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Partial-wave representation of the strong-field approximation

Birger Böning 1,2,* and Stephan Fritzsche 1,2,3

1Helmholtz-Institut Jena, D-07743 Jena, Germany
2GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany

3Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany

(Received 24 July 2020; accepted 27 October 2020; published 10 November 2020)

The strong-field approximation (SFA) has been widely applied to model ionization processes in short and
intense laser pulses. Several approaches have been suggested in order to overcome certain limitations of the
original SFA formulation with regard to the representation of the initial bound and final continuum states of the
emitted electron as well as a suitable description of the driving laser pulse. We here present a reformulation of
the SFA in terms of partial waves and spherical tensor operators that supports a quite simple implementation
and the comparison of different treatments of the active (photo)electron and the laser pulses. In particular, this
reformulation helps to adapt the SFA to experimental setups, and it paves the way to extend the strong-field theory
toward the study of nondipole contributions in light-atom interactions as well as of many-particle correlations in
strong-field ionization processes. A series of detailed computations have been carried out in order to confirm the
validity of the reformulation and to show how the representation of the bound and continuum states affects the
predicted above-threshold ionization spectra and related observables.
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I. INTRODUCTION

In recent decades, strong-field physics has attracted much
interest and helped us to understand, probe, and control vari-
ous nonlinear processes in the interaction of light with atoms
and molecules. Indeed, much of its success can be attributed
to today’s ability to precisely tailor the temporal shape and
duration of ultrashort laser pulses as well as the development
of theoretical methods that account for the nonperturbative in-
teraction with matter. Despite these successes, however, many
of the methods in strong-field physics still rely on a simplified
treatment of the (atomic) targets and electronic motion in
excitation and ionization processes.

Of course, any reliable strong-field theory of processes
such as above-threhold ionization (ATI, [1,2]), high-order
harmonic generation (HHG, [3,4]), and nonsequential double
ionization [5] is based on the time-dependent Schrödinger
equation. While a direct numerical integration of this equation
often leads to accurate predictions [6], such numerical solu-
tions quickly become infeasible if the motion of one (active)
electron is studied in three plus spin dimensions or if several
electrons are involved in the interaction. Therefore, a number
of analytical methods have been developed in order to provide
a deeper insight into the underlying dynamics and to ex-
plain the various processes mentioned above. In particular, the
strong-field approximation (SFA, [7–9]) is nowadays widely
applied to model ATI and HHG spectra [10,11].

The original formulation of the SFA, however, has several
limitations that hamper its application to modern experimental
setups. For example, it neglects the influence of the atomic
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potential upon the dynamics of the emitted electron(s) and
describes their motion simply in terms of (so-called) Volkov
continuum states. Moreover, the initial bound state of the
electron is usually described in single-active electron approx-
imation or, even simpler, by the ground state of a hydrogenic
atom [12,13], quite in contrast to the targets often used in
experiments [1,2,14]. Both of these simplifications omit large
parts of the electronic structure and dynamics. Recent studies
have therefore incorporated the Coulomb potential of the pho-
toion into the representation of the continuum states [15–18]
or included even more realistic ionic potentials [19]. In addi-
tion, the coupling of the ground and continuum states to other
bound states has been accounted for in an SFA-based study
of HHG [20] and the dependence of ATI spectra on the initial
state and the temporal shape of the driving laser pulse has been
considered [21–24]. In practice, however, most of these recent
extensions of the SFA have been explored separately and with
little attempt to combine them into a single framework. This
makes it difficult to compare these approaches and to see how
they affect the predicted spectra and behavior of atoms in
different strong-field processes.

In this work, we therefore reformulate the SFA for the
description of ATI in terms of partial waves of the emitted
electron and spherical tensor operators. This reformulation
facilitates not only the comparison of different treatments of
the active (photo)electron and laser pulses but will also help
to adapt the SFA to novel experimental setups. Although we
shall restrict ourselves to the reformulation of the direct SFA
transition amplitude, such a partial-wave expansion supports
a straigthforward improvement in the representation of the
initial bound state and the (Volkov) continuum as well as in
the description of the driving laser pulses. A series of detailed
computations have been carried out in order to confirm the
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FIG. 1. Overview of ATI and the SFA. (a) Geometry of an ATI experiment: An atom is irradiated by a strong laser pulse (red) that
propagates along the z axis and is polarized within the x-y plane. After its interaction with the laser pulse, a photoelectron is emitted with
momentum p = (p, ϑp, ϕp) in spherical coordinates and measured at the detector D. (b) Typical PMD in the polarization plane (ϑp = π/2,
pz = 0) as recorded by the detector. (c) Photoelectron energy spectra as obtained along the white line in panel (b), i.e., if the azimuthal angle
is fixed (ϕp = 0, py = 0). This spectrum exhibits the typical ATI peaks. (d) Outline of the usual assumptions that are made in the SFA: The
active electron is bound in a hydrogen-like 1s initial state by a nucleus with effective charge Zeff . The laser pulse excites the active electron
into the continuum where it propagates in the electric field of the laser pulse. (e) In a more realistic description of the ionization process, the
active electron is bound in the state |nlm〉 in an atomic (mean-field) potential as caused by the nucleus and the other bound electrons. After the
interaction, the electron is in a continuum (state) that is dressed by the laser field and the field of the residual ion.

validity of this reformulation and to demonstrate how differ-
ent representations of the bound and continuum states affect
the predicted ATI spectra and related observables. Moreover,
since our formulation can be readily coupled to atomic struc-
ture calculations, it will pave the way to extend the strong-field
theory toward studies of nondipole contributions in light-
atom interactions, the treatment of initially excited levels, the
rescattering of the electrons at the target, and/or many-particle
correlations in strong-field ionization processes.

This paper is structured as follows. In Sec. II, we intro-
duce the theoretical description of ATI within the SFA, before
turning to the expansion in terms of partial waves and spher-
ical tensors in Sec. III. To this end, we write the initial and
continuum states of the photoelectron in a general form and
consider the vector potential of the driving laser pulse in a
spherical basis. In Sec. IV, we use our analytical result in
order to obtain specific results. In particular, we compare with
the standard formulation of the SFA and investigate different
laser pulse shapes. Furthermore, we show that the contin-
uum can be easily exchanged in our formulation and perform
specific calculations including the Coulomb potential, before
we briefly discuss the dependence on the initial bound state
and the use of a short-range potential. Finally, we give our
conclusions and an outlook for future work in Sec. V.

Atomic units (me = e = h̄ = 4πε0 = 1) are used through-
out the paper unless stated otherwise.

II. THEORETICAL FRAMEWORK

A. Overview

Here, we shall reformulate the theoretical description of
ATI of an atomic gas target in terms of partial waves and
spherical operators. A typical geometry of an ATI experiment
is shown in Fig. 1(a), where an atom is irradiated by a strong
laser pulse that propagates, for instance, along the z axis and
is polarized within the x-y plane. Following the interaction
of the pulse with an atom from the target, a photoelectron is
emitted and measured at the detector with momentum p =
(p, ϑp, ϕp), written in spherical coordinates. The photoelec-
tron momentum distribution (PMD) is usually measured in the
polarization plane (ϑp = π/2, pz = 0) as a function of px and
py [cf. Fig. 1(b)]. Then, the typical ATI peaks become visible
if the azimuthal angle ϕp is fixed and the energy spectrum of
the photoelectrons is measured along a line in the px-py plane,
as indicated in Fig. 1(c). Because of the interaction with the
strong laser field, the photoelectron can absorb more photons
than needed in order to overcome the ionization threshold,

053108-2



PARTIAL-WAVE REPRESENTATION OF THE … PHYSICAL REVIEW A 102, 053108 (2020)

and this leads to the well-known ATI peaks that are spaced
by (fractions of) the photon energy.

In order to compute these PMDs and energy spectra, one
often assumes that only one electron is active (single active
electron approximation) and initially bound in a hydrogenic
1s state, while all other electrons are neglected or give rise
to an atomic mean-field potential. In this picture, the electron
undergoes a transition into the laser-dressed continuum due to
its interaction with the laser pulse; cf. Fig. 1(d). Obviously,
both the correct representation of the initial state of the atoms
and the influence of the electrostatic potential of the pho-
toion upon the continuum remains neglected in the standard
SFA. A more realistic description of this ATI process should
therefore at least account for the (effective) interaction of the
active electron in its initial state |nlm〉 with the other bound
electrons as well as the potential of the residual ion that acts
upon the outgoing photoelectron, in addition to the laser field
[cf. Fig. 1(e)].

Below, we first briefly outline the general assumptions
and derivation of the SFA for its application to ATI, before
we shall reformulate this approximation in terms of partial
waves and spherical tensors. This reformulation enables us
more readily to account for and to switch between the various
assumptions described in the previous paragraph. In particu-
lar, we shall focus here upon realistic (single-electron) initial
states and the improved representation of the continuum,
while a many-electron treatment of the target atoms in the SFA
will be considered in forthcoming work.

B. Strong-field approximation

The SFA provides an analytical formalism to compute the
energy- and angle-differential photoionization probability for
the ATI of atoms in strong laser fields [12],

P (p) = p|T (p)|2, (1)

in terms of a transition amplitude T (p) and where p refers to
the photoelectron momentum as measured at the detector. In
this formalism, moreover, a single active electron is assumed
that is initially bound in a state |�i(t )〉 and, after its interaction
with the laser field, is found in a final state |�p(t )〉 with
asymptotic momentum p at the detector. The dynamics of the
electron follows the Schrödinger equation

i
∂

∂t
|�(t )〉 = Ĥ |�(t )〉 , (2)

with the Hamiltonian given by

Ĥ = p̂2

2
+ Vle(r, t ) + V (r). (3)

Here, Vle(r, t ) = A(r, t ) p̂ + A2(r, t )/2 − φ(r, t ) is the laser-
electron interaction potential with the electromagnetic scalar
and vector potentials φ(r, t ) and A(r, t ), respectively. Further-
more, V (r) denotes the atomic binding potential, which is
often simply approximated by the Coulomb potential of the
photoion.

In general, the transition amplitude can be written as

T (p) = lim
t→∞,t ′→−∞

〈�p(t )|Û (t, t ′)|�i(t
′)〉 ,

where Û (t, t ′) is the exact time evolution operator correspond-
ing to the Hamiltonian (3). In order to simplify this transition
amplitude, the SFA makes the following assumptions:

(1) The influence of the laser field on the bound states is
negligible; i.e., the initial state |�i〉 is just taken as a bound
state of the atomic Hamiltonian ĤA = p̂2/2 + V̂ (r).

(2) The final state, measured at the detector, is a plane
wave, i.e., |�p〉 = |p〉.

(3) The influence of the atomic potential V (r) upon the
electronic motion in the continuum is negligible in the time
evolution operator, i.e., Û (t, t ′) ≈ Ûle(t, t ′) with the time evo-
lution operator Ûle(t, t ′) corresponding to the Hamiltonian
Ĥle = p̂2/2 + V̂le(r, t ).

With these assumptions in mind, the transition amplitude
T (p) takes the form [12]

T (p) = T0(p) + T1(p), (4a)

T0(p) = −i
∫ ∞

−∞
dτ 〈χp(τ )|Vle(r, t )|�i(τ )〉 , (4b)

T1(p) = (−i)2
∫ ∞

−∞
dτ

∫ ∞

τ

dτ ′ 〈χp(τ ′)|V (r)Ûle(τ ′, τ )Vle(r, τ )|�i(τ )〉 , (4c)

where |χp〉 denotes a continuum state of the photoelectron
in the laser field. The two amplitudes T0(p) and T1(p) can
be readily interpreted in terms of photoelectrons that directly
propagate to the detector and are rescattered at the photoion,
respectively, and they are often briefly referred to as direct
and rescattering amplitudes. Up to this point, no assumptions
have been made about the form of the atomic potential V (r)
and how the potentials φ(r, t ) and A(r, t ) of the driving laser
field affect the continuum states |χp〉.

Further simplifications are necessary and typically applied
in order to evaluate the transition amplitude (4a) for specific
physical scenarios. First, the laser field is usually considered

only in dipole approximation, A(r, t ) ≈ A(t ), and hence, both
the magnetic field and the spatial dependence of the electric
field are neglected. This simplification, in particular, allows
for a straightforward solution for the continuum states and we
will make use of it for the remainder of this work. Second,
the initial state |�i(t )〉 is assumed to be a hydrogen-like initial
state (often |1s〉). Our reformulation of the (direct) SFA tran-
sition amplitude (4b) in terms of partial waves and spherical
tensors in the next section will enable us to account for a more
appropriate description of the initial state as well as to readily
replace the continuum states and the shape (envelope) of the
driving laser pulse as suitable for numerical implementations
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and, likely, even for the ATI of few- and multielectron atoms
in the future.

III. REFORMULATION OF SFA BY MEANS OF PARTIAL
WAVES AND SPHERICAL TENSORS

To compute the transition amplitude (4), we need to specify
the initial state of the active electron, the vector potential of
the driving laser pulse, and the continuum state for the outgo-
ing electron wave. Typically, one chooses them appropriate to
the given setup of an experiment and according to a number
of practical considerations in order to keep the computation of
the transition amplitude (4) feasible. Several of the standard
approximations that are often used right from the beginning
in the simplification of the transition amplitude have been
mentioned above. In contrast, here we rewrite this amplitude
without further approximations but by applying a partial-wave
representation of the initial- and final-state wave functions (of
the active electron) and spherical tensor operators to separate
the directional dependence of the amplitude from the physical
interaction. In particular, we represent these single-electron
states and the vector potential within a spherical basis, in
which the (integration over) radial and spherical coordinates
can be readily separated. Overviews of spherical tensors and
the spherical basis formalism that we use below can be found,
for example, in Refs. [25,26].

A. Initial state

Initially, the active electron is taken to be in a (nonrelativis-
tic) eigenstate of the atomic Hamiltonian,

|�i(t )〉 = e−iεit |ψi〉 = e−iεit |n�m〉 ⊗ |χs,ms〉 , (5)

characterized by the principal and orbital angular momentum
quantum numbers n, �, and m, respectively, as well as the pro-
jection ms of the electron spin s = 1/2. Here, the eigenvalue εi

denotes the binding energy (or ionization potential Ip = −εi)
of the electron and, in position space, the eigenstates are
usually written

�i(r, t ) = ψi(r)e−iεitχs,ms

= Pn�(r)

r
Y�m(ϑ, ϕ)e−iεitχs,ms (6)

in terms of the radial wave function Pn�(r) and the spherical
harmonics Y�m(ϑ, ϕ).

B. Continuum states

If the photoelectron is excited into the continuum, it must
still obey the full Schrödinger equation (2) with the Hamil-
tonian Ĥ that contains both the atomic and the laser-electron
interaction potentials. If, as usual in SFA, the atomic poten-
tial is neglected for the motion of the photoelectron in the
continuum, the continuum states are just given by the (plane-
wave) Volkov states, although experiments suggest including
the atomic binding potential into the representation of the
continuum states. For a pure Coulomb potential, one then
obtains Coulomb-Volkov states, while (so-called) atom-Volkov
states may refer to a more realistic atomic potential. We shall
describe these different representations of the continuum in

the following paragraphs. In general, for any central-field
potential, we can expand the continuum states into spherical
waves,

|χp(t )〉 =
√

2

π
e−iSV (t )

×
∞∑

�p=0

�p∑
mp=−�p

Y ∗
�pmp

(ϑp, ϕp) |εp�pmp〉 , (7)

where we use spherical coordinates, p = (p, ϑp, ϕp), to ex-
press the momentum of the photoelectron with energy εp =
p2/2 at the detector. Moreover, we introduced the Volkov
phase SV (t ) [see Eq. (11) below] as well as the partial-wave
representation of the angular momentum states |εp�pmp〉 with
well-defined asymptotic energy,

〈r|εp�pmp〉 = i�p
Pεp�p (r)

r
Y�pmp (ϑ, ϕ), (8)

following the conventions of Ref. [27]. Of course, in such
a basis the radial wave function Pεp�p (r) will depend on the
particular choice of solutions.

Below, we can readily include also the electron spin into
the continuum representation by taking the product of Eq. (7)
with a spin wave function,

|χp,s′,m′
s
(t )〉 = |χp(t )〉 ⊗ |χs′,m′

s
〉 .

Since the spin of the emitted photoelectron is usually not
measured in strong-field atomic experiments, one then has to
average over m′

s in the photoionization probability. As seen
from the above equations, however, the continuum states are
always characterized by the photoelectron momentum p and
spin projection, independent of the particular Hamiltonian,
while the laser pulse affects the photoelectron only through
the Volkov phase SV (t ).

1. Plane-wave Volkov states

The plane-wave Volkov states are known as solutions to
the Schrödinger equation (2) for an electron in a purely
time-harmonic laser field, i.e., for the approximate Hamil-
tonian Ĥ ≈ Ĥle = p̂2

2 + Vle(r, t ). The laser field is usually
described either in length gauge by the laser-electron interac-
tion potential Vle(r, t ) = −φ(r, t ) = −d · E(t ) together with
the dipole operator d = qr = −r and the electric field E(t ),
or in velocity-gauge where

Vle(r, t ) = A(t ) · p̂ + 1
2 A2(t ). (9)

In either of these gauges, the Volkov states can be easily
constructed from the Schrödinger equation. In velocity gauge,
they are explicitly given by

χp(r, t ) = 1

(2π )3/2
e−iSV (t )eip·r, (10)

where we have introduced the Volkov phase

SV (t ) = 1

2

∫ t

dτ (p + A(τ ))2, (11)

which is equal to the classical action of the electron moving
in the time-dependent laser field.
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In velocity gauge, we can make use of the spherical-wave
expansion [27],

eip·r

4π
=

∞∑
�p=0

�p∑
mp=−�p

i�p j�p (pr)Y ∗
�pmp

(ϑp, ϕp)Y�pmp (ϑ, ϕ), (12)

in order to rewrite the Volkov states (10) and where j�p (x)
are spherical Bessel functions. If we compare the result with
Eqs. (7) and (8), we can immediately read off the radial wave
function,

Pεp�p (r) = r j�p (pr), p = √
2εp. (13)

In principle, the expansion (12) may also be applied to the
Volkov states in length gauge [19]. However, the additional
factor eiA(t )·r then leads to terms of the form j�(A(t )r) in
the final expression that complicate the subsequent analysis.
From here on, we will therefore focus on the SFA in veloc-
ity gauge and leave the reformulation in length gauge as a
future task. One should, however, always keep in mind that

the length-gauge SFA yields more accurate results than the
velocity-gauge formulation, especially for initial p states [28].

2. Coulomb-Volkov states

If the potential of the photoion is not neglected right from
the beginning, it can be approximated in the first instance by
a Coulomb potential. That is, we can construct continuum so-
lutions to the Schrödinger equation (2) with the Hamiltonian
(3) and a Coulomb binding potential V (r) = VC (r) = −Z/r of
the residual ion with charge Z . These solutions are often ap-
proximated by the Coulomb-Volkov states that are Coulomb
waves |φ(C)

p 〉 multiplied by the Volkov phase factor from above
[18,29],

|χp(t )〉 = 1

(2π )3/2
e−iSV (t )

∣∣φ(C)
p

〉
, (14)

and where the Volkov phase is again given by Eq. (11). In
position space, the outgoing Coulomb waves asymptotically
become plane waves, φ(C)

p (r) → eipr for pr → +∞, and have
the explicit form

φ(C)
p (r) = e

π
2 ηp�(1 + iηp)eip·r

1F1(−iηp; 1; −i(pr + pr)), (15)

where ηp = −Z/p, �(x) is the � function, and 1F1(a; b; c) is the confluent hypergeometric function [30]. The outgoing Coulomb
waves can be rewritten in a partial-wave expansion, analogous to Eq. (12), as [26]

φ(C)
p (r) = 4π

∞∑
�p=0

�p∑
mp=−�p

i�p
w�p (ηp, pr)

r
Y ∗

�pmp
(ϑp, ϕp)Y�pmp (ϑ, ϕ), (16)

and we explicitly state the functions w�p (ηp, pr) in Appendix A. From a comparison with Eqs. (7) and (8), we find that the radial
wave function is given by

Pεp�p (r) = w�p (ηp, pr). (17)

3. Atom-Volkov states

While the Coulomb potential above accounts for the
long-range influence of the photoion, an even more realistic
description is obtained for the continuum states, if a short-
range potential VSR(r) is added to the Coulomb potential
VC (r) = −Z/r in the Hamiltonian (3). Then, the full poten-
tial may be written, for example, as [19]

V (r) = VC (r) + VSR(r),

= −Z + a1e−a2r + a3e−a4r + a5e−a6r

r
, (18)

where the coefficients a1 − a5 depend on the target atom in
question [31,32].

Analogous to the Coulomb-Volkov states, the continuum
states |χp(t )〉 in the potential (18) and the laser field can
be constructed from distorted scattering states |φ(A)

p 〉 that are
solutions to the stationary Schrödinger equation with the
Hamiltonian Ĥ = p̂2

2 + V (r): They are approximated again
by multiplying |φ(A)

p 〉 with the Volkov phase factor with the
Volkov phase (11),

|χp(t )〉 = 1

(2π )3/2
e−iSV (t )

∣∣φ(A)
p

〉
,

and can again explicitly be written in the form of Eqs. (7) and
(8) with the radial wave function [19]

Pεp�p (r) = P̃εp�p (r)ei(σ�p+δ�p ). (19)

In these radial functions, a phase shift δ�p arises due to the
short-range potential in addition to the Coulomb phase shift
σ�p ; cf. Appendix A. It can be extracted from the asymptotic
behavior of the radial wave function for large r; cf. Ref. [33].
The (yet) unknown functions P̃εp�p (r) can be determined nu-
merically as solutions of the radial Schrödinger equation in
the potential (18) form above,

[
−1

2

1

r2

∂

∂r

(
r2 ∂

∂r

)
+�p(�p + 1)

2r2
+ V (r) − εp

]
P̃εp�p (r)

r
= 0.

This ansatz for the photoelectron continuum states has been
called atom-Volkov ansatz in Ref. [19] and we shall refer to
the associated continuum states |χp(t )〉 as atom-Volkov states
below. Instead of using Eq. (18), of course, an effective po-
tential V (r) of the residual ion can be readily determined also
from atomic-structure calculations and then leads to modified
radial wave functions P̃εp�p (r) in the representation of the
atom-Volkov states.
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C. Vector potential

Both the transition amplitude (4) and the continuum states
discussed above contain the vector and scalar potentials of the
(plane-wave) driving laser pulse. Since we restrict ourselves
to the dipole approximation and the velocity gauge, the scalar
potential vanishes identically and the electric field of the pulse
is simply defined by a purely time-dependent vector potential
A(t ). In particular, let us start here from the complex-valued
vector potential of an elliptically polarized laser pulse of the
form

Ac(t ) = A0 u f (t ) e−i(ωt+φCEP ), (20)

with the (real-valued) amplitude A0, the pulse envelope f (t ),
the frequency ω, the carrier-envelope phase φCEP, and the
(complex) polarization unit vector u.

From a physics viewpoint, since both the laser-electron
interaction operator Vle(r, t ) and the Volkov phase (11) contain
terms nonlinear in A(t ) and the physical electric field is real,
we shall consider only the real part of Eq. (20),

A(t ) = Re{Ac(t )} = 1
2 [Ac(t ) + A∗

c (t )]. (21)

If the laser pulse propagates along the z axis [cf. Fig. 1(a)],
the polarization unit vector lies in the x-y plane and has the
explicit form

u = 1√
1 + ε2

(ex + iλεey),

where λ = ±1 and 0 � ε � 1 refer to the helicity and el-
lipticity of the pulse, respectively. To reformulate the SFA
transition amplitude by means of partial waves and spherical
tensor operators, we first write the polarization unit vector as
a spherical vector,

u =
∑

q=0,±1

uqeq, (22)

where the (covariant) spherical basis vectors e+, e−, and e0

are given in terms of Cartesian basis vectors by [34]

e± = ∓ex ± iey√
2

, e0 = ez.

Similarly, the spherical components uq = 〈u, eq〉 of the polar-
ization unit vector are related to its Cartesian components by

u± = ∓ux + iuy√
2

, u0 = uz,

or, explicitly, by

u+ = − 1√
2(1 + ε2)

(1 + λε),

u− = 1√
2(1 + ε2)

(1 − λε),

u0 = 0.

In particular, for a left-circularly polarized pulse (λ = +1,
ε = 1) we find u+ = −1 and u− = 0, while for a right-
circularly polarized pulse (λ = −1, ε = 1) we find u+ = 0
and u− = 1. For linear polarization (ε = 0), these equations
reduce to u+ = −u− = −1/

√
2.

Below, we will consider different temporal shapes of the
laser pulse, as defined by the envelope f (t ). For the sake of
simplicity, one often assumes a continuous laser beam with
f (t ) = 1 in order to approximate long pulses with many opti-
cal cycles. For short pulses, in contrast, a rectangular envelope
may be utilized, f (t ) = 1 for 0 � t � Tp and f (t ) = 0 other-
wise, if the pulse has duration Tp = 2πnp/ω and comprises
an (integer) number np of optical cycles. An experimentally
more realistic pulse is given by a sine-squared pulse with
envelope f (t ) = sin2(ωt/2np) for 0 � t � Tp = 2πnp/ω and
f (t ) = 0 otherwise. Such pulses are often used within the
SFA, since they allow an analytical evaluation of the Volkov
phase in terms of elementary functions [12]. In addition,
Gaussian pulses with the envelope f (t ) = e−4 ln(2)(t/Tp)2

may
be considered and for which the pulse duration Tp is defined
as the full-width at half maximum of the envelope. For these
four pulse shapes, we state the Volkov phase (11) for circular
polarization explicitly in Appendix B.

In general, a driving laser pulse with given envelope f (t )
is completely specified by its amplitude A0, frequency ω,
ellipticity ε, helicity λ, pulse duration Tp as well as its
carrier-envelope phase φCEP. The (maximum) intensity of the
pulse can be easily computed by I = A2

0ω
2
0c/8π from the

amplitude A0.

D. Direct transition amplitude

With the various definitions above for the initial and con-
tinuum states of the photoelectron as well as the laser pulse,
we can now rewrite the direct SFA transition amplitude (4b)
in terms of partial waves and spherical tensors. Making use of
the vector potential (21), the laser-electron interaction poten-
tial (9) takes the form

Vle(r, t ) = − i

2
Ac(t ) · ∇ − i

2
A∗

c (t ) · ∇ + 1

8
[Ac(t ) + A∗

c (t )]2

and can be directly inserted into the matrix element in the
amplitude (4b), together with the initial state (5) as well as
the spin part |χs′,m′

s
〉 and the general form of the continuum

states (7),

〈χp,s′,m′
s
(τ )|Vle(r, τ )|�i(τ )〉=

√
2

π
eiSV (τ )e−iεiτ 〈χs′,m′

s
|χs,ms〉

∞∑
�p=0

�p∑
mp=−�p

Y�pmp (ϑp, ϕp)

[
A0 f (τ ) e−i(ωτ+φCEP ) 〈εp�pmp|u · p̂|n�m〉

+ A0 f (τ ) ei(ωτ+φCEP ) 〈εp�pmp|u∗ · p̂|n�m〉 + 1

2
A2(τ ) 〈εp�pmp|n�m〉

]
.
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The scalar products in the electron-photon interaction matrix
elements (second and third term) can be explicitly evaluated
using the polarization vector (22) in the spherical basis,

u · p̂ =
∑

q=0,±1

(−1)quq p̂−q,

u∗ · p̂ =
∑

q=0,±1

u∗
q pq,

where we use the spherical components p̂q of the momentum
operator analogous to Eq. (22). The matrix elements of u · p̂
then become

〈εp�pmp|u · p̂|n�m〉 =
∑

q=0,±1

(−1)quq 〈εp�pmp| p̂−q|n�m〉 .

Moreover, since the momentum operator p̂ is a first-rank ten-
sor operator, we can apply the Wigner-Eckart theorem in the
form [34]

〈 jm|T (k)
q | j′m′〉 = (−1)2k

√
2 j + 1

〈 j′m′, kq| jm〉 〈 j‖T (k)‖ j′〉 ,

for any tensor operator T (k) of rank k and with spherical
components T (k)

q , in order to express the matrix elements as

〈εp�pmp|u · p̂|n�m〉 = 1√
2�p + 1

∑
q=0,±1

(−1)quq

× 〈�m, 1(−q)|�pmp〉 〈εp�p‖p̂‖n�〉 ,

in terms of the reduced matrix elements 〈εp�p‖p̂‖n�〉 of p̂
as well as the Clebsch-Gordan coefficients 〈 j1m1, j1m2| jm〉.
These Clebsch-Gordan coefficients capture all the directional
dependence of the laser-electron interaction. The reduced
matrix elements of the momentum operator are derived and
shown explicitly in Appendix C. Similar expressions follow
directly also for the matrix elements of u · p̂.

With this standard decomposition of (almost) all matrix el-
ements in atomic-structure theory and by using the elliptically
polarized laser pulse (20), the direct transition amplitude (4b)
can now be written

T0(p) = −i
∫ ∞

−∞
dτ 〈χp,s′,m′

s
(τ )|Vle(r, τ )|�i(τ )〉

= −i

√
2

π
F1[ω; f ; p] 〈χs′,m′

s
|χs,ms〉

⎛
⎝ ∞∑

�p=0

∑
q=0,±1

(−1)q uq√
2�p + 1

Y�p,m−q(ϑp, ϕp) 〈�m, 1(−q)|�pm − q〉 〈εp�p‖p̂‖n�〉
⎞
⎠

− i

√
2

π
F1[−ω; f ; p] 〈χs′,m′

s
|χs,ms〉

⎛
⎝ ∞∑

�p=0

∑
q=0,±1

u∗
q√

2�p + 1
Y�p,m+q(ϑp, ϕp) 〈�m, 1q|�pm + q〉 〈εp�p‖p̂‖n�〉

⎞
⎠

− i
1√
2π

F2[ f ; p] 〈χs′,m′
s
|χs,ms〉Y�m(ϑp, ϕp) 〈εp�m|n�m〉 . (23)

In this expression for the direct transition amplitude, we have also defined the two pulse-shape integrals

F1[±ω; f ; p] = A0e∓iφCEP

∫ ∞

−∞
dτ f (τ ) e−i(εi±ω)τ+iSV (τ ), (24a)

F2[ f ; p] =
∫ ∞

−∞
dτ A2(τ ) e−iεiτ+iSV (τ ), (24b)

that contain the (full) time dependence of the driving laser
pulse in terms of the envelope f (t ) and only parametrically
depend on the photoelectron momentum p at the detector. In
addition, we used the identity

〈�m, 1(±q)|�pmp〉 = 〈�m, 1(±q)|�p(m ± q)〉 δmp,m±q

to reduce the summation over the magnetic quantum number
mp in the representation of the continuum.

In the dipole approximation, the summation over the final-
state angular momentum �p could by further reduced by using
the symmetry properties of the Clebsch-Gordan coefficients
and of the reduced matrix elements of the momentum op-
erator. We will not make this step here since it does not
apply if nondipole contributions are to be considered in some
forthcoming work [35]. Instead, this reduction can be easily
made in any implementation by just using the known selection
rules of the Clebsch-Gordan coefficients.

The scalar product 〈εp�m|n�m〉 in the last term of Eq. (23)
can, due to the orthogonality of spherical harmonics, be writ-
ten as

〈εp�m|n�m〉 = (−i)�
∫

dr P∗
εp�

(r) Pn�(r).

Therefore, this scalar product must vanish if |n�m〉 and
|εp�pmp〉 are eigenstates of the same Hamiltonian, i.e., for
initial and continuum states that correspond to the same
Hamiltonian. In this particular situation, the A2(τ ) term will
not contribute within the dipole approximation, although it is
likely retained in general due to the spatial structure of the
light field. For plane-wave Volkov or Coulomb-Volkov states,
however, the last term in the expansion (23) needs to be taken
into account since Pn�(r) and Pεp�(r) are not eigenstates of the
same Hamiltonian in that case.
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Since, within the nonrelativistic theory, the electron-photon
interaction is spin independent, the scalar products of spin
states 〈χs′,m′

s
|χs,ms〉 ∼ δss′δmsm′

s
do not provide further informa-

tion and could (as usual) be omitted right from the beginning.
We include these spin states here explicitly in Eq. (23) as we
wish to generalize the SFA amplitudes toward a relativistic
and/or many-electron treatment. In both cases, the electron
spin couples to the spatial motion of the electrons and will
hence affect the transition amplitudes.

We further note that an experimental target typically con-
sists of unpolarized atoms; that is, the magnetic quantum
number m of the initial state is randomly distributed. In or-
der to obtain the corresponding photoionization probability,
Eq. (1) needs to be averaged over m,

P (p) = p

2� + 1

�∑
m=−�

∣∣T (m)
0 (p)

∣∣2
, (25)

where T (m)
0 (p) denotes the transition amplitude for fixed m

according to Eq. (23).
Taking the preceding remarks into account, the expan-

sion of the direct ampliude (23) in terms of partial waves
and (matrix elements of) spherical tensors is the main an-
alytical result of this work. This expansion enables one to
readily incorporate and discuss different contributions from
the electron-photon interaction and the representation of the
active electron without the need to rederive the transition
amplitude for every scenario separately. In particular, the
initial-state wave function of the active electron is no longer
restricted to hydrogenic wave functions but can be easily
replaced by any appropriate (radial) function Pn�(r) in Eq. (6).
Furthermore, the representation of the continuum can be re-
placed by any proper set of (continuum) functions {Pεp�p (r)} as
introduced in Eq. (8). Of course, the particular choices of the
initial and continuum state radial wave functions determine
the reduced matrix elements of the momentum operator; cf.
Eq. (C1) in Appendix C. Finally, the shape of the laser pulse
can be modified by including some appropriate pulse envelope
f (t ) and the associated Volkov phase SV (t ) in Eq. (23).

This rather modular form of the transition amplitude also
facilitates any (numerical) implementation of the SFA that
aims at studying different experimental setups within differ-
ent approximations. Because of its use of partial waves and
spherical tensors, moreover, it may even be coupled to atomic-
structure computations and to the question how electronic
correlations will affect the strong-field ionization and related
processes.

IV. NUMERICAL RESULTS

To demonstrate the versatility of the expansion (23) for the
direct SFA transition amplitude, we shall apply it to several
scenarios. First, however, we will show its consistency with
the standard SFA formulation, i.e., with the direct numerical
evaluation of the transition amplitude (4b). We then investi-
gate the dependence of the photoelectron energy spectra on
the choice of the pulse envelope for a short driving laser pulse.
We also demonstrate that both Coulomb and short-range in-
teractions can be easily incorporated into the continuum by
replacing the radial wave functions. Finally, we shall also

briefly consider the influence of the initial bound state. All
results are presented for left-circularly polarized laser pulses
with ε = 1 and λ = +1.

Below, we either consider the momentum distribution
P (px, py, pz = 0) of the emitted photoelectrons in the polar-
ization plane of the driving laser pulse or the photoelectron
energy spectrum P (εp), given by the differential photoion-
ization probability (1) at some fixed polar and azimuthal
emission angles ϑp = ϑ (0)

p and ϕ(0)
p ,

P (εp) = P
(
εp, ϑ

(0)
p , ϕ(0)

p

) ≈ p
∣∣T0(εp, ϑ

(0)
p , ϕ(0)

p )
∣∣2

,

and where we approximate the full SFA transition amplitude
T (p) by the direct amplitude T0(p). The photoelectron energy
spectrum P (εp) will also be referred to as ATI spectrum.

A. Comparison with standard SFA formulation

We first compare the ATI spectra as obtained from the com-
monly used form (4b) of the direct SFA transition amplitude
and from our reformulation in (23) in terms of partial waves
and spherical tensors. We here assume a hydrogen-like 1s
initial state (n = 1, � = 0, m = 0), for which the radial wave
function in Eq. (6) is given by

P10(r) = 25/2I3/2
p r e−

√
2Ipr,

with the ionization potential Ip = −εi = 14 eV of krypton.
Furthermore, we assume that the continuum can be described
by the plane-wave Volkov states (10) with the radial wave
function (13) and that the laser pulse has a sine-squared en-
velope (cf. Sec. III C).

With these assumptions in mind, the direct SFA transition
amplitude (4b) can be obtained from an analytical evaluation
of the matrix element in the time integral (see, for example,
Ref. [12]) and by a subsequent numerical integration over t .
Alternatively, one can reduce Eq. (23) analytically to

T0(p) = − i√
2π

(F1[ω; f ; p] (u · ep) 〈εp1‖p̂‖10〉

+ F1[−ω; f ; p] (u∗ · ep) 〈εp1‖p̂‖10〉

+ 1

2
F2[ f ; p] 〈εp00|100〉),

where ep = p/p, and use this expression in order to com-
pute ATI spectra. In our implementation, however, we solve
both the radial integrals in the reduced matrix elements [cf.
Eq. (C1) in Appendix C] and the pulse-shape integrals (24)
numerically and compute the ATI spectra from the general
expression (23). In practice, the computation times are com-
parable, although slightly longer in our reformulation and for
arbitrary initial states and laser polarizations, owing to the
necessary summations in Eq. (23).

Figure 2 shows the ATI spectra as obtained for a specific
set of parameters from the standard and our reformulation
of SFA, respectively. In both spectra, the typical ATI peaks
are visible which result from the interference of different
harmonic contributions to the Volkov phase, i.e., due to the
oscillating motion of the photoelectron in the laser pulse.
Obviously, both ATI spectra coincide, as for all other laser
parameters tested in our computations. This can be seen
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FIG. 2. ATI spectra computed within the standard SFA approach
based on Eq. (4b), black solid lines, and the partial-wave expansion
Eq. (23), red dashed lines, for photoelectrons emitted into the polar
and azimuthal angles ϑ (0)

p = π/2 and ϕ (0)
p = 0, respectively. The fol-

lowing parameters were used: hydrogen-like initial state with n = 1,
� = 0, m = 0, Ip = −εi = 14 eV (krypton); plane-wave Volkov con-
tinuum states; and sine-squared laser pulse with np = 2, ω = 0.057
a.u., Imax = 5 × 1013 W/cm2, ε = 1 (circular polarization), λ = +1,
φCEP = π .

as verification that Eqs. (4b) and (23) are indeed (mathe-
matically) equivalent. While the standard form of the SFA
transition amplitude (4b) can be evaluated quite easily for
the 1s initial state (of hydrogen-like ions) and for plane-wave
Volkov states, it requires a considerable effort to perform
analog computations for other initial and continuum states.
In our partial-wave expansion (23), in contrast, no additional
(analytical) work is needed, and this advantage may justify the
slightly longer computation times mentioned above.

B. Dependence on the pulse shape

Modern experiments are able to produce different pulse
shapes and often assume a Gaussian pulse envelope [36,37].
Moreover, several theoretical studies have demonstrated the
dependence of strong-field (ionization) processes on the enve-
lope of the driving laser pulse [23,24]. Despite these studies,
however, it has been found convenient in SFA computations
to assume laser pulses with a sine-squared envelope, mainly
because this shape supports an analytical evaluation of the
Volkov phase SV (t ) and its exponential as it appears in
the transition amplitude. The remaining time integration in
the transition amplitude can then be solved either analyti-
cally (using the Jacobi-Anger expansion) or numerically. For
Gaussian pulses, in contrast, such an analytical evaluation is
not feasible owing to the error function that occurs in the
Volkov phase [cf. Appendix B]. In the partial-wave expan-
sion above, the time integrals only occur in the pulse-shape
integrals (24) and are of course the same as in the standard for-
mulation. For short pulses (np � 20 cycles), the pulse-shape
integrals can be solved numerically with reasonable effort,
while an analytically time integration might be favorable for
long pulses. However, since the precise form of the pulse
envelope becomes less relevant for the ATI spectra decreases

with increasing pulse duration, a sine-squared pulse shape or
a continuous beam is often a good first approximation.

Here we shall examine the influence of the pulse envelope
f (t ) on the ATI spectra that results from the pulse-shape
integrals (24) for short pulses. In particular, we consider a
sine-squared, Gaussian pulse and rectangular pulse, for which
an identical pulse duration Tp = 2T and cycle length T =
2π/ω are assumed and for which Fig. 3(a) shows the instan-
taneous intensity I (t ) = A2

0 f 2(t )ω2
0c/8π for the various pulse

envelopes. To make the ATI spectra comparable for these
pulses, we have chosen the maximum intensity of each pulse
so that their time-integrated intensities are identical.

Figure 3(b) displays the ATI spectra as obtained for these
three pulses and by using the partial-wave expansion (23)
of the SFA amplitude from above. In fact, the spectrum for
the sine-squared pulse (black solid curve) is the same as
shown in Fig. 2. One easily sees from this figure that the
three spectra deviate considerably from each other and that
the overall maximum in the ATI spectrum is shifted toward
higher energies for both the Gaussian and rectangular pulses.
This shift arises from the ponderomotive energy Up ∼ I of the
photoelectron, which is smaller for the lower (average) inten-
sities of the Gaussian and rectangular pulses. Furthermore,
the energy spacing of the ATI peaks clearly differs for all
three pulse shapes due to the different spectral composition of
these pulses. Since the oscillations of the photoelectron within
the continuum are determined by the frequency spectrum of
the vector potential and directly affect the Volkov phase, these
frequencies become visible in the ATI peak structure. For a
Gaussian envelope, in particular, the pulse duration is defined
by its full width at half maximum. Thus, in contrast to the
sine-squared and rectangular pulses, the Gaussian pulse is not
confined to the temporal interval [0, 2T ], leading to an effec-
tively broader frequency spectrum and to a smaller spacing
between the ATI peaks.

To conclude this discussion, we have seen that the ATI
spectra strongly depend on the envelope used for rather (short)
driving laser pulses. This dependence also shows the ad-
vantage of our reformulation that allows a much simpler
comparison of different pulse shapes. Apart from the numer-
ical computation of the pulse shape integrals (24), the pulse
shape can be easily replaced by inserting the analytical expres-
sion for the Volkov phase given in Appendix B. In practice, the
computation of the pulse shape integrals is more elaborate for
Gaussian than for rectangular and sine-squared pulses owing
to the (complex) error functions in the Volkov phase.

C. Coulomb interactions in the continuum

The observed ATI spectra can be reproduced qualitatively
within the SFA already with plane-wave Volkov continuum
states since the ATI peaks arise due to the interaction be-
tween the (quasi)free photoelectron and the oscillating electric
field of the ionizing laser pulse. The peak structure matches
particularly well for high photoelectron energies. However,
the ionization probabilities from such plane-wave Volkov
states often deviate strongly from experiment in the low-
energy region [38]. In addition, the experimentally observed
symmetries of the PMDs usually cannot be explained in de-
tail by using plane-wave Volkov states [39]. The theoretical
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FIG. 3. Dependence of ATI spectra on the pulse shape. (a) Instantaneous laser intensity as a function of time for three different pulse
envelopes f (t ) with identical pulse duration Tp = npT where np = 2 and T = 2π/ω; see Sec. III C. The respective maximum intensity was
chosen such that the integral over the intensity is equal for all three pulse shapes (see main text). (b) ATI spectra computed for the pulse
envelopes shown in panel (a) for photoelectrons emitted into the polar and azimuthal angles ϑ (0)

p = π/2 and ϕ (0)
p = 0, respectively. All three

spectra have been normalized to their respective maxima. The intensity was set to Imax = 5 × 1013 W/cm2 for the sine-squared pulse and all
other parameters are the same as in Fig. 2. The labels in panel (a) also apply to the curves in panel (b).

predictions can be improved if the Coulomb potential of the
residual ion is taken into account in the representation of
the (Volkov) continuum [40,41]. This is readily done in the
SFA by replacing the plane-wave Volkov continuum states by
the Coulomb-Volkov states as discussed in Sec. III B 2. This
replacement illustrates the role of the Coulomb interactions in
the continuum [42], while further details in the ATI spectra
and PMDs may require to deal also with the rescattering
transition amplitude (4c), which is beyond the scope of this
work [43].

For a Coulomb-Volkov continuum with the radial wave
function (17) [instead of (13)], Fig. 4 displays the radial
wave functions together with the ATI spectra for different
values of the charge Z of the residual ion. The ATI spectra
in Fig. 4(b) are shown on a logarithmic scale for the sake

of better visibility. The black solid lines in Fig. 4 corre-
spond to the plane-wave Volkov continuum or, equivalently,
the Coulomb-Volkov continuum with Z = 0. The ATI spectra
shown in Fig. 4(b) exhibit ATI peaks at identical values of
the energy and independent of the ionic charge Z . In the SFA,
this independence arises from the factorization of the Volkov
phase factor in the Coulomb-Volkov states, which is there-
fore not influenced by the spatial part of the wave function.
Nonetheless, it is easily seen that the ionization probability
for εp � 2ω is enhanced by up to one order of magnitude if
the ionic charge is continuously increased from Z = 0 to 1.
While the photoelectron dynamics is solely driven by the laser
field in the case of the plane-wave Volkov states, the attrac-
tive Coulomb potential of the residual ion pulls the electron
toward the ion and reduces its kinetic energy [41]. Quantum

FIG. 4. Dependence of ATI spectra on the choice of the continuum states used in the SFA. (a) Real and imaginary parts of the radial wave
function (17) of the Coulomb-Volkov states for εp = 0.1 a.u., �p = 1 as well as for selected charge values Z = 0, 0.1, 0.5, 1.0 of the residual
ion. (b) ATI spectra with Coulomb interactions in the continuum and for the same values of Z . These spectra were all computed from the
transition amplitude (23) with the Coulomb-Volkov states (14) but otherwise the same parameters as in Fig. 2. The labels of residual charge
are the same in both panels (a) and (b).
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FIG. 5. PMDs P (px, py, pz = 0) within the polarization plane of the driving laser pulse. Results are shown for a few selected (hydrogenic)
initial states with Ip = 14 eV (krypton) and different representations of the photoelectron continuum: (a) hydrogen 1s wave function and
plane-wave Volkov states, (b) hydrogen 4p (m = +1) wave function and plane-wave Volkov states, (c) hydrogen 4p (m = +1) wave function
and Coulomb-Volkov states, and (d) hydrogen 4p (m = +1) wave function and atom-Volkov states. All these PMDs were normalized to their
respective maximum. A sine-squared pulse with np = 10 and Imax = 1.5 × 1014 was used in the computations and all other parameters are the
same as in Fig. 2.

mechanically, this can also be seen in the radial wave func-
tions shown in Fig. 4(b), whose maxima are shifted toward
smaller r if the ionic charge is increased. This attraction to
the residual ion leads to the increased number of photoelec-
trons observed with low energy, i.e., the enhancement seen in
Fig. 4(b).

The low-energy part of the ATI spectra can be further
improved by adding a short-range potential to the (long-range)
Coulomb potential and by using the Atom-Volkov states (see
[19] and Sec. III B 3). We shall briefly discuss such a replace-
ment and the influence of the initial bound state in the section
below.

D. Dependence on the initial state

ATI experiments are often performed with noble gas tar-
gets and theoretical treatments can qualitatively reproduce the
measured ATI spectra and PMDs under the assumption of a
hydrogenic 1s initial state. Nevertheless, the SFA transition
amplitude (4) depends on the specific model for the initial
state and one can expect that more realistic initial states,
adapted to the target atom that is ionized, lead to modified re-
sults. Indeed, this dependence was discussed in Refs. [21,22].

If PMDs are computed from the SFA transition amplitude
(23) in the partial-wave expansion, the initial state, as given by
Eq. (6), is defined via the quantum numbers n, � and m, and its
radial wave funtion Pn�(r). No assumptions were made in our
derivation in Sec. III regarding the precise model used for the
initial state. In particular, its radial wave function, contained
in the reduced matrix elements 〈εp�p‖p̂‖n�〉, may either be
assumed as hydrogenic or may be provided by a numerical
scheme that accounts for the atomic structure.

Here, we briefly demonstrate the dependence of the PMDs
on the choice of the initial state and limit our discussion to hy-
drogenic initial states for which the radial wave functions are
analytically available (see, for example, Ref. [44]). For given
principal quantum number n and ionization potential Ip, the
effective nuclear charge is then determined via Z = n

√
2Ip.

As in the previous sections, we consider a krypton target

atom with Ip = 14.0 eV. Figure 5 shows the PMDs in the
polarization plane of the driving laser pulse as computed for a
few selected initial states and different representations of the
continuum. For a 1s initial state and plane-wave Volkov states
(Sec. III B 1) in the continuum [Fig. 5(a)], the PMD clearly
exhibits rings that correspond to the ATI peaks from above
and have positions comparable to experimental findings [14].
The rings are visible only at large photoelectron momenta due
to the rather high intensity and the linear color scale used
for the photoionization probability. Furthermore, since a long
(np = 10 cycles) circularly polarized laser pulse was assumed
for which the vector potential is almost symmetric in the px-py

plane, the angular distribution within every single ATI peak
shows only a slight asymmetry [12].

In krypton, the active electron that is assumed to be ionized
is a valence electron bound in a 4p state. In Fig. 5(b), we there-
fore show the PMD computed with a hydrogenic 4p initial
state where we set the magnetic quantum number m = +1 and
where the effective nuclear charge Z was adjusted so that Ip is
identical to the 1s state above. As before, plane-wave Volkov
continuum states are assumed. It can be observed that the rings
in the PMD are shifted to smaller absolute values of the pho-
toelectron momentum. This shift can be understood from the
partial-wave expansion of the transition amplitude (23): The
Clebsch-Gordan coefficients only allow transitions into con-
tinuum states with �p = � ± 1, reflecting angular momentum
conservation. Therefore, for the 1s (� = 0) and 4p initial states
(� = 1), different partial waves are populated in the ionization
process. Since the corresponding radial wave functions (13)
of the plane-wave Volkov states are farther removed from the
origin in the latter case, the ionization probability decreases
more rapidly with increasing p, leading to more pronounced
peaks for small momenta in the normalized PMD.

In order to obtain even more realistic results, we may
replace the continuum states in addition to the initial state, and
in Fig. 5(c) we show the PMD computed for a 4p initial state
and Coulomb-Volkov states (Sec. III B 2) in the continuum.
As a result of the Coulomb interaction, the ionization proba-
bility for low photoelectron energies is enhanced as discussed
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above and clearly discernible structures can be seen for low
momenta in the PMD. Moreover, in comparison to Fig. 5(b),
the rings in the outer part of the PMD are shifted toward larger
absolute momenta. One can also observe that the angular
distribution within the individual rings differs clearly from the
PMDs in Figs. 5(a) and 5(b) and exhibits energy-dependent
angular shifts of the maximum ionization probability. These
angular shifts for circular polarization were discussed exten-
sively in Refs. [45,46] as a result of the Coulomb interaction
with the residual ion. However, it was found that in order to
accurately reproduce these shifts, the combined interaction
with Coulomb and laser fields needs to be accounted for,
which is not included in the Coulomb-Volkov states.

One may try to further improve the results with an ap-
propriate model for the ionic potential in the continuum.
In Fig. 5(d), we therefore show the PMD computed with
a 4p initial state and a continuum formed by atom-Volkov
states (Sec. III B 3) that account for the combined Coulomb
and short-range potentials of the residual Kr+ ion, given by
Eq. (18) with the parameters a1 − a6 taken from Ref. [32].
It can be seen that the low-energy structures of Fig. 5(c)
have disappeared, since the short-range potential modifies the
region of small radii around the ion and especially affects low-
energy photoelectrons [41]. In addition, the rings have moved
to larger absolute momenta compared to Fig. 5(c). Both the
suppression of the ionization probability for small momenta
and the shift of the maxima to higher energies have also been
found in Ref. [19], in good agreement with the numerical
solution of the time-dependent Schrödinger equation.

While the angular distributions within particular ATI
peaks, i.e., on particular rings in the PMD, are different, we
see that Figs. 5(a) and 5(d) are quite similar. Thus, in order
to qualitatively reproduce the PMDs, a 1s initial state with a
plane-wave Volkov continuum seems to be sufficient. For the
computation of more precise PMDs, an initial state with the
appropriate symmetry (here a p state) and atom-Volkov states
should be used. The above results demonstrate the ability
to easily compare different models for initial and continuum
states within the partial-wave expansion of the SFA amplitude.
It might be particularly interesting to replace the hydrogenic
initial state with a numerical solution that accounts for the
details of the target atom, obtained from numerical atomic-
structure computations.

V. CONCLUSIONS

A reformulation of the SFA transition amplitude for a
single active electron in terms of partial waves and spherical
tensors has been presented for the ATI of atomic targets. In
particular, the direct SFA transition amplitude was expressed
in a modular form that allows for a simple replacement of the
initial atomic bound state, the representation of the (Volkov)
continuum, and the vector potential of the driving laser pulse.
The resulting expansion (23) facilitates the comparison of
different models. In addition, we discussed various represen-
tations of the photoelectron continuum and how the shape of
the laser pulse affects the observed spectra and distribution.

We performed a series of test computations in order to
verify the equivalence of the partial-wave expansion (23) in
comparison with the standard SFA. Moreover, we demon-

strated the dependence of the ATI spectra on the shape of the
ionizing laser pulse as well as on the Coulomb interactions in
the representation of the continuum. PMDs were computed
especially for the ionization of krypton with hydrogen-like
initial state wave functions for an active electron in the 1s and
4p shells. We also considered an atom-Volkov continuum that
enables one to account for a short-range potential in addition
to the (long-range) Coulomb potential of the photoion. These
applications show how the expansion (23) helps to explore
different approximations with regard to the initial bound state
and the continuum.

In the future, one might examine several extensions of the
SFA within the partial-wave formulation. In particular, the
considerations of the present paper should be extended to
account for the rescattering transition amplitude. In addition,
the coupling to other atomic bound states might be included
and relativistic or nondipole contributions to the dynamics can
be incorporated. Furthermore, this expansion can be readily
combined with atomic-structure computations (for example,
Ref. [47]) to make further use of realistic matrix elements and
amplitudes.
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APPENDIX A: EXPANSION OF COULOMB WAVES

The expansion (16) of the outgoing Coulomb waves (15)
into spherical waves is given in terms of the function
w�p (ηp, pr) that were left unspecified in the main text. Their
explicit form can be found if Eq. (16) is inserted into
the Schrödinger equation with Hamiltonian Ĥ = p̂2/2 + Z/r,
which transforms into a Whittaker equation for the w�p . The
solutions have the form [26]

w�p (ηp, pr) = 1

p
eiσ�p F�p (ηp, pr),

with the so-called Coulomb phase shift

σ�p = arg[�(�p + 1 + iηp)]

and the Coulomb function

F�p (ηp, pr) = 2�p |�(�p + 1 + iηp)|
(2�p + 1)!

e−πηp/2(pr)�p+1eipr

× 1F1(�p + 1 + iηp; 2�p + 2; −2ipr).

In these equations, �(x) is the � function and 1F1(a; b; z) is
the confluent hypergeometric function [30].

APPENDIX B: VOLKOV PHASE FOR DIFFERENT
PULSE SHAPES

In this Appendix, we briefly state the analytical expressions
for the Volkov phase (11) for the different laser pulse shapes
mentioned at the end of Sec. III C. We limit ourselves to circu-
lar polarization (ε = 1). Using the analytical expressions for
the Volkov phase, the t integrals in the pulse shape integrals
(24) occurring in the SFA transition amplitude can then be
computed numerically.
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In general, if the vector potential is given by Eqs. (20) and (21), the Volkov phase (11) can be evaluated to give

SV (t ) = εpt + A0 p sin ϑp√
2

∫ t

dτ f (τ ) cos (ωτ + ξ ) + A2
0

4

∫ t

dτ f 2(τ ), (B1)

where we defined ξ = φCEP − λϕp. This expression only depends on the pulse envelope f (τ ) and the integrals can be solved
analytically with the following results.

For a continuous laser beam [ f (t ) ≡ 1], we find

SV (t ) = (εp + Up)t + a sin (ωt + ξ ),

where a = A0 p sin ϑp/
√

2ω and Up = A2
0/4 is the ponderomotive energy.

For a rectangular pulse [ f (t ) = 1 for 0 � t � Tp; f (t ) = 0 otherwise], Eq. (B1) yields

SV (t ) =
⎧⎨
⎩

εpt, t < 0
(εp + Up)t + a[sin (ωt + ξ ) − sin ξ ], 0 � t � Tp

εpt + UpTp + a[sin (ωTp + ξ ) − sin ξ ], t � Tp

.

Similarly, for a sine-squared pulse [ f (t ) = sin2 (ωt/2np) for 0 � t � Tp; f (t ) = 0 otherwise], the Volkov phase is

SV (t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

εpt, t < 0
εpt + 3

8Upt − Upnp

2ω
sin

(
ω
np

t
) + Upnp

16ω
sin

(
2 ω

np
t
)

+a
∑1

k=−1
ck

1+ k
np

[
sin

(
ω

(
1 + k

np

)
t + ξ

) − sin ξ
]
, 0 � t � Tp

εpt + 3
8UpTp − Upnp

2ω
sin

(
ω
np

Tp
) + Upnp

16ω
sin

(
2 ω

np
Tp

)
+a

∑1
k=−1

ck

1+ k
np

[
sin

(
ω(1 + k

np
)Tp + ξ

) − sin ξ
]
, t � Tp

,

where c± = −1/4 and c0 = 1/2.
For a Gaussian pulse [ f (t ) = e−4 ln(2)(t/Tp)2

], we find from Eq. (B1)

SV (t ) = εpt + Up

√
π

ln(4)

Tp

4
erf

(
2
√

ln(4)
t

Tp

)

+ A0 p sin ϑp√
2

Tp

8

√
π

ln(2)
e− ω2T 2

p
ln(65536)

[
e−iξ erf

(
iT 2

p ω + 8 ln(2)t

4Tp
√

ln(2)

)
− eiξ erf

(
iT 2

p ω − 8 ln(2)t

4Tp
√

ln(2)

)]
,

where erf (x) is the error function [30].

APPENDIX C: REDUCED MATRIX ELEMENTS OF p̂

In this Appendix, we explicitly evaluate the reduced matrix elements of the momentum operator p̂ that appear in the transition
amplitude (23). To this end, we start from the initial state (6) and the general form of the continuum states defined by Eqs. (7)
and (8).

The momentum operator can be expressed as a tensor operator of rank 1 in the form [26]

p̂ = −i∇ = −i

[
C1 ∂

∂r
−

√
2

r
(C1 × L)1

]
,

where C1 is the tensor operator constructed from spherical harmonics with components

C1q(ϑ, ϕ) =
(

4π

3

)1/2

Y1q(ϑ, ϕ).

Therefore, the reduced matrix element of p̂ can also be written as

〈εp�p‖p̂‖n�〉 = −i 〈�p‖C1‖�〉 〈εp|D̂r |n〉
with the operator

D̂r = ∂

∂r
− (�p − �)(�p + � + 1) − 2

2r
,

and the reduced matrix elements of the spherical harmonics tensor

〈�p‖C1‖�〉 = −√
2�p + 1 〈�p 0, 1 0|� 0〉 .
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With these identities, the reduced matrix elements of p̂ are given by

〈εp�p‖p̂‖n�〉 = (−i)�p+1 〈�p‖C1‖�〉
∫ ∞

0
dr

P∗
εp�p

(r)

r

[
r
∂Pn�(r)

∂r
− (�p − �)(�p + � + 1)

2
Pn�(r)

]
. (C1)

This result is valid for any description of the one-electron continuum and can be evaluated using the explicit form of the radial
wave functions, i.e., Eq. (13) for plane-wave Volkov states, Eq. (17) for Coulomb-Volkov states, and Eq. (19) for atom-Volkov
states.
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