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Free complement si j-assisted ri j theory: Variational calculation of the quintet state of a carbon atom
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The free complement si j-assisted ri j (FC ri jsn
i j) theory was developed as a variational method for solving

the Schrödinger equations of atoms and molecules. This theory permits only a single correlated ri j term in
each complement function (cf) and the other ri j terms are replaced with si j = r2

i j terms so that the variational
calculations are performed within one- to four-electron integrals. We developed the ri j-extended Löwdin formula
for the antisymmetrization of ri j-included nonorthogonal functions and implemented one- to four-electron Slater
atomic integral codes necessary for the present calculations. The cf selection technique was introduced to reduce
the number of degrees of freedom efficiently without much loss of accuracy. These methods were applied to the
lowest quintet 5So(sp3) state of a carbon atom, which is an excited state of a carbon atom but most important for
chemical bonds. The chemical accuracy was achieved with the absolute solution of �E = 0.215 kcal/mol from
the estimated exact energy: The number of the cf’s used was 4577 but reduced to only 129 after utilizing the cf
selection technique for obtaining the chemical accuracy �E < 1 kcal/mol. Thus, the present theory can realize
accurate variational calculations of many-electron systems with compact wave functions if the required three-
and four-electron integrals are practically available.

DOI: 10.1103/PhysRevA.102.052835

I. INTRODUCTION

Solving the Schrödinger equations (SE) of atoms and
molecules is one of the most important subjects of quantum
chemistry [1]. In 2004, one of the authors proposed the free
complement (FC) theory based on the scaled SE (SSE) [2–4],

g(H − E )ψ = 0, (1)

where H, E, and ψ are the Hamiltonian, energy, and wave
function, respectively. In Eq. (1), the scaling operator, g func-
tion, was introduced to overcome the divergence difficulty of
the integrals of the Hamiltonian in the variational formulas. A
popular choice of this g function is

g =
∑
i,A

riA +
∑
i< j

ri j, (2)

where riA is a distance between electron i and nucleus A and
ri j is a distance between electrons i and j. The method using
Eq. (2) or related functions is referred to as FC ri j theory.
This g function does not eliminate the information at the par-
ticle coalescences, i.e., gV |r→0 �= 0, where V is the potential
operators and r is riA or ri j . Therefore, the electron-nucleus
and electron-electron cusp conditions are satisfied. We have
applied the FC ri j theory to the variational calculations of
small atoms and molecules, such as He, H2

+, H2, Li, Be,
etc., with analytical integrations and obtained highly accurate
results [5–8]; especially the energy accurate over 40 digits
were obtained for the He atom [5]. For general systems, how-
ever, the FC ri j theory often requires many-electron integrals
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unfeasible to evaluate analytically since the multiple-linked
non-separable ri j terms are generated at higher FC order.
Alternatively, we also performed the sampling calculations
by the local Schrödinger equation (LSE) method with the FC
ri j wave functions [9,10]. The chemical accuracies, within 1
kcal/mol error as an absolute solution, were obtained for all
the first-row atoms and small molecules, such as C2, C2H2,
H2CO, etc. [11,12]. The LSE method is free from the integra-
tion difficulty.

On the other hand, the FC si j theory was recently proposed
[13] where the g function was approximated by

g =
∑
i,A

riA +
∑
i< j

si j, (3)

with si j ≡ ri j
2 = (xi − x j )2 + (yi − y j )2 + (zi − z j )2. Since

si j can be transformed into one-electron terms, this theory
has great merit that all the integrals necessary for the matrix
elements can be calculated by only one- and two-electron in-
tegrals. The demerit is not to satisfy the electron-electron cusp
condition due to gV |ri j→0 = 0 though the electron-electron
coalescence regions are not majorly important due to the
repulsive character of the Coulomb potential. We applied the
FC si j theory to He, Li, and the quintet 5So(sp3) state of a
carbon atom and a H2 molecule and the chemical accuracies
as absolute solutions were obtained [13]. The convergence to
the exact solution was, however, less efficient than that of the
FC ri j theory although the computational labors were much
smaller.

In the present paper, we introduce an intermediate theory
between the FC ri j and the si j theories. We limit our calcula-
tions to include only up to a single correlated ri j term in each
cf defined in Sec. II, and the other ri j terms are replaced with

2469-9926/2020/102(5)/052835(15) 052835-1 ©2020 American Physical Society

https://orcid.org/0000-0002-3758-5159
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.052835&domain=pdf&date_stamp=2020-11-30
https://doi.org/10.1103/PhysRevA.102.052835


HIROYUKI NAKASHIMA AND HIROSHI NAKATSUJI PHYSICAL REVIEW A 102, 052835 (2020)

the si j terms in the FC ri j wave function. Since the si j terms
can be converted into the one-electron functions, the present
variational calculations require one- to four-electron integrals
at most, which are feasible. We call this method the FC si j-
assisted ri j (FC ri jsn

i j ) theory. This theory may be similar to
the Hyllerass-configuration interaction (CI) method [14–18].
However, the Hylleraas-CI method has not been successful yet
for more than four-electron systems to obtain the chemical
accuracy as absolute solution. For example, Ruiz performed
the high-level calculations for the boron atom, but the calcu-
lated energy was still 3.6 kcal/mol higher than the estimated
exact energy [18]. The FC ri jsn

i j theory, on the other hand, is
based on the FC theory which guarantees the convergence to
the exact solutions [2–4]. In the present paper, we examine
the FC ri jsn

i j theory with solving the SE for the lowest quintet
5So(sp3) state of a carbon atom (six-electron system): This
state is an excited state of a carbon atom but is most important
for chemical bonds. Recently, Strasburger performed very
accurate calculations of the 3P and 5So states of a carbon atom
with the explicitly correlated Gaussian (ECG) lobe functions
and gave variationally best energies for these states [19]. This
method is powerful and accurate but needs to optimize a large
number of linear and nonlinear parameters. We also note here
the other accurate approaches for calculating atomic states
although they may not calculate the 5So state of a carbon atom;
the ECG methods [20–25], the F12 theory [26], the full CI
method [27], the recent development of the quantum Monte
Carlo [28], etc.

In the present paper, for general applications of the
FC ri jsn

i j theory, we extended the determinant-based Löwdin
formula [29] to evaluate the matrix elements for the
nonorthogonal orbitals including explicit ri j terms [30]. We
also implemented one- to four-electron Slater atomic integral
code necessary for the FC ri jsn

i j calculations of general atoms.
We also introduced the cf selection technique to reduce the
number of degrees of freedom efficiently without much loss of
accuracy. These computational techniques would be useful for
the present theory to be applicable to many-electron systems.

In the present paper, Sec. II describes the FC ri jsn
i j the-

ory and the variational computational techniques of the
ri j-extended Löwdin formula, the implementation of the re-
quired integrals, and the cf selection technique. In Sec. III, the
applications to the 5So(sp3) state of a carbon atom is discussed
and, in Sec. IV, the concluding remarks are given.

II. THEORY AND COMPUTATIONAL TECHNIQUES

A. Free complement si j-assisted ri j (FC ri jsn
i j ) theory

Here, we briefly summarize the FC ri jsn
i j theory. First,

we construct the FC wave function using the simplest itera-
tive complement formula as given by the recurrence formula
[2–4],

ψn = [1 + Cng(H − En−1)]ψn−1, (4)

where n represents the order of the FC theory and Cn and En−1

denote a variational parameter and the expectation energy of
ψn−1. With the SSE, g is a scaling function necessary to get rid
of the Coulomb singularity problem. This recurrence series is
proved to converge to the exact solution of the SE [2–4]. The

FC wave function is defined by

ψn =
M∑

I=1

cIφI , (5)

where the analytical independent functions are collected from
the right-hand side of Eq. (4). φI is referred to as the cf
that spans the target exact solution, cI is the correspondent
variational coefficient, and M is the number of the independent
cf’s. {cI}’s are determined by the variational method with inte-
grations or the LSE method [9,10]: the present paper employs
the former.

The cf’s are generally denoted by

φI = A�[ fI ({riA, xiA, yiA, ziA}, ri j )ϕ0], (6)

where the operators A and � represent the antisymmetrization
and spatial symmetrization operators, respectively. The initial
function of the FC theory is given by ψ0 = A�[ϕ0], where
ϕ0 consists of a spatial part and a spin eigenfunction of the S2

and Sz operators. fI is a spatial function that characterizes each
complement function generated by the FC theory. The choice
of ψ0 is an important key point for constructing the accurate
FC wave functions efficiently and understandably with phys-
ical and chemical intuitions. One of the proper choices we
have mainly examined is to construct ψ0 based on the local
atomic concept, transferability, and from-atoms-to-molecule
concept, that is theoretically summarized as the chemical for-
mula theory for general atoms and molecules in our previous
work [11]. Based on this theory, the present paper employs
ψ0 using the nonorthogonal local atomic orbitals as given in
Sec. III.

fI in Eq. (6) is the function of one-electron coordinates
{riA, xiA, yiA, ziA} and two-electron coordinates ri j , where i and
j denote electrons and A represents the nucleus. The FC ri j

theory generates the fI including multiple linked odd-power
ri j terms, such as ri j , ri jrkl , and ri jrkl rmn, etc., at the FC order
n = 1 − 3, respectively. Although this theory can produce
accurate results with fast convergences to the exact solutions,
analytical integrations for these functions are generally diffi-
cult. The FC si j theory [13], on the other hand, generates the
fI including si j terms, such as si j , si jskl , si jskl smn, etc., but
does not contain any odd-power ri j terms. si j is separable into
one-electron functions by

si j = (xi − x j )
2 + (yi − y j )

2 + (zi − z j )
2

= (xiA − x jB)2 + (yiA − y jB)2 + (ziA − z jB)2

− 2(XA − XB)(xiA − x jB) − 2(YA − YB)(yiA − y jB)

− 2(ZA − ZB)(ziA − z jB), (7)

where the right-hand side is denoted by the electron-
nucleus interparticle coordinates and capital (XA,YA, ZA) and
(XB,YB, ZB) are the nuclear geometries, i.e., constant values.
Thus, fI is a function of {riA, xiA, yiA, ziA} and does not contain
any interelectron coordinates, and only one- and two-electron
integrals are enough for the variational calculations. However,
the convergence to the exact solutions is generally slower
than the FC ri j case due to the loss of information at the
electron-electron coalescence regions, i.e., for gV |ri j→0 = 0.

We here introduce the FC ri jsn
i j theory as a simple hybrid

method of the FC ri j and si j theories. The formulation is
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TABLE I. Classifications of the Hamiltonian and overlap matrix elements for the cf’s generated by the FC ri jsn
i j theory.

Pattern Matrix elementsa Origin Most complicated type of primitive integral

1 〈U |V 〉 Overlap One-electron
2 〈U |h1(�)|V 〉 Hamiltonian One-electron
3 〈U |1/r�M|V 〉 Hamiltonian Two-electron
4 〈U | rKLV 〉 Overlap Two-electron
5 〈U |h1(�)|rKLV 〉 Hamiltonian Two-electron
6 〈U |1/r�M|rKLV 〉 Hamiltonian Three-electron (type I)
7 〈UrIJ |V 〉 Overlap Two-electron
8 〈UrIJ |h1(�)|V 〉 Hamiltonian Two-electron
9 〈UrIJ |1/r�M|V 〉 Hamiltonian Three-electron (type I)
10 〈UrIJ | rKLV 〉 Overlap Three-electron (type I)
11 〈UrIJ |h1(�)|rKLV 〉 Hamiltonian Three-electron (type I)
12 〈UrIJ |1/r�M|rKLV 〉 Hamiltonian Three-electron (types I and II), Four-electron (types I and II)

aAntisymmetrization operator is abbreviated.

very simple; the cf’s are first generated by the FC ri j the-
ory, the even-power r2t

i j (t is a positive integer) was rewritten
by st

i j , and then, transform the remaining single-odd-power
ri jrkl rmn · · · terms as a single ri j term retained and the others
are replaced by si j termsas given by

ri j → ri j

ri jrkl → ri jskl , si jrkl

ri jrkl rmn → ri jskl smn, si jrkl smn, si jskl rmn

· · · . (8)

Since the transformed si j can be described by one-electron
functions, each term of fI includes only a single inseparable
electron pair. As long as both FC ri j and si j theories guarantee
the exactness, this theory also guarantees the exactness. The
important merit of this theory has a form to satisfy gV |ri j→0 �=
0, similar to the FC ri j theory. Therefore, the convergence to
the exact solution is expected to be improved than that of the
FC si j theory. However, the evaluations of the matrix elements
are much more complicated than the FC si j case especially
for the required three- and four-electron integrals. Therefore,
some useful formulations are necessary before entering into
the calculations.

B. ri j-Extended Löwdin formula for the matrix elements over
partially correlated nonorthogonal functions

For the variational FC ri jsn
i j theory, one needs to com-

pute the Hamiltonian and overlap matrix elements over the
cf’s with one- to four-electron integral evaluations. The
present cf’s include local nonorthogonal orbitals and partially
correlated ri j terms so that an efficient antisymmetrization
procedure for these functions is necessary. In 1955, Löwdin
provided the formulations to evaluate the matrix elements for
the overlap, one-electron, and two-electron operators [29]. In
the present paper, we extended the Löwdin formula to the
cases including partially correlated single-ri j term. We simply
apply the Laplace expansion as the ri j term outside of the
determinant. With this method, the antisymmetrization pro-
cess can be evaluated with a polynomial computational cost.
Despite its simpleness, there is no reference that explicitly
provides its formulations as far as we know. The formulations

should be useful not only for the present theory, but also for
the Hylleraas-CI method.

We denote a general expression for a single term contained
in bra- and ket-side cf’s of the FC ri jsn

i j theory,

φbra = A[ fIJU ] = A
[

fIJu1(1)u2(2) · · · uNe (Ne)
]
,

φket = A[ fKLV ] = A
[

fKLv1(1)v2(2) · · · vNe (Ne)
]
. (9)

For simplicity, we omit a spin function in Eq. (9) without
loss of generality. U and V represent the Hartree products
of one-electron nonorthogonal orbitals ui and vi of electron
i for the bra and ket sides, respectively. fIJ and fKL are unity
or inseparable two-electron terms; rIJ and rKL in the present
case. With φbra and φket, the Hamiltonian one-electron and
two-electron terms and the overlap are given by

〈φbra|h1(�)|φket〉, 〈φbra|1/r�M|φket〉, 〈φbra|φket〉, (10)

2
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2

1

3

2

1

43

1 4

2 3

1 2 3 12 13 23 1 2 3u u u f f f v v v

1 2 3 4 12 13 14 1 2 3 4u u u u f f f v v v v

1 2 3 4 12 14 23 1 2 3 4u u u u f f f v v v v

three-electron (type I)

three-electron (type II)

Four-electron (type I)

Four-electron (type II)

1 2 3 12 13 1 2 3u u u f f v v v

2
1 two-electron

1 2 12 1 2u u f v v

1
one-electron

1 1u v

FIG. 1. Diagrams classified the primitive integrals where a dot
and a line represent an electron and an inseparable fi j function which
is ri j or r−1

i j in the present paper, respectively.
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TABLE II. Classifications of the primitive integrals that appear in the FC ri jsn
i j wave functions.

No. Type Primitive integrals Origin

1 One-electron 〈up |vq〉 Overlap
2 One-electron 〈up|h1|vq〉 Hamiltonian

3 Two-electron 〈upuq| f12|vrvs〉[ f12 = 1/r12, r12, (r2
12)] Hamiltonian, overlap

4 Two-electron 〈upuq| f (b)
12 h1 f (k)

12 |vrvs〉( f (b)
12 , f (k)

12 = 1, r12) Hamiltonian

5 Three-electron (type I) 〈upuqur | f12 f13|vsvtvu〉( f12 = 1/r12, r12, f13 = r13) Hamiltonian, overlap

6 Three-electron (type I) 〈upuqur | f12h1(1) f13|vsvtvu〉( f12 = r12, f13 = r13) Hamiltonian

7 Three-electron (type I) 〈upuqur | f12h1(2) f13|vsvtvu〉( f12 = r12, f13 = r13) Hamiltonian

8 Three-electron (type I) 〈upuqur | f12h1(3) f13|vsvtvu〉( f12 = r12, f13 = r13) Hamiltonian

9 Three-electron (type II) 〈upuqur | f12 f13 f23|vsvtvu〉( f12 = r12, f13 = r13, f23 = 1/r23) Hamiltonian

10 Four-electron (type I) 〈upuqurus| f12 f13 f14|vtvuvvvw〉( f12 = r12, f13 = r13, f14 = 1/r14) Hamiltonian

11 Four-electron (type II) 〈upuqurus| f12 f14 f23|vtvuvvvw〉
( f12 = r12, f14 = r14, f23 = 1/r23

f12 = 1/r12, f14 = r14, f23 = r23

)
Hamiltonian

respectively, where h1(�) contains a kinetic operator and
electron-nuclear Coulomb potential and 1/r�M is an electron-
repulsion Coulomb potential.

Equation (10) is classified into 12 patterns summarized
in Table I by whether nonunity fIJ and fKL, i.e., rIJ and
rKL, terms, exist or not. Table I indicates the types of matrix
elements, their origins (Hamiltonian or overlap), and the type
of the most complicated primitive integrals. The types of the
primitive integrals are classified as shown in Fig. 1 which
is discussed in the next subsection. In Table I, patterns 1 to
3 are the matrix elements without any rIJ and/or rKL terms,
and they can be evaluated by the Löwdin’s original formulas
[29] with one- and two-electron integrals. Any other patterns
include the correlation terms, at least, one of rIJ and/or rKL

terms in the bra and/or ket wave functions. Patterns 4, 5, 7,
and 8 can be still evaluated within one- and two-electron inte-
grals. Patterns 6, 9–11 require three-electron (type-I) integrals
which are not very difficult compared to the other types of
three- and four-electron integrals. Pattern 12 originates from
the electron-repulsive Coulomb potential with the rIJ and rKL

terms in both bra and ket sides, and it requires three-electron
(type-I and type -II) and even four-electron (type-I and -II)
integrals. In the present paper, we formulated their matrix
elements based on the Laplace expansion of the determinant-
based algorithm extended from Löwdin’s formulas [29] for
all the patterns 1–12 where patterns 7–9 are the same as
patterns 4–6 by exchanging the bra and ket sides. Since their
formulations were simple but lengthy, we provided them in
the Appendix.

C. Implementation of the primitive atomic one- to four-electron
integrals necessary for the FC ri jsn

i j theory

The matrix elements in Table I are further decomposed
to the primitive one- to four-electron integrals as given in
Table II. They are classified according to the connection of
the inseparable fi j (ri j or r−1

i j ) terms as illustrated in Fig. 1.
The diagrams of one- and two-electron integrals are trivial.
Three-electron integrals has two types; type I and II. Three-
electron (type-I) 〈 f12 f13〉 has only a single-linked electron
but all three electrons are linked in three-electron (type-II)

〈 f12 f13 f23〉. Four-electron integrals are also classified into
type I and II. Four-electron (type-I) 〈 f12 f13 f14〉 has only a
single-linked electron and four-electron (type-II) 〈 f12 f14 f23〉
has two linked electrons. Generally, three-electron (type II) is
most difficult to evaluate. Four-electron (type II) is the next
difficulty. Four-electron (type I) and three-electron (type I)
are not so very difficult to evaluate. In actual computations,
the memory required is also a serious problem, which is dis-
cussed in the last paragraph of this subsection. A direct and
disposable method and/or something approximate methods
for their integrations should be required for the calculations
of many-electron systems.

For the present accurate atomic calculations, we imple-
mented one- to four-electron atomic integrals over Slater
orbitals. The closed-form integration methods of these in-
tegrals have been proposed in several references [31–35].
However, accurate calculations of the FC ri jsn

i j theory further
need to cover higher-order radial and angular momentum
functions with the explicit ri j functions. In the present paper,
we employed, for instance, the Laplace series expansion of
ri j and/or 1/ri j terms for two-electron integrals which is well
suitable for higher angular momentum cases. The method that
converts angular parts into radial integrals was also employed
for three-electron (type I) and four-electron (types I and II).
This basic idea is given by Calais and Löwdin [31] and it
is extended by Ruiz for the three- and four-electron cases
[32]. For the fully linked three-electron integral (type II),
after converting the angular part into the radial part using
the rotational invariant [36], we employed the method using
a closed-form recursion formula of the radial ri and ri j parts.
This idea was originally given by Fromm and Hill [33] with
the mathematically complicated form, but it was simplified
by Pachucki and Puchalski [34]. In our paper, we also de-
veloped a closed-form integration method for three- (type-I)
and four-electron (type-I and -II) integrals in case includ-
ing exponential-type exp(−βri j ) functions [35]. We unified
the above integration methods and originally implemented
a general code of Slater atomic integrals for the accurate
FC ri jsn

i j calculations of atoms [37]. Here, all the integrals are
calculated with the closed forms to keep high accuracies and
adapted to higher-order radial and angular momentum func-
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tions. A general integral code that satisfies these requirements
seems not exist except for the present program.

The memory requirement is generally a crucial problem
in the variational calculations. Simply, the number of
two-, three-, and four-electron integrals seem to scale with
O(K4), O(K6), and O(K8), respectively, where K is the
number of one-electron functions in the cf’s. However,
when the FC ri jsn

i j wave function is constructed based
on the local description [11], the number of necessary
integrals can be much reduced. For instance, in a simple case
of lithium atom, the Hartree-Fock delocalized molecular
orbital theory requires all the two-electron integrals:
〈1s1s|1s1s〉,〈1s1s|1s2s〉,〈1s2s|1s2s〉,〈1s2s|2s1s〉,〈1s2s|2s2s〉,
and〈2s2s|2s2s〉, where 1s and 2s denote the
atomic (basis set) orbitals. On the other hand,
the local atomic theory only needs the integrals:
〈1s1s|1s1s〉, 〈1s1s|1s2s〉, 〈1s2s|1s2s〉, and〈1s2s|2s1s〉 since
there are at most two atomic 2s orbitals in the bra and ket
sites. Such an observation works much more effectively in
large systems, three- and four-electron integrals, and higher
FC order calculations. In addition, for large systems, the
exchange integrals among distant atoms become negligible.
Thus, the development of the FC ri jsn

i j theory based on the
local concept is very important for its extension to large
systems.

D. Complement function selection technique

We proposed the cf selection technique to construct the
wave function with a compact set of cf’s without much loss
of accuracy. The proposed scheme is very simple as shown
below: (i) Calculate Hamiltonian and overlap matrices: H (1)

and S(1) for the initial cf and set m = 1. (ii) Add the i th cf
candidate (add the i th row and column to H (m) and S(m)), solve
the secular equation, obtain its energy E(i) for the target state,
and this step is repeated over all the remaining candidates.
(iii) Select the variationally best E (ibest ), update H (m+1) and
S(m+1) by adding the ibest th row and column, and increment
m. (iv) Repeat steps (ii) and (iii) until convergence or enough
accuracy is obtained.

Thus, the energetically important cf’s are successively cho-
sen from all the M cf’s (candidates for selection) at order n.
Since the loop can be truncated if the solution reaches to the
enough accuracy, we do not have to calculate all the matrix
elements for all the M cf’s. The time-consuming part is a
huge number of solving the secular equations (diagonaliza-
tions). This step requires O(m3) for H (m) and S(m). However,
if the determinant and inverse matrix update algorithm are em-
ployed [30], the calculation of this step is reduced to O(m2).

III. APPLICATION TO THE LOWEST QUINTET 5So(sp3)
STATE OF A CARBON ATOM

We applied the above methods to the lowest quintet
5So(sp3) state of a carbon atom. We employed the initial
function ψ0 = A�[ϕ0] of the FC theory, given by

ϕ0 = (1s1s′ + 1s′1s)αβ(2s)(2px )(2p′
y)(2p′′

z )αααα, (11)

where each orbital is defined by

1s = N1s exp(−α1sr), 1s′ = N1s′ exp(−α1s′r),

2s = N2s,1r exp(−α2sr) + d2sN2s,2 exp(−α2sr),

2px = N2px exp(−α2pr), 2p′
x = N2p′x exp(−α2p′r),

2p′′
x = N2p′′x exp(−α2p′′r),

2py = N2py exp(−α2pr), 2p′
y = N2p′y exp(−α2p′r),

2p′′
y = N2p′′y exp(−α2p′′r),

2pz = N2pz exp(−α2pr), 2p′
z = N2p′z exp(−α2p′r),

2p′′
z = N2p′′z exp(−α2p′′r). (12)

Equation (11) is constructed by the concept of “each electron
to each orbital.” The inner shell 1s pair is represented with
the in-out correlation and 2p orbitals also include the effect
similar to the in-out correlation. The spatial symmetrization
operator is given by

� = 1 + (x, y, z → x, z, y)

+ (x, y, z → y, x, z) + (x, y, z → z, y, x)

+ (x, y, z → y, z, x) + (x, y, z → z, x, y), (13)

which is necessary for the 2px, 2py, and
2pz orbitals having the different exponents.
In Eq. (12), (α1s, α1s′ , α2s, α2p, α2p′ , α2p′′ , d2s)
= (6.5770, 4.7565, 1.7820, 2.2778, 1.4180, 1.0705,−0.167
979 829) were used. These parameters were variationally
roughly optimized by minimizing the total energy of ψ0 with
the energy convergence threshold 10−8 a.u.N in Eq. (12) are
the normalization factors of each term. Starting from this ψ0,
the FC ri jsn

i j theory was applied with the modified g function
of Eq. (2), where the ri j terms were applied up to n = 2 to
reduce the computational cost and the r2

i terms were also used
to get ahead of si j terms, i.e., g = ∑

i (ri + ri
2) + ∑

i< j ri j at
n = 1 and 2 and g = ∑

i (ri + ri
2) at n = 3.

Table III summarizes the results for the FC orders n = 0–3.
�E denotes the energy difference from the estimated exact
energy given by Strasburger [19]. At n = 0, the energy of
ψ0 was −37.611 214 a.u. and �E = 50.538 kcal/mol. As
increasing the FC order, the variational energies rapidly con-
verge to the exact value. At n = 1 with M = 28, �E was
9.746 kcal/mol and, at n = 2 with M = 505, �E was 1.140
kcal/mol. At n = 3 with M = 4577, �E reached to 0.215
kcal/mol and achieved the chemical accuracy, i.e., less than
1 kcal/mol.

We further applied the cf selection technique to the FC
wave function at n = 3. Figure 2 plots �E on the cf selection
process. As shown in this figure, �E decreased monotonically
and showed the exponentially rapid convergence to the limit
value, i.e., the energy at n = 3 with M = 4577. Table III
picks up some snapshots of this process. For instance, �E
less than 3 kcal/mol was accomplished with M = 45, and
�E < 2 kcal/mol was performed with M = 63. The chemi-
cal accuracy, �E < 1 kcal/mol, was accomplished only with
M = 129 even for the present six-electron correlated system.
Furthermore, �E < 0.8, 0.5, and 0.3 kcal/mol were also
obtained with small number of cf’s; M = 162, 285, and 668,
respectively. These results imply that small number of cf’s are
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TABLE III. Energy convergence of the FC ri jsn
i j theory applied

to the lowest quintet 5So(sp3) state of a carbon atom.

�E = EFC − Eexact

na,b Mc Energy (a.u.) (kcal/mol)d

0 1 −37.611 214 50.538

1 28 −37.676 220 9.746

2 505 −37.689 935 1.140

3 4577 −37.691 409 0.215

(cf selection from n = 3, M = 4577)

45 −37.687 059 2.944 (<3)

63 −37.688 597 1.979 (<2)

129 −37.690 159 0.999 (<1)

162 −37.690 481 0.797 (<0.8)

285 -37.690 956 0.498 (<0.5)

668 −37.691 274 0.299 (<0.3)

Estimated −37.691 751e

exact energy

aOrder of FC theory.
bri j terms are restricted up to n = 2 to reduce the computational cost.
cNumber of complement functions (dimension).
dEnergy difference from the estimated exact energy by Ref. [19]. The
values less than 1 kcal/mol are denoted by boldface.
eReference [19].

enough to describe accurate wave functions due to the local
natures of the cf’s. If one chooses the higher-order cf’s as
candidates, the efficiency of the selection should be more im-
proved, but the cf selection process needs more computational
costs.

In Table IV, we compared the present results with the
other calculations of the 5So state of a carbon atom. Table IV
indicates the absolute energy and �E by each method with
the number of degrees of freedom. The definitions of degrees
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FIG. 2. Process of the cf selection technique applied to the
FC ri jsn

i j wave function at n = 3 for the lowest quintet 5So(sp3) state
of a carbon atom.

of freedom for each method is given in the footnote of this
table. The Hartree-Fock energy was −37.597 60 a.u. and
�E = 59.081 kcal/mol with the McLean-Yoshimine Slater
basis set given in Table I of Ref. [38]. The ψ0 energy, −37.611
214 a.u. (�E = 50.538 kcal/mol) in Table III, was lower than
the Hartree-Fock energy. The in-out-like correlations in 1s
electrons and 2p electrons effectively lowered the variational
energy. Next, we examined the full CI calculations with the or-
dinary Gaussian and Slater basis sets using the MOLPRO WITH

SMILES package [39]. The full CI calculation with the aug-
cc-pVTZ (Gaussian) basis set [40] shows quite large �E =
31.718 kcal/mol even with 8 × 106 configurations. The full
CI result with the CVB3 (Slater) basis set [41] was much
improved, but �E still remains 3.329 kcal/mol despite using
the huge number of configurations almost 180 × 106. Thus,
the convergence of the full CI method to the absolute exact
energy of the SE was basically very slow with respect to the
freedom. On the other hand, Sasaki and Yoshimine performed
the single, double, triple, and quadruple (STDQ) -CI calcula-
tion with the selected configurations on the Slater basis set
including higher angular momentum (lmax = 6) [42]. Their
results were surprisingly accurate, �E = 1.538 kcal/mol and
efficient with only 607 selected configurations. Since 1974,
their variational best energy had not been updated until re-
cently. As a sampling method, the diffusion Monte Carlo
method was applied by Maldonado et al. [43] and �E =
0.936 kcal/mol satisfying chemical accuracy was reported.
Recently, the most precise energy, −37.691 747 780 a.u. and
�E = 0.002 kcal/mol, was reported by Strasburger with the
ECG lobe function method [19] where the exact energy was
estimated by extrapolation in this reference. This calculation
is very accurate, but the wave function includes a lot of
linear and nonlinear parameters to be optimized. With the
FC LSE calculations [12], we obtained �E = 0.472 kcal/mol
satisfying the chemical accuracy only with 187 cf’s though
this is not a variational result. Recently, we also applied the
FC si j theory and obtained �E = 0.837 kcal/mol which is a
variational energy satisfying the chemical accuracy [13]. After
the cf selection technique was applied, �E < 1 kcal/mol was
obtained with 2942 cf’s. These results are also remarkable
because this calculation was performed only within one- and
two-electron integrals. Compared with all above calculations,
we can remarkably say that the present results were not only
accurate as the solution of the SE, but also efficient to achieve
the chemical accuracy with very small number of degrees of
freedom.

In Table V, we summarized first 140 selected cf’s through
the cf selection technique. Each line indicates fI of the se-
lected cf on the selection process, the corresponding energy,
�E, and ��E, which is the difference between the successive
�E’s. ��E is also an important indicator for judgment of the
importance of the selected cf. The first term is fixed as the
initial function. The second most important cf for energy low-
ering was ri j(1s,1′s′ ), which is the ri j correlation term between
1s electrons. By adding only this function to ψ0, �E lowered
almost 10 kcal/mol. The third energetically important cf was
also 1s contribution of r(1s′ ), which lowered the energy almost
8 kcal/mol. These may be reasonable because large energy
contributions appear in 1s electrons. However, the fourth and
fifth cf’s related to 2p electrons. Although these features can-
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TABLE IV. Comparison of the present results with the other calculations for the lowest quintet 5So(sp3) state of a carbon atom.

Method The number of degrees of freedom (M) Energy (a.u.) �E = EFC − Eexact (kcal/mol)a

Hartree-Fock (variational)b,c 1 −37.597 60 59.081

Full CI (variational)c,d

aug-cc-pVTZ basis 7892868 −37.641 204 31.718

CVB3 basis (variational) 175576284 −37.686 446 3.329

SDTQ-CI (selected CI)c,e 607 −37.689 3 1.538

Diffusion Monte Carlo (sampling)f −37.690 26(3) 0.936

ECG lobe function (variational)g,h

K = 129 3612 −37.690 127 107 1.019

K = 4023 112644 −37.691 747 780 0.002

FC LSE (sampling)i,j 187 −37.690 998 0.472

FC si j theory (variational)k,j

Step 9 13814 −37.690 418 0.837

cf selection 2942 −37.690 162 0.997 (<1)

This work: FC ri jsn
i j theory (variational)

Order n = 3 4577 −37.691 409 0.215

cf selection 129 −37.690 159 0.999 (<1)

Estimated exact energy −37.691 751g

aEnergy difference from the estimated exact energy by Ref. [19]. The values less than 1 kcal/mol are denoted by boldface.
bMcLean-Yoshimine (Slater) basis set [38].
cThe number of degrees of freedoms is counted as the number of the configuration state functions or determinants.
dFull CI calculations were performed using the MOLPRO with the SMILES package [39] on the D2h Abelian group. The numbers of basis
functions of aug-cc-pVDZ (Gaussian) [40] and CVB3 (Slater) [41] basis sets are 46 and 76, respectively.
eReference [42].
fReference [43].
gReference [19].
hThe number of degrees of freedoms is counted according to Eqs. (2) and (3) of Ref. [19] where the number of linear parameters is denoted
by K and the nonlinear parameters αI,i, βI,i j , and RI,i are used for each for each primitive function. Therefore, we count the freedom by
K + K × (6 + 6 × 5/2 + 6) for a six-electron carbon atom where the calculated number may be overestimated because the symmetry is not
considered.
iReference [12].
jThe number of degrees of freedoms is the number of complement functions.
kReference [13].

not be understood straightforwardly, we need broader insight
into the selected cf’s by analyzing more details. Up to 129
cf’s which achieved the chemical accuracy, the number of
cf’s without any ri j and si j terms was 30 and that of cf’s
including ri j or si j terms was 99. The number of cf’s whose fI

included 1s electrons was 78, that including 2s electrons was
63, and that including 2p electrons was 98. The number of
cf’s whose fI was composed of only 1s electrons was 13, that
composed of only valence electron was 50, and that including
1s-valence inter-ri j or -si j terms was 52. In the early stage
of the selection process, most of the selected cf’s include fI

related to 1s electrons. The cf’s around M = 100, on the other
hand, consist of fI having only valence electrons. Further
analysis may be performed using the artificial intelligence
(AI) technique with various kinds of descriptors that relate
to physical and chemical properties in the local concept. If
we can accumulate much more experiences for various atomic
states and molecules and use the AI technique, the important
cf’s might be predicted without calculations.

IV. CONCLUDING REMARKS

We formulated the FC ri jsn
i j theory as a variational method

for solving the Schrödinger equations and applied to the
lowest quintet 5So(sp3) state of a carbon atom. For these
calculations, we developed the ri j-extended Löwdin for-
mula to perform the antisymmetrization for the ri j-included
nonorthogonal functions efficiently and implemented one- to
four-electron integrals necessary for the FC ri jsn

i j theory over
atomic Slater functions. The integrations are implemented in
our original code to support higher-order radial and angular
momentums required for the FC calculations. We also pro-
posed a naive method to select the important cf’s without
much loss of accuracy.

These methods were applied to the lowest quintet 5So(sp3)
state of a carbon atom and obtained �E = 0.215 kcal/mol
from the estimated exact energy at n = 3 with M = 4577. By
the cf selection technique, only M = 129 cf’s were enough to
achieve the chemical accuracy; �E < 1 kcal/mol. That is sur-
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TABLE V. First 140 selected cf’s through the cf selection technique for the lowest quintet 5So(sp3) state of a carbon atom.

�E = �E =
Energy EFC − Eexact ��E Energy EFC − Eexact

c ��E
Ma fI of cfb (a.u.) (kcal/mol)c (kcal/mol)d Ma fI of cfb (a.u.) (kcal/mol)c (kcal/mol)d

1 1 −37.611 214 50.537 71 r(1s′ )ri j(1s,1s′ )si j(1s,2px) −37.688 863 1.812 0.021

2 ri j(1s,1s′ ) −37.627 177 40.521 10.016 72 r2
(1s′ )ri j(1s′,2px) −37.688 893 1.793 0.019

3 r(1s′ ) −37.640 184 32.359 8.162 73 r2
(1s′ )ri j(1s,1s′ ) −37.688 919 1.777 0.016

4 ri j(1s′,2px)si j(2px,2py) −37.647 065 28.041 4.318 74 r(1s)r2
(1s′ )r(2px) −37.688 955 1.755 0.023

5 r(2px)r(2py) −37.655 339 22.849 5.192 75 r2
(1s)r

2
(2px)ri j(1s,1s′ ) −37.688 993 1.731 0.024

6 r(2s)ri j(1s′,2pz)si j(2px,2py) −37.657 713 21.359 1.490 76 r2
(1s′ )si j(1s′,2px)ri j(2px,2py) −37.689 019 1.715 0.016

7 ri j(2s,2px) −37.660 625 19.532 1.827 77 r2
(2py)r(2pz)ri j(1s′,2px) −37.689 040 1.701 0.014

8 r(2s)r(2px) −37.662 863 18.127 1.404 78 r(2s)r2
(2py)ri j(2px,2pz) −37.689 062 1.688 0.013

9 r(2px)si j(1s,1s′ ) −37.664 942 16.823 1.305 79 r4
(1s)r

2
(2px) −37.689 082 1.675 0.013

10 r(2px)ri j(2px,2py) −37.666 844 15.629 1.194 80 r(1s)si j(1s,1s′ )ri j(1s′,2py) −37.689 104 1.661 0.013

11 ri j(1s′,2px)si j(2s,2py) −37.670 489 13.342 2.287 81 r2
(1s′ )ri j(1s,2py) −37.689 146 1.635 0.026

12 r(1s)ri j(1v,1s′ )si j(1s′,2px) −37.671 760 12.544 0.798 82 r(1s′ )si j(1s,1s′ ) −37.689 167 1.622 0.013

13 r(2px)r(2py)r(2pz) −37.672 769 11.911 0.633 83 r2
(1s)si j(1s,1s′ ) −37.689 203 1.599 0.023

14 ri j(1s′,2px) −37.674 595 10.766 1.145 84 r2
(1s′ ) −37.689 235 1.579 0.020

15 r2
(2px)ri j(1s′,2s) −37.675 922 9.933 0.833 85 r2

(1s′ )r
2
(2px)ri j(1s,1s′ ) −37.689 254 1.567 0.012

16 r(2pz)si j(1s′,2px)ri j(2px,2py) −37.676 939 9.295 0.638 86 r3
(1s′ )ri j(2s,2px) −37.689 273 1.555 0.012

17 r(2s)r(2py) −37.677 730 8.799 0.496 87 r(1s)r2
(1s′ )ri j(1s,2px) −37.689 290 1.544 0.011

18 r(2px) −37.679 513 7.680 1.119 88 r3
(2py) −37.689 306 1.534 0.010

19 ri j(2py,2pz) −37.680 253 7.215 0.465 89 si j(2py,2pz) −37.689 324 1.523 0.011

20 si j(1s,2px) −37.680 901 6.808 0.407 90 r4
(2py)ri j(1s′,2s) −37.689 352 1.505 0.018

21 r(2pz) −37.681 598 6.371 0.437 91 r(2s)r(2pz)ri j(2py,2pz) −37.689 374 1.492 0.014

22 r(2px)ri j(2s,2pz) −37.682 152 6.023 0.348 92 si j(2px,2py)ri j(2py,2pz) −37.689 400 1.475 0.016

23 r(2px)si j(2s,2px) −37.682 531 5.786 0.238 93 r(2py)ri j(1s′,2s)si j(1s′,2px) −37.689 418 1.464 0.011

24 r(2px)r(2pz)ri j(2px,2py) −37.682 945 5.526 0.260 94 r2
(2s)si j(1s′,2s)ri j(2s,2pz) −37.689 439 1.451 0.013

25 r2
(2px) −37.683 328 5.285 0.241 95 r4

(2s)ri j(1s′,2s) −37.689 465 1.435 0.016

26 r3
(s) −37.683 689 5.059 0.226 96 r4

(2s) −37.689 523 1.398 0.036

27 r(1s)r2
(2px)ri j(1s′,2px) −37.683 975 4.880 0.180 97 r2

(2s) −37.689 557 1.377 0.021

28 si j(1s′,2s) −37.684 302 4.674 0.205 98 r5
(2s) −37.689 612 1.342 0.035

29 r(2px)si j(1s′,2px)ri j(2s,2px) −37.684 616 4.477 0.197 99 r(2s) −37.689 706 1.283 0.059

30 r(2s)r2
(2pz)ri j(2px,2py) −37.684 809 4.356 0.121 100 r(2s)r(2py)ri j(2s,2px) −37.689 727 1.270 0.013

31 si j(1s,1s′ ) −37.684 960 4.262 0.094 101 r(1s′ )si j(1s,1s′ )ri j(2s,2px) −37.689 745 1.259 0.011

32 r(1s)r2
(1s′ ) −37.685 178 4.125 0.137 102 r(2py)si j(2px,2py)ri j(2px,2pz) −37.689 762 1.248 0.010

33 ri j(1s′,2s) −37.685 295 4.051 0.074 103 r(2py)ri j(2px,2py) −37.689 778 1.238 0.010

34 r2
(2px)ri j(1s′,2px) −37.685 515 3.913 0.138 104 r(2s)si j(1s,1s′ )ri j(1s,2py) −37.689 792 1.229 0.009

35 ri j(2px,2py) −37.685 641 3.834 0.079 105 r3
(2s)ri j(1s,1s′ ) −37.689 815 1.215 0.015

36 r(2py)ri j(1s′,2px) −37.685 825 3.719 0.116 106 r(2px)ri j(1s,1s′ )si j(2px,2py) −37.689 834 1.203 0.012

37 r(2s)r(2px)r(2py) −37.686 021 3.596 0.123 107 r(2s)r2
(2py)ri j(1s,1s′ ) −37.689 856 1.189 0.014

38 r2
(2s)si j(1s′,2px)ri j(1s′,2pz) −37.686 217 3.472 0.123 108 r(2s)si j(1s,1s′ )ri j(1s′,2s) −37.689 876 1.177 0.012

39 r4
(2s)ri j(2s,2pz) −37.686 351 3.389 0.084 109 r2

(2s)r(2py)ri j(2s,2py) −37.689 890 1.168 0.009

40 r(2s)si j(1s′,2s) −37.686 518 3.284 0.105 110 si j(2s,2py)ri j(2px,2py) −37.689 903 1.160 0.008

41 si j(1s,1s′ )ri j(1s,2px) −37.686 634 3.211 0.073 111 ri j(2s,2px)si j(2py,2pz) −37.689 919 1.149 0.010

42 r(2px)si j(1s′,2px) −37.686 729 3.151 0.059 112 r2
(2pz)ri j(1s′,2)si j(1s′,2py) −37.689 933 1.141 0.008

43 r(2px)si j(1s′,2py)ri j(2s,2py) −37.686 839 3.082 0.069 113 r2
(1s′ )si j(1s,1s′ )ri j(1s,2px) −37.689 945 1.133 0.008
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TABLE V. (Continued).

�E = �E =
Energy EFC − Eexact ��E Energy EFC − Eexact

c ��E
Ma fI of cfb (a.u.) (kcal/mol)c (kcal/mol)d Ma fI of cfb (a.u.) (kcal/mol)c (kcal/mol)d

44 si j(2px,2py) −37.686 937 3.021 0.061 114 r4
(1s′ )ri j(1s′,2s) −37.689 960 1.124 0.009

45 r(2s)r2
(2py)ri j(2s,2pz) −37.687 059 2.944 0.077 115 r2

(1s)r(1s′ ) −37.689 976 1.114 0.010

46 r(2s)ri j(1s′,2s) −37.687 135 2.896 0.048 116 r2
(1s′ )si j(1s,1s′ )ri j(1s′,2s) −37.689 993 1.103 0.010

47 r2
(2s)si j(1s′,2s) −37.687 295 2.796 0.100 117 r2

(1s) −37.690 009 1.093 0.010

48 r6
(2s) −37.687 399 2.731 0.065 118 r(1s′ )ri j(1s,2s)si j(1s′,2s) −37.690 020 1.086 0.007

49 r(2py) −37.687 519 2.656 0.075 119 r(1s′ )r2
(2s)ri j(1s′,2py) −37.690 038 1.075 0.011

50 r(2pz)si j(2px,2py)ri j(2px,2pz) −37.687 620 2.592 0.064 120 r(2py)ri j(1s,1s′ )si j(1s,2s) −37.690 053 1.065 0.010

51 r(1s)si j(1s,1s′ ) −37.687 698 2.543 0.049 121 r(1s′ )ri j(2s,2px)si j(2px,2py) −37.690 066 1.058 0.008

52 r2
(1s)r(1s′ )ri j(1s,1s′ ) −37.687 794 2.483 0.060 122 r(2s)r2

(2px)ri j(2px,2py) −37.690 076 1.051 0.006

53 r3
(1s) −37.687 889 2.423 0.060 123 r2

(2s)ri j(2py,2pz) -37.690 090 1.043 0.009

54 si j(1s,1s′ )ri j(1s′,2px) −37.687 987 2.362 0.061 124 r2
(2s)ri j(1s,1s′ )si j(2s,2px) −37.690 100 1.036 0.006

55 ri j(2s,2py) −37.688 066 2.312 0.050 125 r(2px)r2
(2py)ri j(1s′,2py) −37.690 109 1.030 0.006

56 si j(2s,2py) −37.688 162 2.252 0.060 126 r(2s) r2
(2py)ri j(2py,2pz) −37.690 119 1.024 0.006

57 r(2s)r(2py)r(2pz) −37.688 243 2.202 0.051 127 r(2px)ri j(1s,2s)si j(1s′,2s) -37.690 128 1.018 0.006

58 r(2pz)ri j(1s′,2s)si j(2py,2pz) −37.688 304 2.163 0.038 128 r(2px)si j(1s′,2s)ri j(1s′,2px) −37.690 143 1.009 0.009

59 r2
(2px)si j(2s,2px) −37.688 356 2.130 0.033 129 r2

(2px)si j(1s′,2px) −37.690 159 0.999 0.010

60 r2
(2s)r

2
(2px) −37.688 429 2.084 0.046 130 r3

(2px)ri j(1s′,2px) −37.690 208 0.968 0.031

61 r(2px) r2
(2py) −37.688 486 2.049 0.035 131 r4

(2px) −37.690 243 0.946 0.022

62 r2
(1s)ri j(1s,1s′ )si j(1s,2px) −37.688 538 2.016 0.033 132 r2

(2px)r(2py)ri j(2s,2px) −37.690 257 0.938 0.009

63 r2
(1s)si j(1s,2px)ri j(1s′,2py) −37.688 597 1.979 0.037 133 r2

(2py)ri j(1s,2s)si j(2s,2pz) −37.690 266 0.932 0.006

64 r(1s′ )si j(1s,1s′ )ri j(1s,2px) −37.688 635 1.955 0.024 134 r(1s′ )si j(1s,2s) −37.690 274 0.927 0.005

65 si j(2s,2px)ri j(2px,2py) −37.688 672 1.932 0.023 135 r(1s′ )si j(1s,1s′ )ri j(1s′,2s) −37.690 283 0.921 0.006

66 r2
(2s)r(2py) −37.688 719 1.902 0.030 136 r2

(1s)si j(1s,1s′ )ri j(1s,2px) −37.690 292 0.915 0.006

67 r2
(2px)r(2py) −37.688 749 1.884 0.019 137 r(2px)ri j(1s,1s′ ) −37.690 301 0.910 0.005

68 r3
(1s)ri j(1s′,2py) −37.688 773 1.869 0.015 138 r(1s)si j(1s,1s′ )ri j(1s′,2px) −37.690 307 0.906 0.004

69 si j(1s′,2px)ri j(1s′,2py) −37.688 800 1.852 0.017 139 si j(1s′,2s)ri j(1s′,2px) −37.690 313 0.902 0.004

70 r(2px)si j(1s,1s′ )ri j(2px,2py) −37.688 830 1.833 0.019 140 r(2s)r(2py)ri j(1s′,2px) −37.690 327 0.894 0.009

Estimated exact −37.691 751e −37.691 751e

aNumber of complement functions (dimension).
bEach cf is written as φI = A�[ fIϕ0], where r(a) denotes one-electron r term of electron a and ri j(a,b) and si j(a,b) denote two-electron ri j and si j

terms of electrons a and b, respectively. Each electron is assigned to each orbital defined in Eq. (11).
cEnergy difference from the estimated exact energy of Ref. [19]. The values less than 1 kcal/mol are denoted by boldface.
dDifference between �E at M − 1 and �E at M.
eReference [19].

prisingly small degrees of freedom. Thus, the present results
numerically prove that the FC ri jsn

i j theory successfully works
if the three- and four-electron integrals can be practically
evaluated.

As future perspectives for the applications to general atoms
and molecules, we need to further develop the FC ri jsn

i j theory
based on the local concept [11] and some numerical methods
to compute three- and four-electron integrals more efficiently.
Alternatively, the FC si j theory, which requires only one-
and two-electron integrals, should also be useful for chemi-
cal studies if the relative energies, such as potential-energy
curves, excitation energies, etc., are precisely calculated in

chemical accuracy. The sampling method, i.e., LSE theory, is
also powerful because it is integral free and any type of cf’s
for general systems are available without any restrictions. We
continue to develop all these methods to take advantage of
their merits.
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APPENDIX: ri j-EXTENDED LÖWDIN FORMULA FOR THE FC ri jsn
i j THEORY

The complement function of the FC ri jsn
i j theory is generally expressed by Eq. (6), and we use a primitive expression denoted

by Eq. (9) using Löwdin’s original notation [29]. All the patterns of the matrix elements necessary in the present method was
classified in Table I. We provided their concrete formulations according to the case with the classifications of Table I. Note that
the antisymmetrizaion operator can be applied only to the ket site, but this operator is abbreviated in the equations.

Pattern 1. This is the overlap matrix elements without ri j in both bra and ket sites. This can be trivially evaluated with the
determinant, given by

〈U | V 〉 = 〈
u1(1)u2(2) · · · uNe (Ne)

∣∣ A
[
v1(1)v2(2) · · · vNe (Ne)

]〉

= |D| =

∣∣∣∣∣∣∣

〈u1 | v1〉 〈u1 | v2〉 · · · 〈u1 | vNe〉
〈u2 | v1〉 〈u2 | v2〉 · · · 〈u2 | vNe〉

· · · · · · · · · · · ·
〈uNe | v1〉 〈uNe | v2〉 · · · 〈uNe | vNe〉

∣∣∣∣∣∣∣
, (A1)

where |D| is the overlap determinant whose element 〈up | vq〉 is the one-electron overlap integral.
Pattern 2. This formulation is also given in Löwdin’s formulations [29]. The idea is very simple, i.e., the row and column

applied h1(�) are the outside of the determinant by the Laplace expansion. The resultant formula is given by

〈U |h1(�)|V 〉 = 〈
u1(1)u2(2) · · · uNe (Ne)

∣∣ h1(�)A
[
v1(1)v2(2) · · · vNe (Ne)

]〉 =
Ne∑

λ=1

(−1)�+λ〈u�|h1|vλ〉D(�|λ), (A2)

where 〈u�|h1|vλ〉 is the one-electron primitive integral for the kinetic and nucleus-electron potentials. D(�|λ) is the minor which
is the determinant of the matrix where the � row and the λ column are eliminated from D.

Pattern 3. This formulation is also given in Löwdin’s formulations [29]. The idea is also based on the Laplace expansion
where the �, M rows and the λ,μ columns are located on the outside of the determinant matrix. So, this can be represented by

〈U |1/r�M|V 〉 = 〈
u1(1)u2(2) · · · uNe (Ne)

∣∣ 1/r�MA
[
v1(1)v2(2) · · · vNe (Ne)

]〉

=
Ne−1∑
λ=1

Ne∑
μ>λ

(−1)�+M+λ+μ × [〈u�uM|1/r12|vλvμ〉 − 〈uMu�|1/r12|vλvμ〉]D(�, M|λ,μ). (A3)

The following patterns are not given in Löwdin’s formulations [29]. But, the idea is the same, i.e., the correlated electrons are
put out from the determinant matrix by the Laplace expansion.

Pattern 4. This is similar to Eq. (A3) but the rKL function is within the antisymmetrization operator in the ket site. Therefore,
the formulation is given by

〈U | rKLV 〉 = 〈
u1(1)u2(2) · · · uNe (Ne)

∣∣ A
[
rKLv1(1)v2(2) · · · vNe (Ne)

]〉

=
Ne−1∑
k=1

Ne∑
l>k

(−1)k+l+K+L[〈ukul |r12|vKvL〉 − 〈ukul |r12|vLvK〉]D(k, l|K, L), (A4)

where 〈ukul |r12|vKvL〉 is a two-electron integral but surely not same as the ordinary electron repulsive potential integral.
Pattern 5. In this case, the �, K, and L electrons are outside but one must be careful the electrons K and L are within the

antisymmetrization operator. So, the formulation is given by part by part,

〈U |h1(�)|rKLV 〉
= 〈

u1(1)u2(2) · · · uNe (Ne)
∣∣ h1(�)A

[
rKLv1(1)v2(2) · · · vNe (Ne)

]〉

=
Ne−1∑
k=1

Ne∑
l>k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(� = k)
×(−1)�+l+K+L[〈u�ul |h1(1)r12|vKvL〉 − 〈u�ul |h1(1)r12|vLvK〉]D(�, l|K, L)

(� = l )
×(−1)k+�+K+L[〈uku�|h1(2)r12|vKvL〉 − 〈uku�|h1(1)r12|vLvK〉]D(k,�|K, L)

(� �= k, l )
×∑Ne

λ=1 (λ �=K,L) (−1)k+l+K+L(−1)�
′+λ′

×[〈ukul |r12|vKvL〉 − 〈ukul |r12|vLvK〉]
×〈u�|h1|vλ〉
×D(�, k, l|λ, K, L),

(A5)
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where 〈u�ul |h1(1)r12|vKvL〉 is another two-electron integral. This case can be still computed within one- and two-electron
integrals.

Pattern 6. Similarly, the �, M, K, and L electrons are outside. Note that � and M are outside of the antisymmetrization, but K
and L electrons are within the antisymmetrization. These formulas are given by

〈U |1/r�M|rKLV 〉
= 〈

u1(1)u2(2) · · · uNe (Ne)
∣∣ 1/r�MA

[
rKLv1(1)v2(2) · · · vNe (Ne)

]〉

=
Ne−1∑
k=1

Ne∑
l>k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(� = k, M = l )
×(−1)�+M+K+L[〈u� | vK〉〈uM | vL〉 − 〈u� | vL〉〈uM | vK〉]D(�, M|K, L)

(� = k, M �= l ) (and other patterns)
×∑Ne

μ=1 (μ �=K,L) (−1)�+l+K+L(−1)M ′+μ′

×[〈u�uMul |1/r12r13|vKvμvL〉 − 〈u�uMul |1/r12r13|vLvμvK〉]
×D(�, M, l|K, μ, L)

(� �= k, M �= l )
×∑Ne−1

λ=1

∑Ne
μ>λ [(λ,μ)�=(K,L)] (−1)k+l+K+L(−1)�

′+M ′+λ′+μ′

×[〈u�uM|1/r12|vλvμ〉 − 〈uMu�|1/r12|vλvμ〉]
×[〈ukul |r12|vKvL〉 − 〈ukul |r12|vLvK〉]
×D(�, M, k, l|λ,μ, K, L),

(A6)

This formulation contains 〈u�uMul |1/r12r13|vKvμvL〉 which is a three-electron (type-I) integral.
Patterns 7–9. This can be evaluated by the same as patterns 4–6 by exchanging the bra and ket sites.
Pattern 10. The formulation is similar to pattern 6 but 1/ri j is replaced by ri j and given by

〈UrIJ | rKLV 〉
= 〈

rIJu1(1)u2(2) · · · uNe (Ne)
∣∣ A

[
rKLv1(1)v2(2) · · · vNe (Ne)

]〉

=
Ne−1∑
k=1

Ne∑
l>k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I = k, J = l )
×(−1)I+J+K+L

[〈uI uJ |r2
12|vKvL〉 − 〈uI uJ |r2

12|vLvK〉]D(I, J|K, L)
(I = k, J �= l ) (and other patterns)

×∑Ne
j=1 ( j �=K,L) (−1)I+l+K+L(−1)J ′+ j′

×[〈uI uJul |r12r13|vKv jvL〉 − 〈uI uJul |r12r13|vLv jvK〉]
×D(I, J, l|K, j, L)

(I �= k, J �= l )
×∑Ne−1

i=1

∑Ne
j>i [(i, j)�=(K,L)] (−1)k+l+K+L(−1)I ′+J ′+i′+ j′

×[〈uI uJ |r12|viv j〉 − 〈uJuI |r12|viv j〉]
×[〈ukul |r12|vKvL〉 − 〈ukul |r12|vLvK〉]
×D(I, J, k, l|i, j, K, L),

(A7)

〈u�uMul |r12r13|vKvμvL〉 is also a three-electron (type-I) integral.
Pattern 11. In this case, the electrons I, J, �, and K, L electrons must be outside by the Laplace expansion. Similar to pattern

10, the Laplace expansion for ri j and rKL is first applied and then h1(�) is applied. This is given by

〈UrIJ |h1(�)|rKLV 〉
= 〈

rIJu1(1)u2(2) · · · uNe (Ne)
∣∣ h1(�)A

[
rKLv1(1)v2(2) · · · vNe (Ne)

]〉

=
Ne−1∑
k=1

Ne∑
l>k

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(I = k, J = l )
×(−1)I+J+K+LI (11)

1 (I, J,�|K, L)
(I = k, J �= l ) (and other patterns)

×∑Ne
j=1 ( j �=K,L) (−1)I+l+K+L(−1)J ′+ j′ I (11)

2 (I, J,�, l|K, L, j)
(I �= k, J �= l )

×∑Ne−1
i=1

∑Ne
j>i [(i, j)�=(K,L)] (−1)k+l+K+L(−1)I ′+J+i′+ j′ I (11)

3 (I, J,�, k, l|K, L, i, j),

(A8)
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where

I (11)
1 (I, J,�|K, L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(� = I )
×[〈uI uJ |r12h1(1)r12|vKvL〉 − 〈uI uJ |r12h1(1)r12|vLvK〉]D(I, J|K, L)

(� = J )
×[〈uJuI |r12h1(1)r12|vLvK〉 − 〈uJuI |r12h1(1)r12|vKvL〉]D(I, J|K, L)

(� �= I, J )
×∑Ne

λ=1 (λ �=K,L) (−1)�
′+λ′

×[〈uI uJ |r2
12|vKvL〉 − 〈uI uJ |r2

12|vLvK〉]·
×〈u�|h1|vλ〉D(I, J,�|K, L, λ),

, (A9)

I (11)
2 (I, J,�, l|K, L, j)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(� = I )
×[〈uI uJul |r12h1(1)r13|vKv jvL〉 − 〈uI uJul |r12h1(1)r13|vLv jvK〉]D(I, J, l|K, j, L)

(� = J )
×[〈uI uJul |r12h1(2)r13|vKv jvL〉 − 〈uI uJul |r12h1(2)r13|vLv jvK〉]D(I, J, l|K, j, L)

(� = l )
×[〈uI uJul |r12h1(3)r13|vKv jvL〉 − 〈uI uJul |r12h1(3)r13|vLv jvK〉]D(I, J, l|K, j, L)

(� �= I, J, l )
×∑Ne

λ=1 (λ �=K,L, j) (−1)�
′+λ′

×[〈uI uJul |r12r13|vKv jvL〉 − 〈uI uJul |r12r13|vLv jvK〉]
×〈u�|h1|vλ〉
×D(I, J, l,�|K, j, L, λ),

(A10)

and

I (11)
3 (I, J,�, k, l|K, L, i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(� = I )
×[〈uI uJ |r12h1(1)|viv j〉 − 〈uJuI |r12h1(1)|viv j〉]
×[〈ukul |r12|vKvL〉 − 〈ukul |r12|vLvK〉]
×D(I, J, k, l|i, j, K, L)

(� = J )
×[〈uJuI |r12h1(1)|v jvi〉 − 〈uI uJ |r12h1(1)|v jvi〉]
×[〈ukul |r12|vKvL〉 − 〈ukul |r12|vLvK〉]
×D(I, J, k, l|i, j, K, L)

(� = k)
×[〈uI uJ |r12|viv j〉 − 〈uJuI |r12|viv j〉]
×[〈ukul |h1(1)r12|vKvL〉 − 〈ukul |h1(1)r12|vLvK〉]
×D(I, J, k, l|i, j, K, L)

(� = l )
×[〈uI uJ |r12|viv j〉 − 〈uJuI |r12|viv j〉]
×[〈uluk|h1(1)r12|vLvK 〉 − 〈ul uk|h1(1)r12|vKvL〉]
×D(I, J, k, l|i, j, K, L)

(� �= I, J, k, l )
×∑Ne

λ=1 (λ �=K,L,i, j) (−1)�
′+λ′

×[〈uI uJ |r12|viv j〉 − 〈uJuI |r12|viv j〉]
×[〈ukul |r12|vKvL〉 − 〈ukul |r12|vLvK〉]
×〈u�|h1|vλ〉
×D(I, J, k, l,�|i, j, K, L, λ),

, (A11)

〈uI uJul |r12h1(1)r13|vKv jvL〉 is necessary to be evaluated. It is also a three-electron (Type-I) integral.
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Pattern 12. In this case, the electrons I, J, �, M, and K, L electrons must be outside by the Laplace expansion. The Laplace
expansion is first applied to rIJ and rKL. Later, 1/r�M is applied. The formulation is given by

〈UrIJ |1/r�M|rKLV 〉 = 〈
rIJu1(1)u2(2) · · · uNe (Ne)

∣∣ 1/r�MA
[
rKLv1(1)v2(2) · · · vNe (Ne)

]〉

=
Ne−1∑
k=1

Ne∑
l>k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I = k, J = l )

×(−1)I+J+K+LI (12)
1 (I, J,�, M|K, L)

(I = k, J �= l ) (and other patterns)

×∑Ne
j=1 ( j �=K,L) (−1)I+l+K+L(−1)J ′+ j′ I (12)

2 (I, J,�, M, l|K, L, j)

(I �= k, J �= l )

×∑Ne−1
i=1

∑Ne
j>i [(i, j)�=(K,L)] (−1)k+l+K+L(−1)I ′+J ′+i′+ j′ I (12)

3 (I, J,�, , k, l|K, L, i, j),

(A12)
where

I (12)
1 (I, J,�, M|K, L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(� = I, M = J )

×[〈uI uJ |r12|vKvL〉 − 〈uI uJ |r12|vLvK〉]
×D(I, J|K, L)

(� = I, M �= J ) (and other patterns)

×∑Ne
μ=1 (μ �=K,L) (−1)M ′+μ′

×[〈uI uJuM|r121/r13|vKvLvμ〉 − 〈uI uJuM|r121/r13|vLvKvμ〉]
×D(I, J, |K, L, μ)

(� �= I, M �= J )

×∑Ne−1
λ=1

∑Ne
μ>λ (λ,μ �=K,L) (−1)�

′+M ′+λ′+μ′

×[〈uI uJ |r2
12|vKvL〉 − 〈uI uJ |r2

12|vLvK〉]
×[〈u�uM|1/r12|vλvμ〉 − 〈uMu�|1/r12|vλvμ〉]
×D(I, J,�, M|K, L, λ, μ),

(A13)

I (12)
2 (I, J,�, M, l|K, L, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(� = I, M = J )

×[〈uJ | v j〉〈uI ul |r13|vKvL〉 − 〈uJ | v j〉〈uI ul |r13|vLvK〉]
×D(I, J, l|K, j, L)

(� = I, M = l ) (and other patterns)

×[〈ul | vL〉〈uI uJ |r12|vKv j〉 − 〈uI | vL〉〈uI uJ |r12|v jvK〉]
×D(I, J, M|K, j, L)

(� = J, M = l ) (and other patterns)

×[〈uI uJul |r12r131/r23|vKv jvL〉 − 〈uI uJul |r12r131/r23|vLv jvK〉]
×D(I, J, l|K, j, L)

(� = I, M �= J, l ) (and other patterns)

×∑Ne
μ=1 (μ �=K,L, j) (−1)M ′+μ′

×[〈uI uJul uM|r12r131/r14|vKv jvLvμ〉 − 〈uI uJuluM|r12r131/r14|vLv jvKvμ〉]
×D(I, J, l, M|K, j, L, μ)

(� = J, M �= I, l ) (and other patterns)
×∑Ne

μ=1 (μ �=K,L, j) (−1)M ′+μ′

×[〈uI uJul uM|r12r131/r24|vKv jvLvμ〉 − 〈uI uJuluM|r12r131/r24|vLv jvKvμ〉]
×D(I, J, l, M|K, j, L, μ)

(� = l, M �= I, J ) (and other patterns)
×∑Ne

μ=1 (μ �=K,L, j) (−1)M ′+μ′

×[〈uI uJul uM|r12r131/r34|vKv jvLvμ〉 − 〈uI uJuluM|r12r131/r34|vLv jvKvμ〉]
×D(I, J, l, M|K, j, L, μ)

(�, M �= I, J, l ) (and other patterns)
×∑Ne−1

λ=1

∑Ne
μ>λ (λ,μ �=K,L, j) (−1)�

′+M ′+λ′+μ′

×[〈uI uJul |r12r13|vKv jvL〉 − 〈uI uJul |r12r13|vLv jvK〉]
×[〈u�uM|1/r12|vλvμ〉 − 〈uMu�|1/r12|vλvμ〉]
×D(I, J, l,�, M|K, j, L, λ, μ),

(A14)
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and

I (12)
3 (I, J,�, k, l|K, L, i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(� = I, M = J )
×[〈uI | vi〉〈uJ | v j〉 − 〈uJ | vi〉〈uI | v j〉]
×[〈ukul |r12|vKvL〉 − 〈ukul |r12|vLvK〉]
×D(I, J, k, l|i, j, K, L)

(� = k, M = l )
×[〈uI uJ |r12|viv j〉 − 〈uJuI |r12|viv j〉]
×[〈uk | vK〉〈ul | vL〉 − 〈uk | vL〉〈ul | vK〉]
×D(I, J, k, l|i, j, K, L)

(� = I, M = k) (and other patterns)

×
[〈uI uJukul |r12r341/r13|viv jvKvL〉 − 〈uJuI ukul |r12r341/r13|viv jvKvL〉
−〈uI uJul uk|r12r341/r13|viv jvKvL〉 + 〈uJuI uluk|r12r341/r13|viv jvKvL〉

]

×D(I, J, k, l|i, j, K, L)
(� = I, M �= J, k, l )

×∑Ne
μ=1 (μ �=K,L,i, j) (−1)M ′+μ′

×[〈uI uJuM|r121/r13|viv jvμ〉 − 〈uJuI u|r121/r13|viv jvμ〉]
×[〈ukul |r12|vKvL〉 − 〈ukul |r12|vLvK〉]
×D(I, J, k, l, M|i, j, K, L, μ)

(� = k, M �= I, J, l )
×∑Ne

μ=1 (μ �=K,L,i, j) (−1)M ′+μ′

×[〈uI uJ |r12|viv j〉 − 〈uJuI |r12|viv j〉]
×[〈ukul uM|r121/r13|vKvLvμ〉 − 〈ukulu|r121/r13|vLvKvμ〉]
×D(I, J, k, l, M|i, j, K, L, μ)

(�, �= I, J, k, l )
×∑Ne−1

λ=1

∑Ne
μ>λ (λ,μ �=K,L,i, j) (−1)�

′+M ′+λ′+μ′

×[〈uI uJ |r12|viv j〉 − 〈uJuI |r12|viv j〉]
×[〈ukul |r12|vKvL〉 − 〈ukul |r12|vLvK〉]
×[〈u�uM|1/r12|vλvμ〉 − 〈u×u�|1/r12|vλvμ〉]
×D(I, J, k, l,�, M|i, j, K, L, λ, μ),

(A15)

where three-electron (type-II) and four-electron (type-I and -II) integrals are necessary in addition to one-, two-, and three-
electron (type-I) integrals.

Determinant update. The above formulations require a lot of calculations of the minor D(· · · | · · · ) which roughly requires
O(Ne

3/3) operations, where Ne is the number of electrons. However, in the matrix of D(· · · | · · · ), only a few columns and rows
are changed from the original determinant matrix. The determinant update algorithm [30], therefore, is useful especially for
many electron systems; (i) evaluate |D| and same time keep D−1 and (ii) by using |D| and D−1, the minor D(· · · | · · · ) can be
evaluated with O(Ne). This process can much reduce the computational costs.

All these formulations require the computational costs of polynomial orders. These formulations are also valid for a general
fi j (not restricted to ri j) and molecular case if their three-electron (types I and II) and four-electron (types-I and -II) integrals can
be practically computed.
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