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Quantum simulation of dissociative ionization of H2
+ in full dimensionality

with a time-dependent surface-flux method
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The dissociative ionization of H2
+ in a linearly polarized, 400-nm laser pulse is simulated by solving a

three-particle time-dependent Schrödinger equation in full dimensionality without using any data from quantum
chemistry computation. The joint energy spectrum (JES) is computed using a time-dependent surface-flux
method, the details of which are given. The calculated ground energy is −0.597 atomic units and the internuclear
distance is 1.997 atomic units if the kinetic energy term of protons is excluded, consistent with the reported
precise values from quantum chemistry computation. If the kinetic term of the protons is included, the ground
energy is −0.592 atomic units with an internuclear distance of 2.05 atomic units. Energy sharing is observed in
JES and we find the peak of the JES with respect to the nuclear kinetic energy release is within 2–4 eV, which
is different from previous two-dimensional computations (over 10 eV), but is close to the reported experimental
values. The projected energy distribution on the azimuth angles shows that the electron and the protons tend to
dissociate in the direction of polarization of the laser pulse.

DOI: 10.1103/PhysRevA.102.053109

I. INTRODUCTION

Understanding the three-body Coulomb interaction prob-
lem is an ongoing challenge in attosecond physics. The typical
candidates for investigation include the helium atom and H2

+
molecule. In attosecond experiments, a short, intense laser
pulse is introduced as a probe for the measurements. Vari-
ous mechanisms were proposed in recent decades to describe
the dissociation and dissociative ionization of H2

+, includ-
ing bond softening [1], charge-resonance-enhanced ionization
(CREI) [2], bond hardening [3], above threshold dissociation
(ATD) [4,5], high-order-harmonic generation (HHG) [6], and
above threshold explosion [7]. One may find a summary of the
above mechanisms in theoretical and experimental investiga-
tions of H2

+ in the literature [8,9]. Experimental studies on
the H2

+ ion exposed to circular and linearly polarized pulses
for angular and energy distributions of electrons were reported
recently [10–13].

In theory, the joint energy spectra (JES) of the kinetic
energy release (KER) for one electron and two protons of the
H2

+ ion are predominant observables that show how energy
distributes around the fragments, where the JES is repre-
sented by the KER of two electrons for double ionization (DI)
[14–16]. In theory, JES computations for double ionization
in full dimensionality were very scarce for laser pulses with
wavelengths beyond the XUV regime (�400 nm) because
the computational consumption scales dramatically with the
wavelength and intensity of the laser field [16]. With the
time-dependent surface-flux (t-SURFF) method, which was
first introduced in Ref. [17], a full dimensional simulation of
the JES for double ionization was available with moderate
computational resources for 800-nm [16] and 400-nm [18]
laser pulses. The t-SURFF method was also successfully ap-
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plied to the dissociative ionization of the H2
+ ion [19,20] in a

two-dimensional (2D) model, where the energy sharing of the
photons and electron is observed in JES.

The dissociative ionization of the H2
+ ion has been sim-

ulated by many groups [10,14,21–26]. However, they are all
in reduced dimensionality. Quantum simulation in full dimen-
sionality is not yet available. Although the correlation among
the fragments could be observed in the 2D model, the peaks
of the JES with total nuclear KER are always above 10 eV.
This is far from the experimental observables [11–13], which
are usually below 5 eV. The tRecX code, which successfully
implements the t-SURFF method in full dimensionality, has
been applied successfully in the simulations of the double ion-
ization of helium [16] and the single ionization of polyelectron
molecules [27–31]. The dissociative ionization of the H2

+ ion
has not been computed using the tRecX code from before,
even in reduced dimensionality.

In this paper, we will introduce simulations of the dissocia-
tive ionization of the H2

+ ion by solving the time-dependent
Schrödinger equation (TDSE) in full dimensionality based
on the tRecX code. We will first present the computational
method for scattering amplitudes with t-SURFF methods,
from which the JES can be obtained. Then we will introduce
the specific numerical recipes for the H2

+ ion based on the
existing discretization methods of the tRecX code. With such
numerical implementations, the ab initio calculation of the
field-free ground energy of the Hamiltonian is available. Fi-
nally, we will present results of dissociative ionization in a
400-nm laser pulse, the JES, and projected energy spectrum
on the azimuth angle.

II. METHODS

In this paper, atomic units with h̄ = e2 = me = 4πε0 ≡ 1
are used if not specified. The center of the mass of two protons
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is chosen to be the origin. Instead of using the vector between
two protons �R as a coordinate [14,19,20], we specify the
coordinates of the protons and electrons as �r1, −�r1, and �r2.
We denote M = 1836 atomic units as the mass of the proton.

A. Hamiltonian

The total Hamiltonian can be represented by the sum of
the electron-proton interaction HEP and two tensor products,
written as

H = HB = H (+) ⊗ 1 + 1 ⊗ H (−) + HEP, (1)

where the tensor products are formed by the identity operator
1 multiplied by the Hamiltonian for two protons (H (+)), or
that for the electron (H (−)). HB is called the Hamiltonian in
the B region and will be detailed later. With the coordinate
transformation used in Ref. [32], which is also illustrated in
Appendix A for our specific case, the single operator for the
electron is

H (−) = − �

2m
− iβ �A(t ) · ��, (2)

and the Hamiltonian for protons can be written as

H (+) = − �

4M
+ 1

2r
, (3)

where we introduce the reduced mass m = 2M
2M+1 ≈ 1 and β =

1+M
M ≈ 1 for the electron, and �A(t ) is the vector potential. The

Hamiltonian of the electron-proton interaction can be written
as

HEP = − 1

|�r1 + �r2| − 1

|�r1 − �r2| . (4)

B. t-SURFF for dissociative ionization

The t-SURFF method is applied here for the dissociative
ionizations, which was successfully applied to the polyelec-
tron molecules and to the double emission of the He atom
[16,28–31]. In this section, we will follow a similar procedure
as is done in Ref. [16].

According to the approximations of the t-SURFF method,
beyond a sufficiently large t-SURFF radius R(+/−)

c , the in-
teractions of protons and electrons can be neglected, with
the corresponding Hamiltonians being H (+)

V = − �
4M for two

protons and H (−)
V = − �

2m − iβ �A(t ) · �� for the electron. The
scattered states of the two protons, which satisfy i∂tχ�k1

(�r1) =
H (+)

V χ�k1
(�r1), are

χ�k1
(�r1) = 1

(2π )3/2
exp

(
−i

∫ t

t0

k2
1

4M
dτ

)
exp(i�k1 · �r1), (5)

and those of the electron, which satisfies i∂tχ�k2
(�r2) =

H (−)
V χ�k2

(�r2), are

χ�k2
(�r2) = 1

(2π )3/2
exp

(
−i

∫ t

t0

k2
2

2m
− iβ �A(τ ) · ��dτ

)

× exp(i�k2 · �r2), (6)

where we assume the laser field starts at t0 and �k1/2 denote the
momenta of the protons or the electron.

FIG. 1. The regions of dissociative ionization time propagation.
The B stands for the bound region, and D for the dissociation region
where the two protons are out of R(+)

c but the electron is not ionized
and stays inside. I represents the ionization region where the electron
is out-of-box R(−)

c but two protons are still inside R(+)
c . DI stands for

the dissociative ionization region where both the electron and the
protons are out of R(+/−)

c . R(+/−)
c are the t-SURFF radii for r1 = |�r1|

or r2 = |�r2|.

Based on the t-SURFF radius R(+/−)
c , we may split the

dissociative ionization into four regions, namely B, I, D, DI ,
shown in Fig. 1, where the bound region B preserves the full
Hamiltonian in Eq. (1), D, I are time propagations by single
particles with the Hamiltonians

HD(�r2, t ) = H (−)
V (�r2, t ) = − �

2m
− iβ �A(t ) · �� (7)

and

HI (�r1, t ) = − �

4M
+ 1

2r1
, (8)

and DI is an integration process. The treatment was first
introduced in the double ionization of helium in Ref. [15] and
then applied in a 2D simulation of the H2

+ ion in Ref. [19].
Without considering the low-energy free electrons that stay
inside the box after time propagation, we may write

ψB(�r1, �r2, t ) ≈ 0, r1 � R(+)
c , or r2 � R(−)

c ,

ψD(�r1, �r2, t ) ≈ 0, r1 < R(+)
c , or r2 � R(−)

c ,

ψI (�r1, �r2, t ) ≈ 0, r1 � R(+)
c , or r2 < R(−)

c ,

ψDI (�r1, �r2, t ) ≈ 0, r1 < R(+)
c , or r2 < R(−)

c . (9)

We assume that for a sufficiently long propagation time T ,
the scattering ansatz of the electron and protons disentangles.
By introducing the step function


1/2(Rc) =
{

0, r1/2 < R(+/−)
c ,

1, r1/2 � R(+/−)
c ,

(10)

the unbound spectra can be written as

P(�k1, �k2) = P(φ1, θ1, k1, φ2, θ2, k2) = |b(�k1, �k2, T )|2. (11)
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b(�k1, �k2, T ) are the scattering amplitudes and can be written
as

b(�k1, �k2, T ) = 〈
χ�k1

⊗ χ�k2

∣∣
1(Rc)
2(Rc)|ψ (�r1, �r2, t )〉

=
∫ T

−∞
[F (�k1, �k2, t ) + F̄ (�k1, �k2, t )]dt, (12)

with two sources written as

F (�k1, �k2, t ) = 〈
χ�k2

(�r2, t )
∣∣[H (−)

V (�r2, t ),
2(Rc)]
∣∣ϕ�k1

(�r2, t )
〉

(13)
and

F̄ (�k1, �k2, t ) = 〈
χ�k1

(�r1, t )
∣∣[H (+)

V (�r1, t ),
1(Rc)]
∣∣ϕ�k2

(�r1, t )
〉
.

(14)
The single-particle wave functions ϕ�k1

(�r2, t ) and ϕ�k2
(�r1, t )

satisfy

i
d

dt
ϕ�k1

(�r2, t ) = HD(�r2, t )ϕ�k1
(�r2, t ) − C�k1

(�r2, t ) (15)

and

i
d

dt
ϕ�k2

(�r1, t ) = HI (�r1, t )ϕ�k2
(�r1, t ) − C�k2

(�r1, t ). (16)

The sources are the overlaps of the two-electron wave function
and the Volkov solutions shown by

C�k1
(�r2, t ) =

∫
d�r1χ�k1

(�r1, t )[H (+)
V (�r1, t ),
1(Rc)]ψ (�r1, �r2, t )

(17)
and

C�k2
(�r1, t ) =

∫
d�r2χ�k2

(�r2, t )[H (−)
V (�r2, t ),
2(Rc)]ψ (�r1, �r2, t ),

(18)
with initial values being 0, where · · · means complex con-
jugate. The two t-SURFF radii could be set to equivalent
R(+)

c = R(−)
c , because all Coulomb interactions are neglected

when either the protons or electron are out of the t-SURFF
radius. According to our previous research, the spectrum com-
putation is independent of the Rc if all Coulomb terms are
removed and the wave function is propagated long enough
after the pulse [15,16]. The t-SURFF for the double emission
of two particles was first introduced in Ref. [15]. The above
derivations are very similar to what was reported in Ref. [16]
for the double emission of helium, where the only differences
are the constants before different operators, say, �, ��, and 1

r .
Thus, detailed formulas are omitted here and the interested
readers can refer to Refs. [15,16].

The computation for the photoelectron spectrum includes
four steps, similar to the one used in Ref. [16], detailed as
follows:

(1) Solve the full 6D TDSE with the Hamiltonian in the B
region, given in Eq. (1), and write the time-dependent surface
values in the disk.

(2) Evolve the single-particle wave packets in the D region
by Eq. (13) with surface values given in the B region time
propagation.

(3) Evolve the single-particle wave packets in the I region
by Eq. (14) with the surface values given in the B region time
propagation.

(4) Integrate the fluxes calculated from surface values writ-
ten in the D and I regions’ time propagation by Eq. (12).

III. NUMERICAL IMPLEMENTATIONS

The numerical methods here are similar to what was de-
tailed in Refs. [16,18]. In fact, the code in this paper is
developed based on the double-ionization framework of the
tRecX code used in Refs. [16,18]. Thus, we will focus on the
electron-proton interaction which was not mentioned before
and only list relevant discretization methods in this paper.

A. Discretization and basis functions

The 6D wave function ψ is represented by the product of
spherical harmonics for angular momentum and radial func-
tions as

ψ (�r1, �r2, t ) = ψ (r1, θ1, φ1, r2, θ2, φ2, t )

=
∑

m1,l1,m2,l2

Y m1
l1

(θ1, φ1)Y m2
l2

(θ2, φ2)

× Rm1,m2,l1,l2 (r1, r2, t ), (19)

where Y m1
l1

(θ1, φ1) and Y m2
l2

(θ2, φ2) are the spherical harmonics
of the two electrons and the radial function is represented by
the finite-element discrete variable representation (FE-DVR)
method as

Rm1,m2,l1,l2 (r1, r2, t ) =
∑
n1,n2

Rn1,n2
m1,m2,l1,l2

(r1, r2, t ),

Rn1,n2
m1,m2,l1,l2

(r1, r2, t ) =
∑
p1,p2

f (n1 )
p1

(r1) f (n2 )
p2

(r2)
1

r1r2

× cm1,m2,l1,l2
n1,n2,p1,p2

(t ), (20)

where f
(n1/2 )
p1/2 (r1/2) are p1/2th basis functions on the n1/2th

element, and the time dependencies of the three particles are
included in the radial functions and coefficients cm1,m2,l1,l2

n1,n2,p1,p2
(t ),

as is used in Refs. [15,16]. The infinite-range exterior com-
plex scaling (irECS) method is utilized as an absorber [33].
The t-SURFF expression for computing the spectra of such a
discretization can be found in Ref. [16].

B. Electron-proton interaction

The first part of the electron-proton interaction can be
written in a multipole expansion as

1

|�r1 − �r2| = 1√
r2

1 + r2
2 − 2r1r2 cos γ

= 1

r>

1√
1 + h2 − 2h cos γ

=
∞∑

l=0

hl

r>

Pl (cos γ ),

(21)

where r> = max(r1, r2), r< = min(r1, r2), h = r<

r>
, γ is the

angle between �r1, �r2, and Pl (cos γ ) are Legendre polynomials.
Similarly, we have

1

|�r1+ �r2| = 1

r>

1√
1 + h2 + 2h cos γ

=
∞∑

l=0

(−1)l hl

r>

Pl (cos γ ),

(22)
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and the summation goes as

1

|�r1 + �r2| + 1

|�r1 − �r2| = 2
∞∑

l=0

hl

r>

Pl (cos γ ) l mod 2 = 0,

(23)
where l mod 2 = 0 means l is even. With the Legendre poly-
nomials expanded by spherical harmonics Y m

l (θ2, φ2) and
Y m∗

l (θ1, φ1), we have

HEP = −2
∞∑

l=0

l∑
m=−l

4π

2l + 1

rl
<

rl+1
>

Y m
l (θ2, φ2)Y m∗

l (θ1, φ1)

l mod 2 = 0. (24)

The matrix elements of electron-proton interaction are

〈
ψ

(n′
1,n

′
2 )

m′
1,m

′
2,l

′
1,l

′
2

∣∣ − 1

|�r1 − �r2| − 1

|�r1 + �r2|
∣∣ψ (n1,n2 )

m1,m2,l1,l2

〉

= −2
∑
λμ

4π

2λ + 1

〈
Y

m′
1

l ′1
Y μ

λ

∣∣Y m1
l1

〉〈
Y

m′
2

l ′2

∣∣Y μ
λ Y m2

l2

〉

×〈
R

n′
1,n

′
2

m′
1,m

′
2,l

′
1,l

′
2

∣∣ rλ
<

rλ+1
>

∣∣Rn1,n2
m1,m2,l1,l2

〉
, λ mod 2 = 0, (25)

which could be obtained by dropping the odd λ terms and
multiplying the even λ terms by −2 in the standard multipole
expansion for electron-electron interactions from Ref. [16] as

〈
ψ

(n′
1n′

2 )
m′

1m′
2l ′1l ′2

∣∣ 1

|�r1 − �r2|
∣∣ψ (n1n2 )

m1,m2,l1,l2

〉

=
∑
λμ

4π

2λ + 1

〈
Y

m′
1

l ′1
Y μ

λ

∣∣Y m1
l1

〉〈
Y

m′
2

l ′2

∣∣Y μ
λ Y m2

l2

〉

×〈
R

n′
1n′

2
m′

1,m
′
2,l

′
1,l

′
2

∣∣ rλ
<

rλ+1
>

∣∣Rn1n2
m1,l1,m2,l2

〉
. (26)

Here,

ψ
(n1,n2 )
m1,m2,l1,l2

= Y m1
l1

(θ1, φ1)Y m1
l1

(θ2, φ2)Rn1,n2
m1,m2,l1,l2

(r1, r2, t ).
(27)

Therein, the matrix for the electron-proton interaction could
be obtained by the numerical recipes used in Refs. [16,34]
with limited changes. Numerically, we find λ does not need to
go to infinity and a maximum value of 8 already suffices for
our simulations.

IV. NUMERICAL RESULTS

A numerical convergence study shows, unlike the 6D dou-
ble emission of He, where m1/2 = 0, 0 � l1/2 � 2 already
gives a convergent ground eigenenergy [16]; here, the angular
quantum number 0 � m1/2 � 2 and 0 � l1/2 � 8 start to give
convergent calculations, due to the lower symmetric property
of the H2

+ ion. The R(+)
c = R(−)

c = 12.5 atomic units is chosen
for the computation, as we find R(−)

c does not change the
quality of the spectrum but introduces a longer propagation
time for low-energy particles to fly out. R(+)

c = 12.5 atomic
units gives the internuclear distance R = 25 atomic units as
used in Ref. [19]. According to the convergence study in
Appendix B, R(+)

c = R(−)
c = 12.5 atomic units gives a JES

with an error below 10%. R(−)
c = 12.5 atomic units is much

larger than the quiver radius of an electron in a 400-nm,

8.3 × 1013 W/cm2 laser pulse. Reference [35] shows the
Coulomb explosion at large distances contributes to the low-
energy fragments of protons, which are highly correlated
to the resonances between two H2

+ eigenstates. Thus we
need a large simulation box to include all possible eigenen-
ergies. In Ref. [35], the maximum internuclear distance for
the low-energy fragments is 11 atomic units. The molecu-
lar eigenenergies are nearly invariant with an internuclear
distance far below our 2R(+)

c = 25 atomic units here. Any
potential dynamic dissociation quenching effect (DDQ) is also
included in the B region because the H2

+ is in a dissociative
limit with an internuclear distance over 12 atomic units [36].
The wave function is propagated long enough after the pulse
to include the unbound states with low kinetic energies.

If the kinetic energy of protons is included, the field-free
ground-energy value is E0 = −0.592 atomic units and the
internuclear distance is 2.05 atomic units. With the kinetic
energy of protons excluded, the ground eigenenergy is −0.597
atomic units, three digits exact to the ground energy from
quantum chemistry calculations in Ref. [37], where the inter-
nuclear distance is fixed. The internuclear distance is 1.997
atomic units, three digits exact to that from the precise com-
putations in Ref. [38].

A. Laser pulses

The dipole field of a laser pulse with a peak intensity I =
E2

0 (atomic units) and linear polarization in the z direction is
defined as Ez(t ) = −∂t Az(t ), phase φCEP = 0 with

Az(t ) = E0

ω
a(t ) sin(ωt + φCEP ). (28)

A pulse with λ = 400 nm is given with intensities 8.3 ×
1013 W/cm2 close to the 2D computation in Ref. [19] and
5.9 × 1013 W/cm2 close to the experimental conditions in
Ref. [12]. We choose a(t ) = [cos(t/T )]8 as a realistic en-
velope. Pulse durations are specified as full width at half
maximum FWHM = 5 opt. cyc. (optical cycle) with regard to
intensity. To compare with the published results, a 400-nm,
sin2 envelope laser pulse at 8.8 × 1013 W/cm2 from Ref. [19]
and a 791-nm, cos8 laser pulse at 7.7 × 1013 W/cm2 used in
Ref. [39] are also applied.

B. Joint energy spectra

The JES of the two dissociative protons and the electron is
obtained by integrating Eq. (11) over angular coordinates as

σ (EN , Ee) =
∫

dφ1

∫
dφ2

∫
dθ1 sin θ1

∫
dθ2 sin θ2

× P(φ1, θ1,
√

4MEN , φ2, θ2,
√

2mEe), (29)

where EN , Ee are kinetic energies of two protons and an
electron, respectively. σ (EN , Ee) is presented in Figs. 2(a)
and 2(b). The tilt lines with formula EN + Ee = Nω + E0 −
Up with ponderomotive energy Up = A2

0
4m specify the energy

sharing of N photons for both the computations from 8.3 ×
1013 W/cm2 and 5.9 × 1013 W/cm2, indicating correlated
emissions of the electron and protons, which are also ob-
served in the 2D computations [19,20]. The yields are intense
around the nuclear KER from 2 to 4 eV in the cos8 envelope
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FIG. 2. Log-scale JES log10 σ (EN , Ee) represented by the total
energy of two protons EN and that of an electron Ee. Linearly polar-
ized, 400 nm, with (a) cos8 envelope with FWHM = 5 opt. cyc. at
8.3 × 1013 W/cm2 and (b) cos8 envelope with FWHM = 5 opt. cyc.
pulses at 5.9 × 1013 W/cm2 is applied to the H2

+ ion. The dashed
lines represent the energy sharing between the protons and electron
with formula EN + Ee = Nω + E0 − Up, where ω is the photon en-
ergy. (c) JES from Coulomb explosion simulation from the ground
eigenstate of the H2

+ ion. (d) Log-scale error log[δ(σ )] of two
spectra from cos8 envelope laser pulse at 8.3 × 1013 W/cm2 with
and without the contribution from D → DI [from Eq. (13)] by
δ(σ ) = 2 |σ ′ (EN ,Ee )−σ (EN ,Ee )|

|σ ′ (EN ,Ee )+σ (EN ,Ee )| . σ (EN , Ee) of (a) and (b) are normalized
with dividing by the maximum value.

pulse, consistent with the experimental values reported in
Refs. [12,13]. The peak of JES for dissociative ionization is
for a lower nuclear KER than that (3–4 eV) from a Coulomb
explosion from the ground eigenstate of the H2

+ ion, whose
property is also close to experimental observables [39]. The
Coulomb explosion JES is obtained with the same method
as dissociative ionization except that HEP is removed from
the B region Hamiltonian as H (CS)

B = H (+) ⊗ 1 + 1 ⊗ H (−),
but the initial state is still obtained from the Hamiltonian HB

in Eq. (1). We find that the contribution from time propaga-
tion in the subregion D → DI [see Eq. (13)] is small, as the
numerical error of JES δ(σ ) of σ computed from I → DI ,
and σ ′ computed from two subregions (I → DI and D → DI)
is always below 1% of the main contribution of the JES
(2 < EN < 4 eV); see Fig. 2(d). This numerical property is
also observed in two-dimensional (2D) simulations [19]. This
is because the electrons are much faster than protons and the
H2

+ ion tends to release first.
Here, we compare our computations with the published

results. First, the JES with a 400-nm, sin2 envelope laser
pulse at 8.8 × 1013 W/cm2 as used in the 2D simulations in
Ref. [19] is computed [see Fig. 3(a), compared to the results
from 2D simulations in Fig. 3(b)]. One clearly sees the JES is
most considerable with a nuclear KER around 2–4 eV in our
computation but is with nuclear KER above 10 eV in the 2D
simulation. We also attach the JES with a linearly polarized,
791-nm laser pulse at 7.7 × 1013 W/cm2 as used in Ref. [39],

FIG. 3. Log-scale JES log10 σ (EN , Ee) represented by the total
energy of two protons EN and that of an electron Ee. JES of H2

+ in
a linearly polarized, 400-nm laser pulse at 8.8 × 1013 W/cm2 as is
used in Ref. [19] by (a) 6D computation compared to (b) the normal-
ized 2D data from Ref. [19], and (c) in a linearly polarized, 791-nm
laser pulse at 7.7 × 1013 W/cm2 as used in Ref. [39]. (d) Blue
dots: The normalized single JES is created from σ S (EN,1/2) =∫

σ (2EN,1/2, Ee)
√

EedEe, where EN,1/2 depicts the kinetic energy of
a proton. Green triangles: The normalized signals extracted from
Ref. [39] with respect to the kinetic energy of a proton.

where JES is most considerable with a nuclear KER around
3 eV. For the 791-nm computation, R(−)

c = 15 atomic units
is applied, which is slightly above the quiver radius of the
electron. For a direct comparison, we integrate the JES over
the electron KER and obtain the photoelectron spectrum with
respect to the nuclear KER in Fig. 3(d), where the experi-
mental data from Ref. [39] are also attached. The peak of
the spectrum around 1.42 eV in our computation is in good
agreement with the experimental data, and the position of a
minor peak around 1.7 eV in our computation also matches
the experimental observation. The observation that JES is
most considerable with a nuclear KER around 2–4 eV can
also be found in the Coulomb explosion computation shown
in Fig. 2(c). In the experiments reported by other groups,
the distribution of emitted protons peaks at nuclear KER = 4
eV for a 780-nm laser pulse at 6 × 1014 W/cm2 [11], and
Refs. [12,13] reported that the largest possible nuclear KER is
around 3 eV for two protons with 400-nm laser pulses. These
observables at different experimental conditions show that
the largest possible nuclear KERs are around 2–4 eV, which
are close to our computations but far from the computations
in the 2D simulations [14,19]. This seems to contradict to
energy conservation for classical particles that the Coulomb
explosion most probably starts at an internuclear distance
R = 2r1 = 2 atomic units, which gives a nuclear KER of 0.5
atomic units. We now consider the wave-packet dispersion in
different coordinates. For a 1D simulation on protons with
a symmetric Gaussian wave packet, the center of the wave
packet moves with the velocity of the classical particle, thus
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the largest possible nuclear KER is 0.5 atomic units, which
is close to the results in the existing 2D simulations [14,19].
In a 3D simulation on protons, the wave packet keeps ex-
panding perpendicular to the polarization direction and is not
symmetric on the r1 axis (see Fig. 6). A numerical study
with a simple unphysical toy model in Appendix C shows
that for the Coulomb explosion in spherical coordinates, the
most probable nuclear KER can be shifted to 1/4–1/3 of the
total kinetic energy and the right half curve of the integrated
JES is less steep [see Fig. 6(a)]. The longer tail in the higher
nuclear KER for an integrated JES of H2

+ is also observed
both in experiments and our computation, but not in the 1D
simulation on protons [see Figs. 3(d) and 7]. Thus, the reason
why we get a much lower most probable nuclear KER is
that we give a 3D simulation of the wave-function disper-
sion of protons, which may not be correctly approximated
with the 1D treatment in 2D simulations. The existing 2D
simulations for the dissociative ionization put corrections to
the electron-proton interaction with a softening parameter to
give the correct ground energy of electrons in H2

+ [14,19].
However, the pure Coulomb repulsion of the two protons 1/R
(R is the internuclear distance) is included without a soften-
ing parameter. We would like to point out that, for the 2D
simulation, for consistency of the correction of the Coulomb
interaction of the electron, the Coulomb repulsion term of the
two protons may also need a softening parameter, whose value
needs further investigations.

C. Angular distribution

The projected energy distribution on the azimuth angle of
the electron and the protons is calculated by integrating the
6D scattering amplitudes as

pN (θ1, E1) =
∫

d�k2

∫
dφ1|b(�k1, �k2, T )|2,

�k1 = [φ1, θ1,
√

8ME1]T , (30)

for protons, and

pe(θ2, E2) =
∫

d�k1

∫
dφ2|b(�k1, �k2, T )|2,

�k2 = [φ2, θ2,
√

2mE2]T , (31)

for an electron, where E1 and E2 are kinetic energies for an
individual proton and electron.

As is observed in Fig. 4, the probability distributions of
electron and protons reach the highest value in the polar-
ization direction, which is consistent with the experimental
observations for linearly polarized laser pulses [11,13]. The
probability of the dissociative protons is most considerable
with 1 � E1 � 2 eV, higher than the E1 < 1 eV for dissocia-
tive channels reported in Refs. [11,39], but in the range of their
Coulomb explosion channel, where the laser wavelength is
800 nm. For a higher intensity 8.3 × 1013 W/cm2, the angular
distribution of released protons and the electron extends more
in the polarization direction. For the distribution of protons,
tiny yields around 3 eV in the radial coordinates indicate
the Coulomb explosion channel, close to what is observed in
experiments, however, for different laser pulses [39].

FIG. 4. The log-scale probability distribution of (left col-
umn) protons by log10 pN (θ1, E1) and (right column) protons by
log10 pe(θ2, E2), θ1,2 ∈ [0, π ]. The plot is symmetrized by pN (2π −
θ1, E1) = pN (2π − θ1, E1) and pe(2π − θ2, E2) = pe(2π − θ2, E2).
The upper row is computed from a laser pulse at intensity 8.3 ×
1013 W/cm2 and the lower row represents 5.9 × 1013 W/cm2. The
values of the radial coordinates E1/2 are represented in eV. The
polarization direction is along the horizontal axis and the direction
of the electric field is labeled in each subfigure with an arrow and
a label “E (t ).” The values are all normalized with dividing by the
maximum value.

V. CONCLUSION AND DISCUSSIONS

We simulate the dissociative ionization of the H2
+ ion

in full dimensionality and have obtained the same ground
eigenenergy as that from the quantum chemistry computa-
tions. Using t-SURFF methods, we obtained the JES where
energy sharing is observed, which indicates a correlation be-
tween the electron and protons. The JES peaked at EN from 2
to 4 eV, which is different from previous 2D simulations, but is
consistent with the experimental data. The difference indicates
that in the dissociative ionization of H2

+, the protons should
be treated quantum mechanically in full dimensionality by
simulating the 3D wave-function evolution, where the expan-
sion of the wave packets perpendicular to the radial direction
may need to be taken into consideration. The projected energy
distribution on angles shows that the electron and protons tend
to dissociate in the direction of polarization of the laser pulse.

The simulation of the single emission spectrum show-
ing dissociation channels, is, however, not yet possible. The
difficulty lies mainly in constructing the internuclear-distance-
dependent electronic ansatz of H with a given ionic state in a
single emission TDSE on �r1, which might be solved by read-
ing the energy surfaces from quantum chemistry calculations
or another tRecX calculation. This is left for future work.
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APPENDIX A: COORDINATE TRANSFORMATION

We use subindices a, b, and e to present the two protons
and the electron of an arbitrary coordinate. The subindices 0,
1, and 2 represent the center of the two protons, the relative
position of a proton to the center, and the electron in our
transformed coordinate, respectively. Suppose the coordinates
of the two protons and the electron are initially represented by
vectors �xa, �xb, and �xe of an arbitrary origin, respectively. The
new coordinates �r1 and �r2 satisfy

�r0 = �xa + �xb

2
, �r1 = �xa − �xb

2
, �r2 = �xe − �xa + �xb

2
,

(A1)

where �r0 is the coordinate of the center of the two protons.
The Laplacians of the two protons �2

a,�2
b and the electron �2

e
are

�2
a = �2

0

4
+ �2

1

4
+ �2

2

4
+ ��0 · ��1

2
− ��1 · ��2

2
− ��2 · ��0

2
,

�2
b = �2

0

4
+ �2

1

4
+ �2

2

4
− ��0 · ��1

2
+ ��1 · ��2

2
− ��2 · ��0

2
,

�2
e = �2

2. (A2)

Thus the kinetic energy of the system can be represented by

−1

2

(�2
a

M
+ �2

b

M
+ �2

e

1

)

= − �2
0

4M
− �2

1

4M
− �2

2

4M
+ ��2 · ��0

M
+ �2

2

2

≈ − �2
1

4M
− �2

2

2m
, (A3)

FIG. 5. The (blue crosses) error δ(+)(σ ) for R(+)
c by Eq. (B1)

with fixed R(−)
c = 12.5 atomic units and (red dots) error δ(−)(σ ) for

computations for R(−)
c with fixed R(+)

c = 12.5 atomic units. A 400-nm
laser pulse at 8.8 × 1013 W/cm2 is applied. For details of the laser
pulse, refer to Sec. IV A. The parameters for angular momenta are
Lmax = 7, Mmax = 5.

FIG. 6. (a) The energy spectrum σ (E ) = ∫
dθ

∫
dφk|b(�k, T )|2,

E = k2

2 , where b(�k, T ) are the single electron scattering amplitudes.
The spectrum is computed by advancing a hydrogen electronic
ground state in the Coulomb potential + Z

r . Z = 0 means no ex-
ternal Coulomb potential. The kinetic energy is computed by∫ ∞

0 σ (E )
√

EdE = Z + 0.5 atomic units, consistent with energy con-
servation. (b) The log-scale probability distribution of protons is
computed by log10 pwf

N (φ1, θ1, r1, 0, 5, t ), r1 ∈ [0, 5] of the inner
shell and log10 pwf

N (φ1, θ1, r1, 5, 10, t ), r1 ∈ [5, 10] of the outer shell.
|Ez(t )| is considerable and reaches a local maximum when t = −54,
54, and 246 atomic units, which are also depicted in the figures.
When t = 465 atomic units, |Ez(t )| is very small. The whole space
is split into two regions by the red, dashed circle, and the signals of
each region are normalized independently. The polarization direction
is along the horizontal axis and the direction of the electric field
is labeled at each subfigure with an arrow and a label “E (t ).” The
absolute value of the outer shell is several orders smaller than the
inner shell.
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where m = 2M
1+2M , and “≈” means the motion of the �r0 is

neglected. The interaction of the two protons with the laser
pulse can be written as

i

M
�A · ( ��a + ��b) = i �A · 1

M
( ��0 − ��2) ≈ − i

M
�A · ��2, (A4)

with which the total interaction with the laser field can be
written as

−i �A ·
(

��2 + 1

M
��2

)
= −iβ �A · ��2, (A5)

where β = M+1
M .

APPENDIX B: CONVERGENCE STUDY

The errors are computed by the difference of JES from
two subsequent calculations σ (EN , Ee) and σ ′(EN , Ee) with
respect to R(+)

c and R(−)
c ,

δ(σ ) = max
EN ,Ee

2
|σ (EN , Ee) − σ ′(EN , Ee)|
|σ (EN , Ee) + σ ′(EN , Ee)| , (B1)

as used previously in Fig. 2(c). As depicted in Fig. 5, the JES
is converged at R(+)

c = R(−)
c = 12.5 atomic units with an error

below 10%.

APPENDIX C: COULOMB EXPLOSION WITH
DISPERSION OF WAVE PACKETS

Here, we illustrate the dispersion of the wave function with
r in spherical coordinates by a simple but unphysical model:
the Coulomb explosion of a hydrogen atom. It starts with the
ground eigenstate of a hydrogen atom with an electronic wave
function ψ0(�r) = ψ0(r) = 1√

π
exp(−r). The initial kinetic en-

ergy of the electron is 0.5 atomic units and the potential energy
is −1 atomic units. Then, the charge of the nucleus suddenly
changes from +1 to −1 and the kinetic energy remains the
same, but the Coulomb potential reverses its sign. Thus the
system explodes and the electron finally becomes a free par-
ticle. In what follows, we will discuss the largest possible
kinetic energy of the free electron.

FIG. 7. The normalized single JES is created from (a) 2D and
(b) 6D σ S (EN ) = ∫

σ (2EN , Ee)
√

EedEe, where EN depicts the ki-
netic energy of a proton. A laser pulse used in Ref. [19] is applied
here. The 2D data are taken from Ref. [19].

In classical mechanics, the largest possible kinetic energy
is 1.5 atomic units because of energy conservation. However,
our quantum simulation by t-SURFF gives a value around
0.5 atomic units [see Fig. 6(a)]. We can also see that the
distribution of the spectrum has long tails to the high-energy
region. The integration of σ (E ) gives a total energy of 1.5
atomic units, which is consistent with energy conservation
[see Fig. 6(a)].

The numerical simulations show the nuclear wave pack-
ets also expand in space during the time propagation [see
Fig. 6(b)], where the probability distribution of the protons
over time is computed by

pwf
N (φ1, θ1, r1, R0, R1, t )

=
∫

dφ2

∫
sin θ2dθ2

∫ R1

R0

r2
2dr2|ψ (�r1, �r2, t )|2. (C1)

We split the radial coordinates into the inner region r1, r2 ∈
[R0, R1] = [0, 5] and outer region r1, r2 ∈ [R0, R1] = [5, 10],
and the yields of both regions are normalized with diving by
the maximum probability of the region. Thus we attribute
the difference of the most possible nuclear KER in JES to
the 3D wave-function dispersion and expansion, which were
not included in previous simulations. For simulations on dis-
sociative ionization of H+

2 , the difference of dispersion of
proton wave packets between 6D (3D for protons) and 2D
(1D for protons) simulations could also be observed with the
normalized single JES in Fig. 7.
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