. (C17)–(C19) it is obvious that PAD and spin polarization rotate with φ synchronously. The angular
anisotropy and spin-polarization parameters may be written in a short form by two complex equations:

β−
3 exp [iψ−

3 ] = −
√

5

2
Bω,2ω[3, 0, 3], (C20)

γ − exp [iξ−] = −
√

15

4
Bω,2ω[3, 1, 3]. (C21)

For the corotating beams, i.e., for the helicity λ = −1 of the second harmonic, the components of the spin statistical tensors are
of the form

ρω,2ω
00 =

∑
k=1,3

k̂−1
{
Bω,2ω[k, 0, k]Yk1(ϑ, ϕ) + B2ω,ω[k, 0, k]Yk−1(ϑ, ϕ)

}
, (C22)

ρω,2ω
10 =

∑
k=1,3

d=1,2,3

k̂−1(k1, 10 | d1)
{
Bω,2ω[k, 1, d]Yk1(ϑ, ϕ)

+ (−1)d B2ω,ω[k, 1, d]Yk−1(ϑ, ϕ)
}
, (C23)

ρω,2ω
11 =

⎛
⎜⎝ ∑

k=1,3
d=1,2,3

k̂−1(k0, 11 | d1)Bω,2ω[k, 1, d]Yk0(ϑ, ϕ)

+ 1√
7

∑
d=2,3

(3 − 2, 11 | d − 1)B2ω,ω[3, 1, d]Y3−2(ϑ, ϕ)

)
eiϕ. (C24)

The angular anisotropy and the spin-polarization parameters can be written in the complex form as

β1 exp [iψ1] = −
√

2Bω,2ω[1, 0, 1] − 2
√

3Bω,2ω[3, 0, 3], (C25)

β3 exp [iψ3] = 5
√

3

2
Bω,2ω[3, 0, 3], (C26)

κ exp [iχ ] = −2Bω,2ω[1, 1, 1] − 2Bω,2ω[1, 1, 2] − 2Bω,2ω[3, 1, 3]

+8

√
2

7
Bω,2ω[3, 1, 2], (C27)

γ + exp [iξ+] = −5

4
Bω,2ω[3, 1, 3] + 5

√
2

7
Bω,2ω[3, 1, 2], (C28)

η exp [iδ] = 2Bω,2ω[1, 1, 1] − 2Bω,2ω[1, 1, 2] +
√

2Bω,2ω[3, 1, 3]

−2

√
2

7
Bω,2ω[3, 1, 2]. (C29)
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