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Resonant propagation of x rays from the linear to the nonlinear regime
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We present a theoretical study of temporal, spectral, and spatial reshaping of intense, ultrafast x-ray pulses
propagating through a resonant medium. Our calculations are based on the solution of a three-dimensional time-
dependent Schrödinger-Maxwell equation, with the incident x-ray photon energy on resonance with the core-
level 1s-3p transition in neon. We study the evolution of the combined incident and medium-generated field,
including the effects of stimulated emission, absorption, ionization, and Auger decay, as a function of the input
pulse energy and duration. We find that stimulated Raman scattering between core-excited states 1s−13p and
2p−13p occurs at high x-ray intensity, and that the emission around this frequency is strongly enhanced when
also including the similar 1s−1-2p−1 response of the ion. We also explore the dependence of x-ray self-induced
transparency (SIT) and self-focusing on the pulse intensity and duration, and we find that the stimulated Raman
scattering plays an important role in both effects. Finally, we discuss how these nonlinear effects may potentially
be exploited as control parameters for pulse properties of x-ray free-electron laser sources.
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I. INTRODUCTION

Understanding the fundamental interaction between matter
and high-intensity electromagnetic radiation has long been a
vibrant scientific frontier. The nonlinear phenomena enabled
by intense light sources in the optical, infrared, and microwave
regions have been utilized to control electronic, nuclear, and
spin transitions which has enabled breakthroughs across many
fields of science, such as medical imaging, telecommunica-
tion, and the creation and manipulation of novel materials.
So far it has been challenging to investigate coherent non-
linear effects at x-ray wavelengths due to their extremely
small cross sections. However, modern x-ray free-electron
laser (XFEL) facilities delivering x rays at unprecedented
intensities up to 1019 W/cm2 now make it possible to also
study nonlinear effects in the x-ray region [1,2]. Although
the majority of x-ray nonlinear interaction studies have in-
volved sequential multiphoton ionization processes in thin
targets, leading to normally inaccessible charge states [3–7],
two-photon absorption [8–10], second-harmonic generation
[11], and optical–x-ray wave mixing [12] have also been
demonstrated in the x-ray regime. The ability of XFEL pulses
to efficiently populate core-excited states, and thus induce a
population inversion through a thick target, has enabled the
observation of x-ray stimulated emission and x-ray stimulated
Raman scattering (SRS) [13–16].

A different aspect of nonlinear laser-matter interaction
is manifested in the propagation of an intense, short pulse
through a dense medium with a resonance that is long lived
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relative to the pulse duration. The long-lived free-induction
decay [17,18] that persists after the pulse leads upon propa-
gation to modifications in the spectral, temporal, and spatial
profile of the short pulse [19–24], such as self-induced trans-
parency (SIT) [19,20], Burnham-Chiao oscillations in the
temporal profile [25], and self focusing [22–24], and these
phenomena have been extensively investigated in the optical
regime. More recently, reshaping of extreme ultraviolet pulses
through collective effects has been demonstrated, using ei-
ther high-harmonic generation [26–28] or FEL sources [29]
with synchronized infrared pulses as a means of imposing
nonlinear processes. The x-ray regime presents a challenge
given that inner-shell resonances typically have lifetimes of
just a few femtoseconds, and that intense x-ray pulses based
on self-amplified spontaneous emission (SASE) have dura-
tions of tens to hundreds of femtoseconds and exhibit poor
temporal coherence. However, the recent demonstrations of
subfemtosecond, nearly transform-limited soft and hard x-ray
pulses promise a new regime of coherent ultrafast x-ray matter
interactions [30–32].

In this paper, we study the spectral, temporal and spatial
reshaping of sub- and few-femtosecond, temporally coher-
ent x-ray pulses as they propagate through an atmospheric
density neon gas on resonance with the 1s → 3p transition.
We introduce a method of simultaneously calculating the
quantum dynamics of the neutral and singly ionized neon
atoms, represented by few-level systems, and solving the
three-dimensional (3D) Maxwell wave equation (MWE) to
incorporate the collective response of the nonlinear medium.
This approach allows us to treat all the different linear and
nonlinear processes on an equal footing at both the micro-
scopic and the macroscopic level. We find that stimulated
Raman scattering (SRS) between core-excited states 1s−13p
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and 2p−13p occurs at high x-ray intensity [15,33], and that it
is strongly enhanced when also including the 1s−1-2p−1 (x-
ray lasing) response of the ion. We theoretically observe and
distinguish the growth of the SRS channel in the neutral atom
relative to the stimulated emission in the ion [13,34], which
due to their near degeneracy renders a clean decomposition
of the two less experimentally relevant. We also find that at
high, but reachable, intensities above 1019 W/cm2 a transmit-
ted spectrum with unexpected spectral strength between the
SRS and resonant peaks develops during propagation, and
that this can be understood as a generalized Rabi cycling
in an intense multicolor field consisting of both initial and
generated frequency components in the pulse. Finally, we
investigate the spatial reshaping of the x-ray pulse and find
that it is influenced both by SIT and by true self-focusing, and
that this can be interpreted in terms of the intensity dependent,
and therefore radially varying, modification of the amplitude
and phase of the polarization field by the strong x-ray pulse.
Finally, we show that all of the effects mentioned above still
remain if we substitute the temporally coherent x-ray pulse
with a SASE pulse.

This paper is organized as follows. Section II describes
our theoretical approach to understanding linear and nonlinear
effects in x-ray propagation through a thick resonant medium.
Section III discusses a number of results for propagation
through a neon gas with radiation resonant with the strong
core-level 1s → 3p transition: (III A) effects of including
various ionization continua on the transmitted spectral and
temporal profiles, (III B) spectral and temporal profiles as
a function of intensity and pulse duration, and (III C) self-
induced transparency and self-focusing as a function. In Sec.
III D we generalize the results in the previous sections ob-
tained for coherent pulses to resonant propagation of SASE
pulses. Finally in Sec. IV, we summarize our findings.

II. THEORETICAL APPROACH

In order to model the spatiotemporal reshaping of an x-
ray pulse due to absorption and emission processes we have
developed a versatile code based on coupling the 3D MWE
to a time-dependent Schrödinger equation (TDSE) solution
for a few-level system that can describe both the neutral and
ionized species of the system, extending previous x-ray prop-
agation calculations in one spatial dimension [15,29,33–35].
For the TDSE solution, we use a hybrid approach in which
the evolution of the states in the neutral atom is treated using a
wave-function-based formalism, whereas states in the ionized
species are treated using a density matrix formalism. For the
neutral atom, this includes coherent dipole couplings between
relevant states, incoherent loss terms due to Auger decay of
core-excited states, and incoherent loss terms due to direct

FIG. 1. Schematic of the energy levels, dipole couplings, and
decay rates in the neon atom (left) and the neon ion (right). Note
that the red (wiggly), blue (solid) and green (dashed) lines and
corresponding symbols correspond respectively to terms A, B and
C in Eq. (1). The dipole couplings d0,2 = 0.0077 a.u., d1,2 = 0.048
a.u., and d3,4 = 0.083 a.u. are taken from [34].

ionization out of the relevant core and/or valence orbitals. For
the ionized species, the population of each state is directly
related to the ionization out of the equivalent orbital in the
neutral atom, where the relationship is enforced via energy
conservation in the field+gas system (see more details below),
and the coherences in the ion are then allowed to develop
in the field as it coherently couples different ionic states to
each other. In the next couple of paragraphs, we outline this
approach in more detail.

In this paper, we consider a five-level neon system con-
sisting of three states in the neutral atom and two in the ion,
as illustrated in Fig. 1. These are the ground state and the
1s−13p core excited and the 2p−13p valence excited states
in the neutral atom, at energies of 867.5 and 18.2 eV above
the ground state, respectively, and the 2p−1 and 1s−1 ground
and core excited states of the ion, at energies of 19.3 and
869.1 eV above the neutral ground state. The coherent and in-
coherent couplings between the states are illustrated in Fig. 1,
including the magnitudes of the dipole couplings, in a.u. The
Auger decay rates of the two core excited states have values
�2 = �4 = 0.0099 a.u., and the ionization cross sections are
σ2p = 0.0084 Mb and σ1s = 0.30 Mb. The transition dipoles
d0,2, d1,2, d3,4 from Ref. [34] were originally calculated with
[36] and correspond to a peak absorption cross section of
1.98 Mb for the 1s → 1s−13p neutral Ne transition. We do
not include spontaneous emission as a means of initiating
the SRS transitions; the spectral background provided by the
combination of the initial pulse and the 2.4 fs exponential
decay of the resonant polarization is sufficient to provide a
seed; see also discussions in [15,33].

Our hybrid approach means we are solving a set of six
coupled differential equations for the three wave function
coefficients �0, �1, �2, the two populations ρ3,3 and ρ4,4, and
the coherence between the ionic states ρ3,4, in atomic units:

i�̇0(t ) = −i

(
�1s(t )

2
+ �2p(t )

2

)
�0(t )︸ ︷︷ ︸

A

+ d0,2E (t )�2(t )︸ ︷︷ ︸
B

, (1a)

i�̇1(t ) = ε1�1(t )︸ ︷︷ ︸
A

+ d1,2E (t )�2(t )︸ ︷︷ ︸
B

, (1b)
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i�̇2(t ) =
(

ε2 − i
�2

2

)
�2(t )︸ ︷︷ ︸

A

+ d0,2E (t )�0(t ) + d1,2E (t )�1(t )︸ ︷︷ ︸
B

, (1c)

ρ̇3,3(t ) = �2p(t )|�0(t )|2︸ ︷︷ ︸
C

−2id3,4E (t ) Im[ρ3,4(t )]︸ ︷︷ ︸
B

(1d)

ρ̇4,4(t ) = �1s(t )|�0(t )|2︸ ︷︷ ︸
C

−�4ρ4,4(t )︸ ︷︷ ︸
A

+ 2id3,4E (t ) Im[ρ3,4(t )]︸ ︷︷ ︸
B

, (1e)

ρ̇3,4(t ) =
[

i(ε4 − ε3) − �4

2

]
ρ3,4(t )︸ ︷︷ ︸

A

−id3,4E (t )[ρ4,4(t ) − ρ3,3(t )]︸ ︷︷ ︸
B

. (1f)

In these equations, the A terms correspond to the phase and
amplitude evolution driven by the energies and lifetimes of
the different states; the B terms are the terms driven by field-
induced dipole couplings; and the C terms are responsible for
incoherently populating the states of the ion via ionization of
the neutral ground state.

First, note that we do not keep track of any coherence be-
tween the neutral atom and the ion, since we do not keep track
of the photoelectrons. This is what allows us to treat them
separately, each of them in their own formalism, for numerical
efficiency. Second, since the only sources of decoherence in
the neutral atom are from photoionization and Auger decays,
this can be simply implemented, within the wave function
formalism, as loss terms in the TDSE. In contrast, there are
several incoherent processes affecting the ion. The Auger
decay from the core hole can also be implemented as a loss
term, but the photoionization processes are source terms that
increase incoherently the population in the ionic states. This
cannot be implemented within the wave function formalism,
which is why the ion has to be treated in the density matrix
formalism. Indeed, the photoionization terms (green terms)
will only increase the populations ρ3,3 and ρ4,4 in the ionic
states, without affecting the coherence ρ3,4. Note that, since
the ion dipole is proportional to the coherence, as long as
the coherence is zero the ion neither absorbs nor emits light.
The coherence in the ion can only build over time through its
interaction with the field (blue term). This is the term that will
be responsible for absorption or emission of light in the ion.
The incoherent population transfer (green term) will not lead
to any coherent emission of light. Finally, it is worth noting
that the wave function formalism is less computationally de-
manding, especially for systems with large numbers of states.

The 3D MWE is solved in the frequency domain, by space
marching through the gas in a frame that moves at the speed
of light. The incident field is linearly polarized, and thus the
only driven (and phase matched) response from the atoms is
linearly polarized as well. In SI units (used in the remainder
of this article), and with all frequency-dependent quantities
also functions of the cylindrical coordinates r and z, the MWE
along the field polarization takes the form

∇2
⊥Ẽ (ω) + 2iω

c

∂ Ẽ (ω)

∂z
=− ω2

ε0c2
P̃(ω) − i

ω

c
ρat σ̃ (ω)Ẽ (ω).

(2)

Here Ẽ (ω) is the electric field which contains all the fre-
quencies of the incoming and generated field, and the
polarization-field source term P̃(ω) = ρatd̃ (ω) is calculated
from the single-atom dipole moment d̃ (ω), including both
neutral and ion contributions, via the few-level TDSE solu-
tions described above. The second term on the right-hand side
represents the loss of energy from the field due to ionization,
where σ̃ (ω) is the effective cross section due to all ionization
processes at frequency ω, and ρat is the density of neutral
atoms.

To ensure energy conservation in the field+gas system, this
energy loss from the field, which is implemented in a macro-
scopic sense in the MWE, has to match the energy absorbed
at the microscopic level by the atoms in the TDSE through the
time-dependent ionization rates. The energy absorbed from
the field is easily deduced from the cross section with Beer’s
law. However, we cannot know how much energy is absorbed
by the atoms before we solve the TDSE. We thus implemented
a two-step procedure to enforce energy conservation. First we
evaluate how many photons each atom is expected to absorb,
using the cross section, to compute a time-dependent rate that
is used to solve the TDSE. Then we extract from the TDSE
the exact number of photons absorbed by each atom. Finally
we adjust the cross section that we use in the MWE. In the
following, we detail how this is implemented.

For each ionization channel i, the frequency-dependent
ionization cross section σi(ω) is taken as an arctangent func-
tion centered around the ionization threshold energy ωth:

σi(ω) = σi

[
1

2
+ 1

π
arctan

(
2
ω − ωth

�ion

)]
, (3)

where σi is the ionization cross section and �ion is the inverse
lifetime of the ionic state populated by the ionization pro-
cess; here it is equal to the Auger decay rate. The arctangent
function is the integral of the Lorentzian cross sections for
each continuum state that can be populated by an ω photon,
under the assumption that the ionized states all have the same
lifetimes, and that the cross section is flat [37].

The corresponding time-dependent ionization rate �i(t )
used in the TDSE is computed from this cross section σi

and from the electric field. In usual first-order time-dependent
perturbation theory approaches, the ionization rate does not
depend on time, and in the case of a monochromatic incident
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field of amplitude F the rate is proportional to F 2. Here we
suppose that we can incoherently sum the contributions to
ionization from all incident frequencies, and we make the
approximation that the rate adiabatically follows the slowly
varying field envelope F (t ) (for a more rigorous derivation
of the ionization rate, we refer the interested reader to the
Appendix):

�i(t ) = αiF
2, (4)

F (t ) = 1

π

∣∣∣∣
∫ ∞

0
Ẽ (ω)e−iωt dω

∣∣∣∣. (5)

To set the proportionality constant αi, we compute the
expected number of absorbed photons per atom Nph by inte-
grating �i(t ) over the full pulse. Note that this supposes that
the population in the ground state is almost constant. Then,
we express Nph as the energy Ui lost by the field at a given
z position, divided by the number of atoms at z and by the
energy of one absorbed photon:

Nph =
∫ ∞

0
�i(t )dt = Ui

ρat h̄ωi
, (6)

Ui = ε0c

2π�z

[∫ ∞

−∞
|Ẽ (ω)|2(1 − e−ρatσi�z )dω

]
. (7)

Using the fact that∫ ∞

−∞
F 2(t )dt = 1

π

∫ ∞

−∞
|Ẽ (ω)|2dω, (8)

we finally get

�i(t ) = ε0c

2h̄ωiρat�z

∫ ∞
−∞ |Ẽ (ω)|2(1 − e−ρatσi�z )dω∫ ∞

−∞ |Ẽ (ω)|2dω
F 2(t ).

(9)

However, because of all the coherent and incoherent processes
taking place simultaneously, the atoms might actually absorb
less photons that the expected Nph, especially if the interaction
with the field is nonlinear. To account for this, we keep track of
the number of photons Ñph that are really absorbed within each
ionization channel i described by the TDSE. This is computed
by summing all the population that is transferred from the
neutral atom to the ion during the TDSE propagation. The
field+gas energy conservation is enforced by rescaling the
ionization cross section σ̃i that is used in the MWE,

σ̃i(ω) = σi(ω)
Ñph

Nph
= σi(ω)

Ñphρat h̄ωi

Ui
, (10)

so that the number of photons macroscopically removed from
the field by the MWE exactly corresponds to the number
Ñph of photons that the atoms actually absorbed. Finally, the
effective cross section σ̃ (ω) in the MWE [Eq. (2)] is the
sum of all the rescaled σ̃i(ω) of all the different ionization
channels. This procedure reproduces the experimental pho-
toabsorption cross section with the 1s continuum deduced
by computing the quantity σabs = ln[Iincident (ω)/Itrans(ω)]/nL,
where n and L are the number density and path length of
the target, respectively. We note that, in the treatment of
ionization described above, we are making the approximation
that all frequencies in the pulse share a common envelope

F (t ). If considering a scenario in which different frequency
components are substantially separated in time (for example
an ionizing pump pulse followed by a non-ionizing probe
pulse), one could instead use different envelopes for different
frequency components in Eqs. (4) and (5).

The initial electric field is a focused Gaussian in space, and
in the frequency domain is defined as the Fourier transform
of the initial pulse. At each plane in the propagation direc-
tion, the time-dependent dipole moment is calculated from
both the neutral and the ionic systems, d (t ) = dn(t ) + di(t ),
and the macroscopic polarization field is proportional to the
dipole moment via the density [note that this is the initial
density of the gas; the time dependence of the neutral and
ion densities is already incorporated into the time-dependent
wave functions and coherences in (1) above]. Finally, we use
the calculated source terms on the right-hand side of Eq.
(2) to propagate the electric field to the next plane in the
propagation direction. This self-consistent approach ensures
that both the linear and nonlinear responses of the atoms to
the field is incorporated back into the propagating XUV (and
IR) field, and we can therefore treat both linear and nonlinear
absorption and emission on an equal footing. Note that in
contrast to this polarization-field-driven coherent exchange of
energy between the field and the gas, the ionization loss term
is incoherent.

The TDSE (1) is solved with a split-operator algorithm,
where the propagation of the neutral wave function on the one
hand and of the density matrix of the ion on the other hand
are done in parallel. The MWE (2) is solved with a Crank-
Nicolson algorithm. All Fourier transforms are computed with
the FFTW package [38], and diagonalizations were performed
using the LAPACK library [39].

III. DISCUSSION OF RESULTS

A. Role of ionization continua

We now use this theoretical machinery to explore resonant
propagation in neon gas as a function of pulse intensity and
duration. First, to give insight into the physics at play we
examine the role of ionization in the combined atom–ion–
EM-field system. The effects of nonresonant ionization can be
negligible in some cases [33], but here, where we access the
deep 1s inner shell with ultrashort, broad bandwidth pulses,
this is not the case. We specifically explore the effects of ion-
ization by computing three scenarios: no ionization, ionization
of the 1s shell, and ionization of both 1s and 2p shells which
directly provide population in the ion.

We consider a 0.25-fs (FWHM) Gaussian pulse centered
on the 1s → 3p resonance at 867.5 eV with a peak intensity
of 1018 W/cm2 (pulse energy ∼100 μJ) propagating through
3 cm of gaseous neon at atmospheric pressure. The beam
is focused to the center of the cell with a confocal param-
eter of b = 12.35 cm corresponding to a focus of 6.12 μm
(FWHM) at the cell center. For context, the resonance has
a peak absorption cross section of σ = 1.98 Mb, such that
Beer’s law I (L) = I0e−σnL with σnL ≈ 150 is well in the
optically thick, self-induced-transparency regime [20,40]. (A
more recent high accuracy determination of the resonance
cross section is 30% higher [41], but our observed trends and
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FIG. 2. The evolution of the electric field and state populations during resonant propagation in neon gas of a 0.25-fs (FWHM) x-ray pulse
centered on the 1s → 3p Ne transition at 867.5 eV with peak intensity 1018 W/cm2. Time-dependent populations of the core-excited state
1s−13p, valence-excited state 2p−13p for neutral Ne, and 1s and 2p hole states for Ne+ are shown for propagation distances z = 0, 1.5, and
3.0 cm. The profile of the electric field at each propagation distance is indicated in gray. The three columns represent the evolution without
ionization channels (left), including 1s ionization (center) and including 1s and 2p ionization (right),

results are expected to be unchanged.) Here the pulse duration,
τp, is less than any relaxation or decoherence timescale (set by
the Auger decay of 2.4 fs) such that the pulse has a spectral
content that is much broader than the absorption line of the
medium.

The simulation uses 30 points per period, Tp = 4.67 at-
toseconds, and covers a range of 100 fs. For propagation
from z = 0 to 3 cm, the electric field and state populations
in the time domain and the spectra in the frequency domain
are written as output files for sequential propagation planes
spaced by �z = 0.05 cm. The propagation calculations were
performed at a step size of �z/30. The 100-fs time window
covers the oscillating pulse tails and corresponds to a 0.04-eV
grid in the frequency domain. This fine grid is sufficient to
resolve the Ne absorption spectra, which have a natural width
of 0.27 eV.

In Fig. 2 and 3 we show time-domain and frequency do-
main results, respectively, for selected propagation distances
of between 0 and 3 cm, for the three different ionization
scenarios described above. The left column in Fig. 2 shows
the results when no ionization continua are included. The
amplitude of the electric field is shown in gray and the pop-

ulations of two excited states in neutral neon, 1s−13p and
2p−13p, in red and blue, respectively. We observe a dramatic
temporal reshaping of the pulse as it propagates through the
medium. The response at the entrance slab of the medium
(z = 0) shows a population of the resonantly excited 1s−13p
state of 8% at the end of the pulse, that subsequently decays
with the 1s hole lifetime of 2.4 fs. The small blip associated
with the 2p−13p state is related to the dressing of the states by
the electric field, but does not correspond to real population
transfer to the 2p−13p state.

As we continue to propagate into the medium, a ringing
is evident as energy is exchanged between the two resonant
levels and the propagating field. The third level, 2p−13p,
plays little role. This situation is analogous to that shown
in Sun et al. [33] where both two- and three-level systems
without ionization channels show similar ringing behavior
for large-area pulses, i.e., input π pulse. The results here
show that the use of large area pulses (>π ) is not required
to achieve the oscillation in the x-ray regime, a feature long
appreciated in the optical community [21,25]. We also note
that the population of the excited 1s−13p state is out of phase
with the electric field, demonstrating the energy exchange
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FIG. 3. Transmitted spectra through Ne gas with different ionization conditions. Incident pulse is 0.25 fs (FWHM) Gaussian, 1018 W/cm2,
centered at 867.5 eV. (a) Spectra after propagating one step (0.05 cm) starting at z = 0 for no ionization, 1s ionization, 1s + 2p ionization.
(b) Spectra at z = 3.0 cm for no ionization and 1s ionization. (c) Spectra at z=3.0 cm for no ionization and 1s + 2p ionization.

between the medium and field in this simple configuration.
The time-domain ringing, and its evolution with propagation
distance, can be understood by considering the evolution of
the spectrum [see Figs. 3(a) and 3(b)]: As the pulse propa-
gates a hole is eaten from its spectrum, which creates a beat
(ringing) in the time domain between the spectral content
above and below the resonance frequency. As the hole widens
during propagation, the timescale of the ringing shortens
with propagation distance, as observed going from z = 1.5
to 3.0 cm in the bottom two panels. [We note that the in-
clusion of higher Rydberg levels (3p, 4p, 5p, 6p) suppresses
the aforementioned Burnham-Chiao time-domain ringing but
otherwise merely leads to the expected multiple absorption
dips in the transmitted spectrum.]

In the center column of Fig. 2 we show results when the 1s-
ionization continuum and associated ion states are included,
There is a dramatic difference compared to the left column.
A 4% population of the 1s−1 ion state is observed in the
first slab. The presence of the 1s−1 hole produces dipole cou-
pling at the 1s−1 → 2p−1 transition frequency that is nearly
resonant with corresponding transition in the neutral atom,
1s−13p → 2p−13p. This can also be observed in the spectrum
in Fig. 3(a) as a two-order-of-magnitude enhancement of the
850 eV signal after propagating only one step (0.05 cm).
After propagation to 1.5 cm a fine temporal beating of the
electric field appears that corresponds to �t = 2π/(ω02 −
ω12) = 0.22 fs. The beating persists throughout propagation
and is also manifested in the transmitted spectrum, where the
stimulated Raman scattering (SRS) peak is prominent [see
Fig. 3(b)]. For the no-ionization case in the left column, the
transmitted SRS peak is much lower, and the fine temporal
beating is nearly absent in the temporal profile.

The right column of Fig. 2 shows propagation when both
the 1s and 2p ionization continua are included. The addition of
the 2p continuum affects the temporal profile and populations
to a lesser degree than the first inclusion of the 1s contin-
uum. The magnitude of the temporal oscillations is slightly
suppressed, but the main features shown in the center column
are still apparent. The major difference is the more prominent
appearance of the 2p−1 ion state, which enables absorption at
this photon energy, thus suppressing the 850-eV peak and the
associated temporal beating.

In the following we use as a default the five-level Ne sys-
tem shown in Fig. 1 and the 1s-ionization continuum, i.e., the
conditions of the central column in Fig. 2. This configuration

illustrates the main physics involved in the coupled atom–ion–
EM-field system.

B. Spectral and temporal reshaping as a function of intensity

Now we consider the temporal and spectral reshaping of
x-ray pulses upon propagation through the resonant neon
medium as a function of intensity (1016–1019 W/cm2) for
two different pulse durations [0.25 and 2.5 fs (FWHM)]. The
1016 W/cm2 represents the linear response of the system and
matches simulations at lower intensities [see Figs. 9(c) and
9(d) for linearity of transmitted pulse energies versus inten-
sity].

Figure 4 displays incident and transmitted spectral and
temporal profiles for 0.25-fs Gaussian pulses incident at
three peak intensities: 1016, 1018, and 1019 W/cm2. At all
intensities, there is a sharp dip in the transmitted spectrum
at 867.5 eV due to resonant absorption. Photon energies
above 870 eV are absorbed via 1s photoionization. The ultra-
short 0.25-fs pulse corresponds to a transform-limited 7.3 eV
(FWHM) bandwidth such that much of the radiation is off
resonance and transmitted. A very small fraction of the in-
cident pulse (∼10−7) provides photons at ∼850 eV that seed
a stimulated Raman transition (SRS) between the core-excited
state (1s−13p) and valence-excited state (2p−13p), and on
the corresponding x-ray lasing (XRL) transition in the ion,
(1s−1) and (2p−1), which is populated via the part of the
initial spectrum above 870 eV. Figures 5(a) and 5(c) show
that at the intermediate intensities 1017 and 1018 W/cm2, the
stimulated Raman scattering (SRS) signal is exponentially
amplified during propagation. At 1018 W/cm2, the spectral
strength of the SRS peak is comparable to the peak of the
spectrum near 865 eV. Higher-order scattering processes such
as four-wave mixing contribute to a signal at 833 eV, as was
observed also in [33].

At even higher intensity, seen in Fig. 4(c), the SRS peak
becomes dominant in the transmitted spectrum, and spectral
content appears throughout the gap between the 867.5 eV
resonance and the 849.3 eV SRS peak, Fig. 4(c). We are
not aware of this “intermediate” spectrum, between the SRS
and resonance peaks, having been observed before, and we
have further investigated its origin. Figure 5(b) shows that
the intermediate spectrum appears and then grows exponen-
tially at longer propagation distances (z > 0.3 cm) as the SRS
approaches saturation. While the SRS signal saturates early
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FIG. 4. Spectral and temporal profiles for the incident and transmitted pulse at various intensities. Incident pulse is 0.25 fs (FWHM)
Gaussian centered at 867.5 eV (blue dashed line). Transmission through 3 cm Ne gas at 1 bar pressure calculated using the five-level
Ne, Ne+, and 1s-continuum system (red solid line). Upper row displays spectra for peak intensities (a) 1016 W/cm2, (b) 1018 W/cm2, and
(c) 1019 W/cm2. Lower row displays temporal profiles: (d) 1016 W/cm2, (e) 1018 W/cm2, and (f) 1019 W/cm2

during propagation also at lower intensities [see Fig. 5(c)], it
is only the combination of SRS intensity, spectral intensity
near the resonance, and high fields that gives rise to the in-
termediate spectrum. At this intensity, the Rabi frequencies
associated with both the initial pulse and the generated SRS
pulse, and the two resonant transitions, are on the order of
5–10 eV, and the intermediate spectrum can be though of as
generalized Rabi sidebands produced by the strong multicolor
field. This interpretation was verified with a separate calcu-
lation using two-color, high-intensity (1019 W/cm2) incident
pulses, which was found to give rise to sidebands in the dipole
spectrum spanning most of the frequency range between 850
and 867 eV (not shown).

The temporal pulse profile dramatically differs for the three
intensities. At the lowest intensity, the ringing associated with
on-resonant pulse propagation for low pulse areas appears. At

the intermediate intensity, finer oscillations associated with
the beating between the SRS and main peak are observed.
At the highest intensity, 1020 W/cm2, the transmitted pulse
is relatively compressed, consistent with the broad spectral
profile discussed above, and only a few oscillations of the the
low-pulse-area ringing are visible.

Figure 6 displays incident and transmitted spectral and
temporal profiles for a 2.5-fs Gaussian pulse for the same three
intensities. With the longer pulse, the spectral width (0.73 eV)
is comparable to that of the natural width of the absorption res-
onance (0.24 eV) such that much more of the pulse is absorbed
at the low intensity limit, providing a more efficient energy
exchange between the field and medium. Hence, nonlineari-
ties occur at lower intensity, giving rise to complex spectra.
Already by 1018 W/cm2 the SRS resonance peak becomes the
largest spectral feature. At the highest intensity 1019 W/cm2,

FIG. 5. Spectral evolution during propagation through the five-level Ne, Ne+, and 1s-continuum system at 1 bar.x (a) Spectral evolution of
a 0.25 fs, 1018 W/cm2 pulse. (b) Spectral evolution of a 0.25 fs, 1019 W/cm2 pulse. (c) Growth of the fraction of transmitted energy contained
in the SRS+XRL peak (integrated between 846 and 853 eV) for 1016, 1017, 1018 W/cm2 peak intensities.
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FIG. 6. Spectral and temporal profiles for the incident and transmitted pulses. Incident pulse is 2.5 fs (FWHM) Gaussian centered at
867.5 eV (blue dashed line). Transmission through 3 cm Ne gas at 1 bar pressure calculated using the five-level Ne, Ne+ and 1s-continuum
system (red solid line). Upper row displays spectra for peak intensities (a) 1016 W/cm2, (b) 1018 W/cm2, and (c) 1019 W/cm2. Lower row
displays temporal profiles: (d) 1016 W/cm2, (e) 1018 W/cm2, and (f) 1019 W/cm2.

the rising edge of the pulse is strongly steepened, leading to a
much higher peak intensity (∼tenfold), as previously observed
computationally for the Ar system [33,42].

C. Self-induced transparency and self-focusing

When a weak pulse enters a resonant medium, a fraction of
the pulse energy is absorbed by creating excitations. After a
few absorption lengths the pulse energy decays to zero accord-
ing to Beer’s law. Self-induced transparency (SIT) refers to the
situation when electromagnetic fields pass through a medium
with energy attenuation smaller and transit time longer than
expected. This happens for a weak pulse with duration shorter
than the decoherence timescale [20,21]. The excited dipoles
remain in phase collectively after the pulse passes, and thus
can radiate power back to the field coherently. As detailed in
[21] the propagation of a small-area pulse in an attenuating
medium satisfies an area theorem. That is, the pulse area drops
to zero exponentially. However, this does not mean the pulse
energy decreases exponentially. The pulse reshapes itself to
produce oscillating tails that have alternating phases, as seen,
e.g., in Figs. 2 and 4. The pulse area decreases due to the can-
cellation between tails, but the pulse energy remains constant.

As a preface to our more complex situation we first con-
sider propagation through a simple two-level neon system (1s
and 3p) with photoionization ignored as shown in Figs. 7 and
8. We first consider the transmitted pulse energy. Figure 7(a)
shows the evolution of the pulse energy for different incident
intensities and two pulse durations (2.5 and 0.25 fs). The black
dashed line indicates energy absorption according to Beer’s
law for monochromatic light on resonance. The 2.5-fs pulse
at 1018 W/cm2 is close to Beer’s law, but deviates due to the

off-resonant radiation. As is easily understood, the 0.25-fs
pulses are attenuated much less than the Beer’s law pre-
diction due to substantially more off-resonant components:
short pulses correspond to larger bandwidth and only pho-
tons within the absorption bandwidth are absorbed. When
the intensity is increased to 1020 W/cm2, population (Rabi)
oscillations occur to create the self-induced transparency as
shown in Figs. 4(a) and 4(c).

Next, with our three-dimensional model we study resonant
self-focusing of strong x-ray pulses as shown in Figs. 7(b)
and 7(c). Self-focusing occurs when the electromagnetic field
induces a refractive index change in the medium which then
reacts back on the field and affects its propagation. Figure 7(b)
shows the evolution of beam spot size (HWHM) for different
pulse intensities. At 1018 W/cm2, the beam size evolves ac-
cording to the propagation of a Gaussian beam with 3.2 μm
HWHM at the center of the gas cell. Self-focusing becomes
apparent with increasing pulse intensity. The beam radius at
1019 W/cm2 deviates slightly from that at 1018 W/cm2; but at
1020 W/cm2 there is a dramatic decrease of the beam radius
from 3.2 to 1.4 μm by the end of the gas cell. The correspond-
ing on-axis electric field attenuation is shown in Fig. 7(c).
At low pulse intensity, the on-axis electric field drops, but it
grows by a factor of 2.1 at high peak intensity, 1020 W/cm2.

To illustrate the mechanism behind the resonant x-ray self-
focusing we show the evolution of the beam’s radial and phase
profile in Fig. 8 for 1020 W/cm2 where a large self-focusing
effect is observed. The energy-integrated transverse beam pro-
file is shown in Fig. 8(a) for a family of propagation distances,
z = 0–3 cm. The transverse beam profile is reshaped to a
sharp peak in the center with the maximum field strength
increased by a factor of 2× by the end of the gas cell.
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FIG. 7. Pulse propagation through a two-level system (Ne atom 1s and 1s−13p without 1s photoionization). (a) Pulse energy attenuation
for 0.25-fs pulses with peak intensities between 1018 W/cm2 and 1020 W/cm2 compared with 2.5-fs pulses at 1018 W/cm2 and Beer’s law
(black dot-dashed line). (b) Beam spot sizes (HWHM) for different peak intensities of 0.25-fs pulses as a function of propagation distance.
(c) On-axis electric-field strength as a function of propagation distance.

The radial amplitude and phase profiles at the resonance
energy, 867.5 eV, are shown in Figs. 8(b) and 8(c), re-
spectively. The Gaussian beam profile develops higher-order
transverse modes during propagation and the evolution is not
as smooth as that of the energy-integrated profile. Rather than
monotonically decreasing, the beam first flattens and grows,
and then shrinks to a very sharp peak with a fourfold increased
maximum field by the end of the cell.

The evolution of the phase profile of the beam is shown
in Fig. 8(c). For reference, the phase profile of a Gaussian
beam, focused at z = 1.5 cm, after propagation in vacuum
for z = 3 cm is shown as a black dashed line. This beam is
defocusing at z = 3, with an increasing phase as a function
of radial position. For the beam propagating through Ne gas,
initially the beam is focusing toward the center of the cell and
shows a slightly decreasing phase for larger radial distances.
On axis, the relatively high intensity creates stronger SIT,
while the off-axis fields are attenuated. There is a reshaping
of the wavefront to be strongly focusing, which induces en-
ergy flow inward and growth of the on-axis power density.
Modification of absorption and phase due to changes of the
imaginary and real parts of the nonlinear complex refractive
index contribute to this pulse front reshaping. In summary,
resonant x-ray self-focusing results from the lower intensity
off-axis fields interacting differently than the high intensity

on-axis fields as observed in the optical regime [23,24,43].
It is worth noting that the resonant self-focusing effect here
has a different origin compared to the normal off-resonant
optical Kerr effect, which results from higher-order suscepti-
bility induced by strong fields. In fact, due to the rather small
x-ray refractive index, the off-resonant Kerr effect would
not be expected to occur until reaching much higher x-ray
intensities.

For the five-level Ne, Ne+, and 1s-continuum system the
SIT and self-focusing display a much more complicated de-
pendence on intensity and pulse duration. The attenuations of
an ultrashort 0.25-fs pulse for several intensities are shown
in Fig. 9(a). For peak intensities lower than 1018 W/cm2

stimulated Raman scattering is weak; the five-level system
behaves similarly to a two-level system, where non-Beer’s-
law behavior is due to the ultrashort pulse duration. One
difference is that 1s photoionization causes the transmission
to drop from 0.6 to 0.2. For the 2.5-fs pulse propagating
through the five-level system, Fig. 9(b), deviations occur at
relatively low intensities. Comparison of the transmitted pulse
energies as a function of incident intensity for 0.25- and 2.5-fs
pulses are shown in Figs. 9(c) and 9(d). A dashed line is
shown for the intensity associated with a π pulse for the
1s → 3p transition. As can be seen from Fig. 9, deviations
from linear transmission occur at intensities greater than that

FIG. 8. Pulse propagation through the Ne two-level system for 0.25 fs, 1020 W/cm2 pulses: radial intensity and phase profiles for a family
of propagation distances from 0 to 3 cm. (a) Radial dependence of the beam intensity integrated over photon energy. (b) Radial dependence of
the beam intensity at the resonance energy (867.5 eV). (c) Radial dependence of the phase profile. The black dashed line indicates the output
phase profile for a Gaussian beam propagating in vacuum.
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FIG. 9. Transmitted pulse energies for 0.25- and 2.5-fs pulses, five-level Ne system with 1s photoionization. The solid black lines in
(c) and (d) represent a linear relationship between the incident and transmitted pulse energies, i.e., slope = 1.0. (a) Propagation of 0.25-fs
pulse with peak intensities from 1016 W/cm2 to 1020 W/cm2 (b) Propagation of 2.5-fs pulse with peak intensities 1016 W/cm2 to 1020 W/cm2.
(c) Transmitted pulse energy after passage through 3 cm gas at various intensities for 0.25-fs pulses. (d) Same as (c) for 2.5-fs pulses.

required for a π -pulse: at the intensities associated with SIT
and self-focusing.

We now turn our attention to self-focusing in the five-
level system. At low intensities, the beam spot size for a
five-level system, Fig. 10(a), behaves the same as in a two-
level system, Fig. 8(b). However at 1019 W/cm2 beam size
oscillations appear and a stronger self-focusing effect occurs.
Surprisingly, the beam radius due to self-focusing does not
necessarily decrease more rapidly with higher peak inten-
sity; compare 1019 W/cm2 and 1020 W/cm2. The x-ray radial
evolution is clearly coupled to changes in the on-axis power

density shown in Fig. 10(b). This nonmonotonic behavior is
the sign of highly nonlinear radiation-matter interactions. The
strong interaction between the field and atom ensemble gives
rise to more complex electronic transitions within the dressed
atomic states, which further induces polarization fluctuations
and modifies the refractive index. Higher field strengths in
the center of the beam lead to stronger SRS and less absorp-
tion. This mechanism exacerbates the self-focusing effect at
1020 W/cm2, leading to beam spot shrinkage to one third of
the original size and an on-axis field strength 2.8× that of the
incident pulse.

FIG. 10. (a) Beam spot size of x-ray pulses with 0.25-fs pulse duration and different peak intensities ranging from 1016 W/cm2 to
1020 W/cm2 propagating through the five-level Ne, Ne+, and 1s-continuum system. (b) The evolution of the corresponding on-axis power
densities is shown in (b).
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FIG. 11. (a) Input (blue) and output (red) spectrum of SASE pulses with 10-fs (FWHM) pulse duration and peak intensity 1019 W/cm2

propagating through the five-level system with photoionization. The beam spot size is 2 μm (FWHM) and pulse energy is 5 mJ. (b) The
corresponding input and output x-ray temporal profile.

D. SASE pulse propagation

It is natural to compare the propagation of a Gaussian
with a SASE pulse, since those are most readily available at
XFELs. We simulate SASE pulses with typical parameters of
τ = 10 fs pulse duration, bandwidth = �E/E = 0.005, and
peak intensity of 1019 W/cm2. These parameters correspond
to a beam spot size of 2 μm and pulse energy of 5 mJ. The
pulse is produced by a computer simulation technique devel-
oped for generating superposed coherent and chaotic radiation
[44]. The radiation field amplitudes at different frequency
can be modeled as chaotic variables with Gaussian statistics.
The ensemble averaged SASE pulse is assumed to have a
Gaussian power spectrum with bandwidth �E

E of the central
photon energy. The field amplitudes at different frequency
are independent zero-mean Gaussian random variables whose
variance is proportional to the corresponding power spectrum.
The SASE pulse is first generated in the energy domain with
4096 points spaced by 0.04 eV. After the inverse Fourier
transform to the time domain and normalization, a Gaussian
envelope is used to create the pulse. This field amplitude and
phase are then linearly interpolated to 524 288 grid points to
get the input field for the TDSE-MWE propagation code. As
shown in the Fig. 11, the generated SASE pulse is composed
of coherent spikes with τcoh = h

�E ∼ 1 fs duration, which is
related to the total spectral bandwidth. The averaged 0.4 eV
width spikes in the SASE energy spectrum correspond to h

τ
.

The simulation results for propagation of the SASE pulse
shown in Fig. 11 have features that closely resemble the
Gaussian pulse. The input SASE x-ray pulse is absorbed
and the SRS signal is generated at 850 eV. The SRS sat-
urates upon propagation to 0.5 cm, and the SRS spectrum
contains spikes associated with the incident SASE spectrum.
Four-wave-mixing signals with ∼10× smaller intensity are
observed at 830 eV. The SASE pulse is delayed and reshaped
[compare the red and blue pulse envelopes in Fig. 11(b)].
Some very short ∼20-as (FWHM) bursts are generated on top
of the SASE pulse.

The atomic inner-shell x-ray laser [13] was also simu-
lated using our code by tuning the incident energy above the
ionization threshold. The simulation was carried out for a
SASE pulse with 40-fs duration and 960-eV central photon

energy propagating through a 500 torr Neon gas. The 0.3-mJ
x-ray pulse was focused to 2 μm spot size to produce peak
intensity around 1017 W/cm2. These parameters correspond
to the experiment performed at LCLS [13,45]. We calculate a
saturation length of 6 mm and 0.4% fractional XRL energy, in
agreement with the experiment.

IV. SUMMARY

In this paper, we investigated resonant propagation of ul-
trashort, high-intensity XFEL pulses in a gaseous medium
from the linear to the nonlinear regime. We solved the three-
dimensional time-dependent Schrödinger equation (TDSE)
for the single-atom response and the Maxwell wave equa-
tion (MWE). Specifically, the propagation of XFEL pulses
with photon energy resonant with the Ne 1s → 3p transi-
tion through an optically thick target was investigated. The
stimulated Raman scattering (SRS) signal, i.e., the transi-
tion between core-excited (1s−13p) and valence-excited states
(2p−13p) grows exponentially during propagation for in-
tensities up to 1018 W/cm2 for 0.25-fs pulses. At higher
intensities, spectral intensity not associated with atomic tran-
sitions appear during propagation due to the existence of
two ingredients: significant SRS intensity and strong fields to
induce Rabi-flopping sidebands. Stronger interactions occur
with the longer 2.5-fs pulse, leading to strong spectral and
temporal reshaping of an XFEL pulse. X-ray self-induced
transparency and self-focusing are observed when the inten-
sity is sufficient to induce a π pulse on the resonant transition.
The newly developed TDSE-MWE methodology is very gen-
eral: readily applicable to SASE pulses and demonstrated
to reproduce the off-resonant propagation that leads to the
atomic x-ray laser [13,34]. Generalizing our formalism to an
arbitrarily polarized field would be simple at the level of the
MWE, where each polarization component would propagate
independently. Generalizing the single-atom response would
involve including more states, with different m-quantum num-
bers, and incorporating selection rules. Such extensions would
be of interest for ultrafast circular dichroism studies. In sum-
mary, the understanding of resonant propagation at high x-ray
intensities has potential applications for XFEL pulse shap-
ing and is relevant for x-ray optics and transient absorption
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spectroscopy. An experiment devoted to quantifying these
effects is feasible at various XFEL facilities by measuring
the energy spectrum before and after propagation through
the target gas. We anticipate investigating nonlinear resonant
propagation effects experimentally in the near future.
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APPENDIX: WIGNER-WEISSKOPF APPROACH TO
IONIZATION

1. Minimal coupling Hamiltonian

We consider a system with bound and continuum states,
under the influence of a classical, linearly polarized, electric
field E (t ) that only couples the ground state |0〉 to all contin-
uum states |	k〉, with dipole matrix elements d	k that we chose
real.

Initially the system is in the ground state, and at time t the
wave function is

|�(t )〉 = a0(t )e−iω0t |0〉 +
∫

d	k a	k (t )e−iωkt e−�iont/2 |	k〉 (A1)

with the ground state energy ε0 = h̄ω0 and continuum state
energy εk = h̄ωk − ih̄�ion/2. Where �ion is the decay rate of
the ion related to processes such as Auger decay, etc.

Inserting (A1) in the Schrödinger equation gives

ih̄
da0

dt
= −E (t )

∫
d	k a	k (t )e−i(ωk−ω0 )t e−�iont/2d	k, (A2)

ih̄
da	k
dt

= −E (t )a0(t )ei(ωk−ω0 )t e�iont/2d	k . (A3)

(A3) can be formally integrated to give

a	k (t ) = i

h̄
d	k

∫ t

0
dt ′E (t ′)a0(t ′)ei(ωk−ω0 )t ′

e�iont ′/2 (A4)

that we can then insert in (A2) to get

da0

dt
= − 1

h̄2 E (t )
∫ t

0
dt ′E (t ′)a0(t ′)

∫
d	k d2

	k

× e−i(ωk−ω0 )(t−t ′ )e−�ion (t−t ′ )/2 (A5)

= − 1

h̄2 E (t )
∫ t

0
dt ′E (t ′)a0(t ′)K (t − t ′) (A6)

with

K (τ ) =
∫

d	k d2
	k e−i(ωk−ω0 )τ e−�ionτ/2 (A7)

=
∫

dε g(ε)d2
ε e−i(ωε−ω0 )τ e−�ionτ/2, (A8)

where we integrated over the angular degrees of freedom of 	k
and changed variable to energy.

2. Wigner-Weisskopf approximation

The Wigner-Weisskopf approximation relies on the fast
decay of K (τ ) when τ > 0. This term can be seen as a “sum”
(integral) of oscillating exponential of all frequencies that
quickly decays to zero as soon as τ � 1/ω0. This is some-
times interpreted as the “loss” of memory of the environment,
i.e., that the process is Markovian. We can thus (i) consider
that a0(t ′) � a0(t ) in the integral since a0 varies slowly at
this timescale and (ii) extend the integral for τ → ∞, i.e.
t ′ → −∞. Note that in our case the field is zero for t ′ < 0
so that (ii) is not really an approximation here.

Applying this approximation to (A6), we get

da0

dt
= − 1

h̄2 E (t )a0(t )
∫ t

−∞
dt ′E (t ′)K (t − t ′) (A9)

= −�(t )

2
a0(t ). (A10)

This is the famous Wigner-Weisskopf exponential decay.

3. Demonstration of the formula used in our program

To prove that �(t ) is proportional to the envelope of the
field, we first suppose that we can rewrite the time-dependent
electric field as

E (t ) = F (t ) cos[ωt + φ(t )] = F (t )

2
(ei(ωt+φ) + e−i(ωt+φ) ),

(A11)

where the envelope F (t ) and phase φ(t ) vary slowly at the
1/ω0 timescale, so that when we insert this expression in (A9)
and (A10) we can use the Wigner-Weisskopf approximation
again and set F (t ′) � F (t ) and φ(t ′) � φ(t ) in the integral:

�ω(t ) = 1

2h̄2 F 2(t )(ei[ωt+φ(t )] + e−i[ωt+φ(t )] )
∫ t

−∞
dt ′(ei[ωt ′+φ(t )] + e−i[ωt ′+φ(t )] )K (t − t ′) (A12)

= 1

2h̄2 F 2(t )
∫

dε g(ε)d2
ε

∫ t

−∞
dt ′e−�ion (t−t ′ )/2[e−i(ωε−ω0+ω)(t−t ′ ) + e−i(ωε−ω0−ω)(t−t ′ )

+ e−i(ωε−ω0 )(t−t ′ )ei[ω(t+t ′ )+2φ(t )] + e−i(ωε−ω0 )(t−t ′ )e−i[ω(t+t ′ )+2φ(t )]]; (A13)
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changing integration variable τ = t − t ′,

�ω(t ) = 1

2h̄2 F 2(t )
∫

dε g(ε)d2
ε

∫ ∞

0
dτ e−�ionτ/2[e−i(ωε−ω0+ω)τ (1 + e2i[ωt+φ(t )] ) + e−i(ωε−ω0−ω)τ (1 + e−2i[ωt+φ(t )] )] (A14)

= 1

2h̄2 F 2(t )

[
(1 + e2i[ωt+φ(t )] )

∫
dε g(ε)d2

ε

1

i(ωε − ω0 + ω) + �ion/2

+ (1 + e−2i[ωt+φ(t )] )
∫

dε g(ε)d2
ε

1

i(ωε − ω0 − ω) + �ion/2)

]
(A15)

The first term would be resonant in the emission case; we can safely neglect it. In the second term, we can neglect the
term oscillating at 2ω; indeed, it will integrate to zero. This is similar to the rotating-wave approximation. Finally, we are only
interested in the real part of �(t ). Indeed, the imaginary part would give the ac Stark shift.

We thus finally get

Re�ω(t ) = 1

2h̄2 F 2(t )
∫

dε g(ε)d2
ε

�ion/2

(ωε − ω0 + ω)2 + (�ion/2)2
(A16)

� ε0c

2h̄
F 2(t )

σ (ω)

h̄ω
. (A17)

If we now have more than one frequency in the pulse, i.e., if we write the field E (t ) = 1
2π

∫ ∞
−∞ dωẼ (ω). Then we can

incoherently sum the contributions of all frequencies, where each contributes proportionally to |Ẽ (ω)|2:

�(t ) =
∫ ∞
−∞ dω|Ẽ (ω)|2�ω(t )∫ ∞

−∞ dω|Ẽ (ω)|2 (A18)

= ε0c

2h̄

∫ ∞
−∞ dω|Ẽ (ω)|2 σ (ω)

h̄ω∫ ∞
−∞ |Ẽ (ω)|2dω

F 2(t ). (A19)

If we approximate the angular frequency ionization energy, we almost recover the formula given in (9) in the body of the paper.
We just need to suppose σρat�z  1 in (9) and develop the exponential.
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