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Sensitivity of 229Th nuclear clock transition to variation of the fine-structure constant
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Peik and Tamm [Europhys. Lett. 61, 181 (2003)] proposed a nuclear clock based on the isomeric transition
between the ground state and the first excited state of thorium-229. This transition was recognized as a potentially
sensitive probe of possible temporal variation of the fine-structure constant, α. The sensitivity to such a variation
can be determined from measurements of the mean-square charge radius and quadrupole moment of the different
isomers. However, current measurements of the quadrupole moment are yet to achieve an accuracy high enough
to resolve nonzero sensitivity. Here we determine this sensitivity using existing measurements of the change
in the mean-square charge radius, coupled with the ansatz of constant nuclear density. The enhancement factor
for α variation is K = −(0.82 ± 0.25) × 104. For the current experimental limit, δα/α � 10−17 per year, the
corresponding frequency shift is ∼200 Hz per year. This shift is six orders of magnitude larger than the projected
accuracy of the nuclear clock, paving the way for increased accuracy of the determination of δα and interaction
strength with low-mass scalar dark matter. We verify that the constant-nuclear-density ansatz is supported by
nuclear theory and propose how to verify it experimentally. We also consider a possible effect of the octupole
deformation on the sensitivity to α variation and calculate the effects of α variation in a number of Mössbauer
transitions.
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I. INTRODUCTION

The first excited isomeric state of thorium-229, 229mTh,
is a candidate for the first nuclear optical clock [1]. This is
due to the state’s low excitation energy of several electron-
volts [2–5] (the lowest of all known isomeric states) and long
radiative lifetime of up to 104 s [6,7]. Several theoretical
and experimental groups are making rapid progress toward
using 229mTh as a reference for a clock with unprecedented
accuracy [8–16]. These papers proposed specific experimental
schemes for nuclear clocks and performed detailed studies of
systematic effects such as blackbody radiation shifts, effects
of ion trapping fields in ion traps, and effects of stray fields.
The advantage of the nuclear clock in comparison with atomic
clocks is that, due to the very small size of the nucleus and
its shielding by atomic electrons, it is insensitive to many
systematic effects. For example, the nuclear polarizability and
its contribution to the major systematic effect, the blackbody
radiation shift, are 15 orders of magnitude smaller than in
atomic transitions. Nuclear clocks may perform at a level of
accuracy of 10−19 [9], 1–2 orders of magnitude higher than
the accuracy of the best existing atomic clocks.

In a recent crucial step towards this goal, the transition
was measured using spectroscopy of the internal conversion
electrons emitted in flight during the decay of neutral 229mTh
atoms [17], yielding an excitation energy Eis = 8.28 (17) eV.
Another approach, using γ -ray spectroscopy at 29.2 keV,
obtained Eis = 8.30 (92) eV [18,19]. More recently, Eis =
8.10 (17) eV was reported [20].

*pavelfadeev1@gmail.com

The 229mTh nuclear clock is expected to be a sensitive
probe for time variation of the fundamental constants of nature
[21]. To avoid dependence on units we consider the effect
of variation of the dimensionless fine-structure constant, α,
related to the electromagnetic interaction [21–26]. Another di-
mensionless parameter, mq/�QCD, where mq is the quark mass
and �QCD is the QCD scale, is related to the strong interaction.
The effect of mq/�QCD variation on the 229Th transition has
been estimated in Refs. [21,27,28]. The high sensitivity to α

comes about because the change in Coulomb energy between
the isomers, which depends linearly on α, is almost entirely
canceled by the nuclear force contribution which has only
weak α dependence. This cancellation makes the energy of
the transition Eis = 8 eV low compared to typical nuclear
transitions, so any change in α and the Coulomb energy leads
to a relative change several orders of magnitude larger in the
energy of the transition �Eis/Eis.

We also should note that the measurement of the varia-
tion of the fundamental constants does not require absolute
frequency measurement. All that is required is high stability
of the ratio of two frequencies with a different dependence
on the fundamental constants [29,30]. For example, it may
be the ratio of the 8-eV nuclear transition frequency to that
of an atomic clock transition in the Th ion, as considered in
Ref. [31].

The change in the nuclear transition frequency, f , between
the isomeric state and the ground state, δ f , for a given change
in the fine-structure constant, δα, is [21]

h δ f = �EC
δα

α
, (1)
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where �EC is the difference in Coulomb energy between the
two isomers. The enhancement factor K is defined by

δ f

f
= K

δα

α
, (2)

where K = �EC/Eis. Therefore, to find the sensitivity of
229mTh transition to variation in α, one needs to know �EC .

The Coulomb energy EC depends on the shape of the
nucleus. Unlike atomic systems, which are spherical due to
the 1/r potential from the pointlike nucleus (r is the distance
from the nucleus), nuclear systems can have deformed shapes
as the potential originates from the nucleons themselves. Ref-
erence [25] showed that, by modeling the nucleus as a prolate
spheroid [32], �EC can be deduced from measurements of
the change in nuclear charge radius and quadrupole moment
between the isomeric and the ground states. Using this model
with measurements of nuclear parameters, the authors of [33]
give a value of

�EC = −0.29 (43) MeV, (3)

where the dominant source of error is the uncertainty in mea-
sured quadrupole moments of the ground and the exited states.
Such a �EC is consistent with a K value anywhere between
0 and 105. This can be compared to a K of about 0.1–6 for
current atomic clocks [29,30,34–37].

In this paper we use the fact that the change in quadrupole
moment is related to the change in charge radius to arrive
at �EC with errors consistent with a nonzero value, con-
sequently giving a nonzero value for K . This relationship
can be understood from the assumption of a constant charge
density between isomers. We verify that this assumption gives
a relation that is consistent with previous results from nuclear
theory [23]. We also test this assumption in several Mössbauer
transitions, which we find have much lower sensitivities to α

variation than the 229Th transition. Finally, following models
that suggest the existence of an octupole deformation in 229Th,
we use a more general treatment of a deformed nuclei. The
results of the two models coincide within uncertainties.

II. PROLATE SPHEROID MODEL

We start by modeling the nucleus as a prolate spheroid with
semiminor and semimajor axes a and c. The volume (4π/3)R3

0
depends on a and c by

a2c = R3
0 . (4)

The eccentricity e is defined by

e2 = 1 − a2

c2
, (5)

while the mean-square radius 〈r2〉 and the quadrupole moment
Q0 are

〈r2〉 = 1
5 (2a2 + c2) ,

Q0 = 2
5 (c2 − a2) . (6)

The Coulomb energy can be written as a product of E0
C , the

Coulomb energy of an undeformed nucleus, and an anisotropy
factor due to the deformation, BC [38],

EC = E0
C BC , (7)

FIG. 1. Mean-square charge radius 〈r2〉 as a function of the in-
trinsic quadrupole moment Q0 under the constant-volume ansatz for
three volumes. The dashed lower curve corresponds to R0 deduced
from Hartree-Fock-Bogoliubov calculations using the SkM∗ func-
tional, while the upper dotted curve is based on the SIII functional
(see Table I). The middle curve, including errors, corresponds to
R0 = 7.3615 (16) fm deduced from the measurements by which (15)
is obtained. The red line corresponds to the 1σ experimental range
of Q0 [39].

where

E0
C = 3

5

q2
e Z2

R0
, (8)

BC = (1 − e2)1/3

2e
ln

(
1 + e

1 − e

)
. (9)

Here qe is the electron charge and Z is the number of protons.
In previous works [25], Q0 and 〈r2〉 were treated as in-

dependent parameters. As such, calculation of �EC involved
derivatives of EC both by Q0 and by 〈r2〉:

�EC = 〈r2〉 ∂EC

∂〈r2〉
�〈r2〉
〈r2〉 + Q0

∂EC

∂Q0

�Q0

Q0
. (10)

With current experimental values 〈r2〉 = (5.76 fm)2 and Q0 =
9.8 (1) fm2 [39], Eqs. (7) and (10) give

�EC = −485 MeV
�〈r2〉
〈r2〉 + 11.6 MeV

�Q0

Q0
. (11)

Substitution of measured changes in the mean-square ra-
dius and quadrupole moment [33], �〈r2〉 = 0.012 (2)fm2 and
�Q0/Q0 = −0.01 (4), gives the limit, (3).

Let us now consider the ansatz of constant charge density
between isomers, equivalent to the ansatz of constant volume.
That is, R0 and hence E0

C are kept constant in the isomeric
transition. Therefore, changes in 〈r2〉 and Q0 are coupled by
(4) using (6). We show this dependence graphically in Fig. 1,
and we can express it as

dQ0

d〈r2〉 = 1 + 2〈r2〉
Q0

= 7.8 , (12)

where 7.8 corresponds to the experimental values. Substitu-
tion of (12) into (11) gives us the following result:

�EC = −180 MeV
�〈r2〉
〈r2〉 . (13)
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TABLE I. Theoretical values of the root-mean-square radius rrms,
Q0, �Q0, and �rrms calculated using the Hartree-Fock-Bogoliubov
approach with two energy functionals, SkM∗ and SIII. In the fifth row
we deduce the relationship between �Q0 and �〈r2〉, which may be
compared to the result of the constant-density ansatz, dQ0/d〈r2〉 =
7.8. In the last two rows we show the change in Coulomb energy from
direct calculation and using (14) with calculated values of charge
radii.

SkM∗ SIII

n p n p

rrms (fm)a 5.8716 5.7078 5.8923 5.7769
Q0 (fm2)a 9.2608 9.3717 9.0711 9.1643
�Q0 (fm2)a 0.2647 0.2756 −60.051 −0.0495
�rrms (fm)a 0.0036 0.0039 −0.0005 −0.0005
�Q0/�〈r2〉 6.26 6.19 8.76 8.57
�EC (MeV)b −0.307 0.001
�EC (MeV)a −0.287 0.036

aFrom Ref. [23], Table II and Eq. (14) for �EC .
bFrom Ref. [23], Table I.

The relation between changes in 〈r2〉 and Q0 can also
be obtained from nuclear calculations where the constant-
density ansatz is not assumed. Results of the Hartree-Fock-
Bogoliubov calculations of [23] are summarized in Table I.
We extract �Q0/�〈r2〉 for two energy functionals, SkM∗ and
SIII, and for both protons and neutrons (for details see [23]).
In all cases the derivative is close to that predicted by the
constant-density ansatz.

In addition to the results reproduced in Table I, Ref. [23]
presents Hartree-Fock calculations (which do not include pair-
ing) using the same functionals. For SkM∗, the Hartree-Fock
calculations give the wrong sign for 〈r2〉, while for SIII the
change between isomers is very small and susceptible to nu-
merical noise. Nevertheless, in both cases the Hartree-Fock
calculations give reasonably close values for the derivative.

For the Hartree-Fock-Bogoliubov calculations, the SkM∗

better reproduces the measured energy interval and change in
the nuclear radius between the isomers. We take the average of
the SkM∗ value dQ0/d〈r2〉 for protons and the experimental
value from (12) as our estimate of the derivative and their
difference as an estimate of the derivative’s uncertainty, giving
dQ0/d〈r2〉 = 7.0 (1.6).1 With this we write the change in
Coulomb energy �EC in terms of the change in mean-square
radius at the physical point as

�EC = −210 (60) MeV
�〈r2〉
〈r2〉 . (14)

The last row in Table I lists the results of application of
this formula to the nuclear calculations of �rrms from [23].
Filling in the measured �〈r2〉 = 0.0105 (13) fm2 [40] and

1Alternatively, we could use the average value between SkM* and
SIII numbers for the derivatives �Q0/�r2 but the change in the
result would be within the error bars.

〈r2〉 = (5.76 fm)2[41], we obtain

�EC = −0.067 (19) MeV , (15)

K = −0.82 (25) × 104 . (16)

Since our model does not rely on the measured �Q0,
which gives the biggest error in Eq. (3), the result of (15)
has a smaller error than (3). We also predict �Q0/Q0 =
0.0075 (20) fm2, which is within the experimental error of
�Q0/Q0 = −0.01 (4) fm2 presented in Ref. [33].

III. EFFECT OF OCTUPOLE DEFORMATION

Nuclear calculations of N. Minkov and A. Pálffy suggest
that the 229Th nucleus has an octupole deformation [7,42] (see
also a recent experiment [43]). They therefore describe the
nucleus using a quadrupole-octupole model, obtaining a fair
comparison to experimental results [7,42]. This prompts us to
include an octupole deformation in addition to the quadrupole
deformation.

To facilitate this we describe the nucleus shape by its radius
vector in axially symmetric spherical harmonics [44,45],

r(θ ) = Rs

[
1 +

N∑
n=1

(βnYn0(θ ))

]
, (17)

where the coefficients βn are called deformation parameters
and N = 3 for the quadrupole-octupole model (pear shape).
The length Rs is defined by normalization of the volume to
that of the undeformed nucleus,

2π

3

∫ π

0
r3(θ ) sin θ dθ = 4πR3

0

3
. (18)

The parameter β1 is set such that the center of mass of the
shape is at the origin of the coordinate system.

The mean-square radius and the intrinsic quadrupole mo-
ment of the nucleus are related to the deformation parameters
β2 and β3 through r(θ ) by

〈r2〉 =
∫

r2(θ )ρ(r) d3r , (19)

Q0 = 2
∫

r2(θ )P2(cos θ )ρ(r) d3r , (20)

where ρ(r) is the charge density divided by the total charge.
The factor 2 in Eq. (20) is a matter of definition [46] and fits
with the special case of Q0 in Eq. (6).

To determine β2 for the pear shape, we solve (19) and
(20) using the experimental values of Q0 and 〈r2〉. As the
octupole moment of 229Th has not yet been measured, we
take β3 = 0.115 from nuclear calculations [7]. We arrive at
β2 = 0.22 and Rs = 7.3 fm. This value of β2 is fairly close
to the theoretical prediction of [7], β2 = 0.24, and is not
particularly sensitive to the chosen value of β3 (see Fig. 2).

In this model the anisotropy factor is [32]

BC = 1 − 5

4π

∞∑
n=2

n − 1

2n + 1
β2

n + O
(
β3

n

)
. (21)

Higher-order terms do not change our results within stated
errors. With the aforementioned values for β2 and β3, we
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FIG. 2. Deformation parameter β2 derived using (19) and (20)
with experimental values of Q0 = 9.8 fm2 and 〈r2〉 = (5.76 fm)2, as
a function of β3.

obtain for the constant-density ansatz (i.e., constant E0
C),

�EC = −76 MeV �β2
2 − 108 MeV �β2

3 , (22)

≈ −190 MeV
�〈r2〉
〈r2〉 − 0.42 MeV

�β2
3

β2
3

. (23)

Equation (23) is obtained by substituting (25) and is in good
agreement with (13). We see that the sensitivity of the nuclear
clock to α variation does not depend strongly on the octupole
moment.

IV. DISCUSSION

The constant-volume ansatz used in the present work may
be tested in experiments. This ansatz allows one to relate
the change in nuclear quadrupole moment to the change in
nuclear charge radius. Therefore, determination of �〈r2〉 by
measuring the field isotope shift of atomic transitions and
extraction of �Q0 from the hyperfine structure or nuclear
rotational bands gives a measure of the change in the nuclear
charge density.

A specific procedure can be encoded in the change in
mean-square radius [47,48]

�〈r2〉 = �〈r2〉sph + �〈r2〉def . (24)

Here the spherical part �〈r2〉sph describes the change in
nuclear volume, i.e., volume contribution, and �〈r2〉def de-
scribes the deformation part assuming a constant volume, i.e.,
shape contribution. The latter can be expressed by deforma-
tion parameters [47–50]

�〈r2〉 = �〈r2〉sph + 5

4π
〈r2〉sph

(
�β2

2 + �β2
3 + · · · ), (25)

where 〈r2〉sph is the mean-square charge radius of the nu-
cleus assuming a spherical distribution. Equation (25) can
be used in the future to test the volume-conservation hy-
pothesis in isomers, once the �β is determined to higher
accuracy.

Using existing experimental data [33] we may conclude
that the relative change in volume between 229Th isomers is
less than a few parts per thousand, while the calculations in
[23] imply a fractional volume change of about 5 × 10−4.
This gives a quantitative evaluation of the constant-volume
ansatz, which at times is used in the literature (see, e.g.,
[51–53]).

The sensitivity to potential variation of α, i.e., the enhance-
ment factor K , is three orders of magnitude larger than that
of the most sensitive atomic clocks. For the present experi-
mental bound, δα/α � 10−17 per year, the frequency shift is
up to ∼200 Hz per year. Since such a frequency shift is six
orders of magnitude larger than the projected accuracy of the
nuclear clock [9], an unexplored range of δα may be tested.
As discussed in Refs. [54–56], the interaction between low-
mass scalar dark matter and the electromagnetic field leads to
oscillatory variation of α. Therefore, the improvement in the
sensitivity to α variation by six orders of magnitude afforded
by such a clock should also lead to improved sensitivity in the
search for low-mass scalar dark matter.

We should note a certain similarity between the research on
229Th isomeric transition and the very extensive experimental
and theoretical studies of isomeric (chemical) shifts in Möss-

TABLE II. Sensitivity of Mössbauer transitions to variation of the fine-structure constant. Coulomb energy shifts �EC and enhancement
factors K are calculated using data from quadrupole moments [58] and isomeric shift measurements [59]. In columns 2 and 4 we use the
constant-density ansatz, where we have assumed a 25% error from the ansatz, Eq. (12), and 50% error in the values of �〈r2〉 from Mössbauer
isomer shifts [59]. The Eu isomers have more accurate values of �〈r2〉 taken from muonic x-ray and Mössbauer data [60–62]. Columns 3 and
5 use experimental values of �Q0 from [58] in the general formula, (10). The ground-state 〈r2〉 values are taken from [41]. 229Th results are
shown for comparison (discussed in the text).

�EC (MeV) |K|
Constant density General Constant density General

151Eu, 22 keV −0.099 (51) −0.099 (85) 4.6 (2.4) 4.6 (4.0)
153Eu, 103 keV 0.32 (18) 0.02 (15) 3.1 (1.8) 0.2 (1.5)
155Gd, 105 keV 0.030 (22) 0.08 (32) 0.28 (21) 0.8 (3.1)
157Gd, 64 keV −0.055 (41) −0.06 (21) 0.86 (63) 0.9 (3.3)
161Dy, 75 keV −0.031 (23) 0.29 (55) 0.42 (31) 3.8 (7.4)
181Ta, 6 keV 0.19 (13) 0.20 (26) 30 (21) 32 (41)
243Am, 84 keV 0.23 (17) 0.45 (75) 2.8 (2.0) 5.4 (9.0)
229Th, 8 eV −0.067 (19) −0.26 (39) 0.82 (25) 104 3.1 (4.8) 104
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bauer spectroscopy, which also involve effects of the change
in the nuclear charge radius and electric quadrupole moment
between the ground and the excited nuclear states connected
by a γ transition. X-ray studies of muonic atoms are also able
to deduce these nuclear properties. Using the same technique
as in 229Th we calculated the Coulomb energy difference �EC

and the relative sensitivity to α variation K for nuclei where
we have found sufficient experimental data. The results are
presented in Table II. The enhancement factors K for Möss-
bauer transitions (K = �EC/Eis ∼ 1–30) are much smaller
than K for 229Th since the energy of Mössbauer transitions is
much higher, E ∼ 5–100 keV. However, they are comparable
or even larger than K ∼ 0.1–6 in atomic clocks. The energy
resolution in Mössbauer γ transitions may be as good as
10−18; see, e.g., the measurement of the gravitational red shift
in Ref. [57], where such a resolution was achieved after 5
days of measurements. This is even higher than that achieved
recently in optical transitions, 10−17 to 10−18. However, the

authors of Ref. [57] noted a problem with solid-state effects,
which are difficult to control.

The results in Table II serve as a test of the constant density
ansatz. The predictions for �EC using the constant-density
model and using the more general formula, (10), with exper-
imental data for both �〈r2〉 and �Q0 agree within the error
bars. In these examples, using one of the values of �〈r2〉 or
�Q0, the constant-density ansatz reproduces the other value
within error bars. This provides a check on the validity of the
ansatz.
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