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many-electron states with correlon quasiparticles
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On-top conditional correlation functions of many-electron theory are rearranged into a set of correlon
quasiparticles representing the local effect of electron correlation in the ground and excited states. An individual
correlon is characterized with a one-particle wave function, the imaginary part of which (or covalent correlon)
gives the amplitude of the on-top depletion of the (conditional electron) charge (ODC) due to (strong) electron
correlation. In its turn, the real part (ionic correlon) gives the amplitude of the on-top accumulation of the
(electron) charge (OAC) due to the ionic squeezing of electrons. The proposed correlon theory is applied to
analyze the local correlation effects in the ground and first excited states of the hydrogen molecule as well as of
the equidistant and alternate linear hydrogen chains from H4 to H12. The covalent and ionic correlons obtained
at the multiconfigurational self-consistent-field level of correlated functions are demonstrated to be the robust
descriptors of the covalency of the ground and the ionicity of the excited Hn states.

DOI: 10.1103/PhysRevA.102.052829

I. INTRODUCTION

A full description of ground and excited states in many-
electron theory requires knowledge of a set {�P

N (x1, . . . , xN )}
of the N-electron wave functions (x stays for the combination
of the spatial r and spin s electron coordinates) [1]. The diago-
nal part ρP

N (x1, . . . , xN ) of the corresponding N-order density
matrix for the Pth state

ρP
N (x1, . . . , xN ) = ∣∣�P

N (x1, . . . , xN )
∣∣2

(1)

gives the density probability of the electron configura-
tion, in which the ith electron has the coordinate xi

[2]. In particular, comparing the ground-state (G) corre-
lated quantities �G

N (x1, . . . , xN ) and ρG
N (x1, . . . , xN ) with

their Hartree-Fock (HF) counterparts �
G(HF)
N (x1, . . . , xN ) and

ρ
G(HF)
N (x1, . . . , xN ), one can, in principle, analyze and eval-

uate the effect of the electron Coulomb correlation in the
ground state. In this way, however, we encounter the involved
task of the direct operation with the above-mentioned compli-
cated N-electron objects. Furthermore, for excited states of a
manifestly multiconfigurational nature the very notion of the
HF approximation becomes ambiguous.

A promising way to efficiently resolve these problems is
the on-top one-electron description of electron correlation. It
is based on the on-top pair density �P(r), which is defined as
the pair density function ρP

2 (r1, r2) evaluated at the electron
coalescence point r1 = r2 = r [3]

�P(r) = ρP
2 (r, r) = N (N − 1)

∫
...

∫ ∣∣�P
N (x1, . . . , xn)

∣∣2

× dσ1 . . . dσN dr3 . . . drN |r1=r2=r, (2)

*o.gritsenko@vu.nl

where σi denotes a spin coordinate. The considered on-top
approach naturally separates out the leading effect of the
Coulomb correlation of electrons with the opposite spins. In-
deed, due to the antisymmetry of the fermionic wave function,
the same-spin component of the on-top pair density is zero,
�P(↑↑)(r) = 0, so �P(r) is identically equal to its opposite-
spin component �P(↑↓)(r)

�P(r) ≡ �P(↑↓)(r). (3)

Then, one can unambiguously define for both ground and ex-
cited singlet states the correlation on-top pair-density function
�P(↑↓)

c (r)

�P(↑↓)
c (r) = �P(↑↓)(r) − 1

2 [ρP(r)]2, (4)

where the second term, the half of the square of the electron
density ρP(r), is the (explicitly) uncorrelated counterpart of
�P(↑↓)(r). The related to �P(↑↓)

c (r) on-top correlation func-
tions can be efficiently used for the reduced description of the
electron correlation of the opposite-spin electrons. Note that
the pair-density functions �P(r) and �P(↑↓)

c (r) are employed
to connect wave-function theory (WFT) [1] and density func-
tional theory (DFT) [4–7] in the ongoing development of
effective combined methods of the electronic structure calcu-
lations [8–12].

Below, the on-top pair-density description will be em-
ployed to analyze the true physical meaning of the con-
ventional classification of molecular electronic states as
“covalent” or “ionic,” according to the nature of their electron
correlation. The prototype example of this classification are
the covalent ground 11�+

g and the ionic excited 11�+
u states

of the H2 molecule. The first state is characterized with a
considerable strong (nondynamic) electron correlation, which
increases with the H-H bond stretching. Due to this, the
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FIG. 1. (a) Covalent and (b) ionic correlons obtained with MCSCF wave function for the H2 molecule in the ground state. Dotted lines
indicate positions of nuclei. Molecule positioned along the Z axis.

11�+
g state displays the covalent pattern of dissociation of

the two-electron bond, according to which the electron of a
particular spin is located on one H atom, while the electron
of the opposite spin is located on another H atom [13]. In
physics, such a pattern is represented with the paradigmatic
Hubbard model [14]. At variance with this, in the excited
11�+

u state strong electron correlation is suppressed with the
ionic two-electron distribution, which is characterized with a
symmetrized combination of the ionic configurations H+ and
H− [1]. A question of the assignment of electronic states as
“covalent” or “ionic” was addressed in our previous work
[12]. The descriptor of the nature of the state was proposed
based on the specific influence of nondynamic correlation on
the energy of dynamic correlation evaluated for a given state.

In this paper, a correlon quasiparticle is proposed to de-
scribe electron correlation in a given many-electron state. The

quasiparticle approach, which is widely applied in molec-
ular theory [15] and solid state physics [16], represents
various many-electron effects as particle-like entities within
the one-particle approach. In general, electron excitations
are described with exciton quasiparticles, the bound states
of an electron and a hole [15,17,18]. The present introduc-
tion of correlons for a specialized description of electron
correlation is motivated with the following features of the
above-mentioned on-top approach.

(1) The function �P(↑↓)
c (r) of Eq. (4) offers a one-particle

picture of the local effect of electron correlation at each spatial
point r.

(2) The corresponding quasiparticle approach allows one
to reduce the description of electron correlation with the set of
the correlated many-electron states {�P

N (x1, . . . , xN )} to that
with a set of correlon quasiparticles.

-4 -2 0 2 4
Z(bohr)

0

0.005

0.01

0.015

0.02

cE(
co

v)

(a)

-4 -2 0 2 4
Z(bohr)

0

0.005

0.01

0.015

0.02

cE(
io

ni
c)

(b)

FIG. 2. (a) Covalent and (b) ionic correlons obtained with MCSCF wave function for the H2 molecule in the excited state. Dotted lines
indicate positions of nuclei. Molecule positioned along the Z axis.
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FIG. 3. (a) Covalent and (b) ionic correlons obtained with FCI wave function for H2 molecule in the ground state. Dotted lines indicate
positions of nuclei. Molecule positioned along the Z axis.

(3) The regions with the relative on-top depletion (ODC)
or accumulation (OAC) of the electron charge (compared
to the uncorrelated reference), which are related to the
covalent or ionic character of a given state, can be conve-
niently separated to the imaginary or real, respectively, parts
of the correlon wave function (see below).

In the next section a detailed description of the proposed
correlon quasiparticle approach to electron correlation will be
given.

II. CORRELON QUASIPARTICLE DESCRIPTION
OF ELECTRON CORRELATION

In this section we propose a kinematic quasiparticle local
description of electron correlation of the opposite-spin elec-
trons, which does not use any interaction operators. Instead,
it is derived solely from the generic wave function �P

N of
the considered molecular state. To this end, we introduce for

closed-shell systems the on-top reduction chain (ORC) of the
correlation functions

�P(↑↓)
c (r) → ρ

c,P(↑↓)
cond (r) → gP(↑↓)

c (r) → ψP
c (r). (5)

The ORC starts with the correlation on-top pair-density func-
tion �P(↑↓)

c (r) of Eq. (4). Its second member is the correlation
part ρ

c,P(↑↓)
cond (r) of the on-top conditional density ρ

P(↑↓)
cond (r, r)

obtained with the division of �P(↑↓)
c (r) by the electron

density ρP(r)

ρ
c,P(↑↓)
cond (r) = �P(↑↓)

c (r)

ρP(r)
= ρ

P(↑↓)
cond (r, r) − 1

2
ρP(r). (6)

The third member of the ORC is the opposite-spin on-top
pair-correlation function gP(↑↓)

c (r) obtained, again, with the
division of the preceding ORC member by the density ρP(r)

gP(↑↓)
c (r) = ρ

c,P(↑↓)
cond (r)

ρP(r)
. (7)
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FIG. 4. (a) Covalent and (b) ionic correlons obtained with FCI wave function for the H2 molecule in the excited state. Dotted lines indicate
positions of nuclei. Molecule positioned along the Z axis.
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TABLE I. Interatomic distances in bohr for equidistance (R)
and alternate (R1 and R2) linear hydrogen chains Hn. Geometries
optimized with MOLPRO program package [20] for CAS(n, n) wave
functions.

n R R1 R2

4 1.735 1.456 6.389
6 1.807 1.456 6.848
12 1.866 1.456 7.556

To convert the on-top description of electron correlation to the
quasiparticle picture, we introduce the correlation amplitude
cP(r), the square root of the function (7)

cP(r) =
√

gP(↑↓)
c (r). (8)

The function cP(r) naturally separates the ODC and OAC
regions with the depletion [gP(↑↓)

c (r) < 0] or accumulation
[gP(↑↓)

c (r) > 0] of the charge of other electrons of opposite
spin on top of the reference electron of a particular spin at r.

Indeed, the first regions are represented with the nonvanishing
imaginary part of the correlation amplitude Im[cP(r)] In their
turn, the charge accumulation regions are represented with its
non-vanishing real part Re[cP(r)].

By its definition, the correlation amplitude cP(r) does not
vanish in the energetically unimportant regions of low elec-
tron density ρP(r). Because of this, it is not normalizable by
itself, so it cannot be directly employed as a quasiparticle
wave function. Then, to turn it into a normalizable function,
which would describe electron correlation in the important
spatial regions, we apply the density cutoff to the on-top
pair-correlation function (7)

g̃P(↑↓)
c (r) = gP(↑↓)

c (r)
ρP(r)

a + ρP(r)
. (9)

With a sufficiently small parameter a of the cutoff Padé ap-
proximant in Eq. (9), the function g̃P(↑↓)

c (r) is approximately
equal to the original function gP(↑↓)

c (r), g̃P(↑↓)
c (r) ≈ gP(↑↓)

c (r)
in the energetically important regions of typical atomic and
molecular energy densities. On the other hand, g̃P(↑↓)

c (r) de-
cays exponentially with ρP(r) in the regions of low density.
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FIG. 5. H4 equidistant chain. Covalent [panels (a) and (c) for ground and excited states, respectively] and ionic [panels (b) and (d) for
ground and excited states, respectively] correlons. Dotted lines indicate positions of nuclei. Molecule positioned along the Z axis.
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FIG. 6. H4 alternate bond chain. Covalent [panels (a) and (c) for ground and excited states, respectively] and ionic [panels (b) and (d) for
ground and excited states, respectively] correlons. Dotted lines indicate positions of nuclei. Molecule positioned along the Z axis.

With this cutoff, we propose a unified quasiparticle de-
scription of electron correlation in the ground and excited
states. To this end, we introduce for each N-electron state
�P

N (x1, . . . , xN ) the corresponding correlon quasiparticle rep-
resenting, with the one-electron wave function ψP

c (r), the last
member of the ORC (5)

ψP
c (r) = 1√

NP
c

√
g̃P(↑↓)

c (r), (10)

where NP
c is its normalization

NP
c =

∫ ∣∣g̃P(↑↓)
c (r)

∣∣dr. (11)

Turning into the correlation amplitude cP(r) of Eq. (8) in
the regions of the nondecaying electron density, the correlon
wave function ψP

c (r) of Eq. (10) acquires a natural separa-
tion of the ODC and OAC regions of the former function.
Specifically, the imaginary part of the correlon wave func-
tion Im[ψP

c (r)] represents ODC due to correlation with the
reference electron at r, which characterizes the many-electron
states of the covalent nature. Then, this part can be called a

“covalent” correlon

Im
[
ψP

c (r)
] ≡ ψP(cov)

c (r), (12)

a kinematic local index describing the magnitude and location
of the covalent correlation mode. In its turn, the real part
Re[ψP

c (r)] represents OAC due to the “ionic squeezing” of
electrons. So this part can be called an “ionic” correlon

Re
[
ψP

c (r)
] ≡ ψP(ionic)

c (r). (13)

In the next section the introduced covalent and ionic correlons
will be constructed for the ground and first excited states of
the paradigmatic H2 molecule.

III. COVALENT AND IONIC CORRELONS
FOR THE HYDROGEN MOLECULE

In the case of the H2 molecule, the sharpest separation
of the ODC and OAC effects is given with the simplest
two-configuration approximations �G

2 and �E
2 to the ground

(G) covalent 1 1�+
g and excited (E ) ionic 1 1�+

u states, re-
spectively, mentioned in the Introduction. Specifically, the

052829-5
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FIG. 7. H6 equidistant chain. Covalent [panels (a) and (c) for ground and excited states, respectively] and ionic [panels (b) and (d) for
ground and excited states, respectively] correlons. Dotted lines indicate positions of nuclei. Molecule positioned along the Z axis.

approximate ground state �G
2 is a linear combination

�G
2 = c0�0 + cuu

gg�
uu
gg = (

c0 − cuu
gg

)
�0 + cuu

gg�
HL
2 (14)

of the reference Slater determinant �0 representing the 1σ 2
g

configuration and its double excitation �uu
gg to the configura-

tion 1σ 2
u , where 1σg and 1σu are the bonding occupied and

antibonding virtual molecular orbitals (MOs) of H2. Equiv-
alently, �G

2 is written in Eq. (14) as the linear combination
of �0 and the Heitler-London (HL)-type wave function �HL

2
[19], which includes the 1σ 2

g and 1σ 2
u with the equal weights.

It is �HL
2 , which introduces strong electron correlation for the

stretched H-H bond.
In this paper the multiconfiguration self-consistent-field

(MCSCF) method is used, in which both expansion coeffi-
cients c0, cuu

gg and the orbitals 1σg, 1σu of the wave function
(14) are simultaneously optimized. The MCSCF calculations
are performed with the MOLPRO program package [20]. The
subsequent construction of the correlons is carried out with
the home-brew codes, which accept the MOLPRO molecular
integrals and pair densities. The basis set cc-pVDZ has been
employed in all calculations presented in this work [21]. The

cutoff parameter in the on-top pair-correlation function (9) is
set to a = 0.01.

Figure 1 displays the covalent ψG(cov)
c and ionic ψG(ionic)

c
correlons obtained from the ground-state wave function (14)
at the equilibrium H2 geometry, with the H nuclei placed at
0.7 and −0.7 bohr. The covalent correlon spans prominently
over the whole range of the electron coordinate r variation [see
Fig. 1(a)]. Around the nuclei, ψG(cov)

c reaches the maximum,
while it rather sharply vanishes in the less important energet-
ically bond midpoint region. At variance with this, the ionic
correlon ψG(ionic)

c reduces to only a very sharp residual peak
around the bond midpoint [see Fig. 1(b)]. From this, one can
conclude that, in agreement with the conventional assignment,
the present correlon analysis attributes the covalent correlation
character to the ground state of the H2 molecule represented
with �G

2 .
We proceed with first excited state �E

2 of H2, which in
the minimal MCSCF approach consists of just one spin-
adapted singly excited 1σg1σu configuration. It represents the
above mentioned “ionic squeezing” of two opposite-spin elec-
trons of H2. Figure 2 depicts the corresponding covalent and
ionic correlons. The magnitude and the location of the latter

052829-6
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FIG. 8. H6 alternate bond chain. Covalent [panels (a) and (c) for ground and excited states, respectively] and ionic [panels (b) and (d) for
ground and excited states, respectively] correlons. Dotted lines indicate positions of nuclei. Molecule positioned along the Z axis.

displays the reversed pattern compared to that of the ground
state. Indeed, the ionic correlon wave function ψE (ionic)

c con-
sists of two prominent peaks in the atomic regions outside
the bonding region [see Fig. 2(b)]. In its turn, the covalent
correlon ψE (cov)

c is located in the less important bond midpoint
region [see Fig. 2(a)]. From this marked qualitative difference
with the ground-state correlon pattern mentioned above, one
can conclude that, again in agreement with the conventional
assignment, the correlon analysis attributes the ionic character
to the first excited state of the H2 molecule.

To analyze the additional effect of the short-range dynamic
correlation on the shape and location of the correlons, Fig-
ures 3 and 4 display the covalent and ionic correlons obtained
from the accurate ground �

G(FCI)
2 and excited �

E (FCI)
2 state

wave functions of the full CI (FCI) in the chosen basis. Appar-
ently, the additional dynamic correlation increases the ODC
and decreases the OAC effects. Because of this, in the ground
FCI state �

G(FCI)
2 only the covalent correlon ψG(cov)

c remains
[see Fig. 3(a)], while the ionic correlon ψG(ionic)

c totally dis-
appears [see Fig. 3(b)]. At variance with this, in the excited
FCI state �

E (FCI)
2 the ionic correlon ψE (ionic)

c is present and
it retains its location, though the amplitude and the width of

the ionic correlon peaks are considerably reduced compared
to those obtained from the minimal MCSCF wave function
[compare Figs. 2(b) and 4(b)]. Still, the observed qualitative
difference in the correlon pictures allows to attribute the co-
valent character to the ground state and the ionic character to
the first excited state also at the FCI level.

IV. COVALENT AND IONIC CORRELONS
FOR HYDROGEN CHAINS

In this section, the extension of the simple two-
configuration MCSCF approach of Sec. II is applied to the
correlon construction for the ground �G

N and first excited �E
N

of the even-member closed-shell linear hydrogen chains from
H4 to H12. This extension employs all possible excitations of
n = N electrons in the “active” orbital space of n/2 frontier
occupied and n/2 virtual orbitals of the reference determinant
�0. In quantum chemistry this MCSCF variant is called com-
plete active space SCF, CASSCF(n, n) [22–24].

From the physical point of view it is essential that the
adopted ground-state MCSCF wave function �G

N can be con-
sidered as a reliable carrier of nondynamic (strong) electron

052829-7



JANGROUEI, PERNAL, AND GRITSENKO PHYSICAL REVIEW A 102, 052829 (2020)

-10 0 10
Z(bohr)

0

0.005

0.01
cG

(c
ov

)

(a)
-10 0 10

Z(bohr)

0

0.0005

0.001

0.0015

cG
(io

ni
c)

(b)

-10 0 10
Z(bohr)

0

0.005

0.01

cE(
co

v)

(c)
-10 0 10

Z(bohr)

0

0.002

0.004

0.006

cE(
io

ni
c)

(d)

FIG. 9. H12 equidistant chain. Covalent [panels (a) and (c) for ground and excited states, respectively] and ionic [panels (b) and (d) for
ground and excited states, respectively] correlons. Dotted lines indicate positions of nuclei. Molecule positioned along the Z axis.

correlation. Indeed, by its construction, it includes all the
configurations required for the proper molecular dissociation,
which represent strong correlation. It also includes a portion
of short-range dynamic correlation, which increases with the
chain length. In its turn, the excited MCSCF state �E

N incor-
porates the above mentioned OAC effect due to the “ionic
squeezing” of electrons. The present MCSCF approach can be
considered as a reasonable compromise between the accuracy
and decent separation of the ODC and OAC effects, which
allows to employ the resultant ionic correlon as a robust local
descriptor of the ionic correlation character.

To relate the present study to the Peierls distortion in
one-dimensional chains [25], two types of the geometry are
considered. The first types are equidistant linear chains Hn

with the optimized for the ground-state common H-H bond
length R. The second types are the symmetrical chains with
two alternate H-H bond lengths R1 and R2.

Table I presents the optimized H-H bond lengths. Op-
timizations were carried out for CAS(n, n) wave functions
with the MOLPRO program package [20]. For the equidistant
chains the common bond length R slightly increases with

the chain length from 1.735 bohr for H4 to 1.866 bohr for
H12. The alternate chains are, essentially, the assemblies of
weakly bound H2 molecules. Indeed, the shorter optimized
bond length R1 is equal in all cases to 1.456 bohr, which
is just slightly longer than the equilibrium bond length of
the individual H2 molecule. The other optimized bond length
R2 is much longer, increasing with the chain length from
6.389 bohr for H4 to 7.556 bohr for H12 (see Table I).

Figures 5 to 10 display the covalent and ionic correlons for
the hydrogen chains obtained from the MCSCF wave func-
tions �G

N and �E
N . For the equidistant chains, the ground-state

covalent correlons ψG(cov)
c (r) display the atomic peaks around

the individual nuclei, which tend to merge for longer chains
[compare Fig. 5(a) for H4 with Fig. 9(a) for H12]. Evidently,
for the alternate chains the ground-state correlons represent
in all cases the combinations of those for the individual H2

fragments described in Sec. II. Then, a model Peierls distor-
tion in the considered finite chains turns the correlon picture
with the collective features (merging correlon peaks), which
is natural for the equidistant chains with the half-filled va-
lence band, to that for the alternate chains resembling the
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FIG. 10. H12 alternate bond chain. Covalent [panels (a) and (c) for ground and excited states, respectively] and ionic [panels (b) and (d) for
ground and excited states, respectively] correlons. Dotted lines indicate positions of nuclei. Molecule positioned along the Z axis.

molecular crystal. On the other hand, just as in the H2 case,
the ionic correlons for all hydrogen chain ground states are
reduced to the very sharp residual peaks around the bond
midpoints. This correlon picture indicates the covalent nature
of all ground states of both equidistant and alternate hydrogen
chains.

For the excited states of smaller equidistant hydrogen
chains the correlon picture is reversed with respect to that
for the ground states. In particular, for the H6 chain rather
sizable peaks of the ionic correlon ψE (ionic)

c (r) are located
in the atomic regions near the nuclei [see Fig. 7(d)], while
more narrow (than those in the ground state) peaks of the
covalent correlon ψE (cov)

c (r) are located in the less impor-
tant energetically bond midpoint regions [see Fig. 7(c)].
This correlon picture indicates the ionic nature of the �E

6
state.

A remarkable feature of the excited states of the longer
equidistant chain H12 is the localization of the ionic correlon
ψE (ionic)

c (r) on the central H atoms of the chains [see Fig. 9(d)].
In its turn, the covalent correlon ψE (cov)

c (r) is more localized
in this case on the side atoms [see Figs. 9(c)]. Further-

more, the localization of the ionic correlon on the central H2

fragments becomes a common pattern of the excited states of
the alternate hydrogen chains [see Fig. 10(d)].

The observed localization of the ionic correlon betrays the
single-electron character of ionic excitation. Indeed, unlike
collective electron excitations with their delocalization over
the whole system, a single-electron excitation tends to the
most energetically favorable region, which in the considered
case is the central part of the Hn chains. Then, the coex-
istence of the central ionic correlon and the side covalent
correlon signals the true mixed character of the states of the
“ionic correlation nature.” This, together with the fact, that
the clear separation of the ODC and OAC effects requires the
adopted MCSCF approach of the restricted accuracy, points
to the limitations of the concept of “ionicity” of excited
states.

At variance with this, the proposed in this paper cor-
relon quasiparticle theory can be universally formulated for
all states at any level of the accuracy of correlated wave
functions. This allows one to employ the correlons obtained
at the present MCSCF level as the robust descriptors of the
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covalent or ionic correlation character of many-electron states.
On the other hand, the correlons obtained at a higher cor-
related level offer an accurate local description of electron
correlation.

V. CONCLUSION

In the paper a universal, reduced description of electron
correlation in the ground and excited states is introduced via
the chain (5) of the on-top correlation functions. Based on this
description, a correlon quasiparticle is proposed to represent
the local effect of electron correlation in a given state.

An individual correlon is characterized with a one-particle
wave function. On one hand, the imaginary part of the wave
function gives the amplitude of the depletion of the on-top
conditional electron charge due to (strong) electron corre-
lation. On the other hand, the real part corresponds to the
amplitude of the accumulation of the on-top charge due to
the ionic squeezing of electrons. This allows one to consider
the imaginary and real parts of the correlon wave function as
the local kinematic descriptors of covalent or ionic correlation
character of a given state.

The proposed correlon quasiparticle theory is applied to
analyze the local correlation effects in the ground and first
excited states of the prototype hydrogen molecule as well as
of the paradigmatic equidistant and alternate linear hydrogen
chains from H4 to H12. The covalent and ionic correlons
obtained at the restricted MCSCF level of correlated functions
are demonstrated to be the robust descriptors of the covalency
of the ground and the ionicity of the excited Hn states. They

can be efficiently combined with correlons obtained at higher
correlated levels to analyze the manifestation of the covalent
or ionic features in the accurate distribution of the on-top
conditional electron charge.

The considered Hn states are characterized with the typ-
ical patterns of the correlon amplitude. Specifically, in all
ground states the ionic correlon is reduced to the residual
peaks around the midpoints of the H-H bonds. At variance
with this, in the excited states of the equidistant Hn chains
ionic correlons display more prominent atomic peaks, while
covalent correlons tend to localize in the bond midpoint re-
gions. For the excited states of the alternate chains and longer
equidistant chains the localization of ionic correlons in the
central fragments and covalent correlons in the side fragments
is observed. This betrays the single-electron nature of ionic
excitations and indicates the true mixed character of “ionic”
states in the general case.

Further development of the proposed correlon theory
would include evaluation of the electron correlation energy of
excited states with a correlon-electron effective interaction. It
can serve as a basis of the corresponding one-electron approx-
imations, alternative to those of DFT [4–7], the formulation
of which for excited states suffers from the well-known com-
plications. The above-mentioned development of the present
correlon theory will be addressed in our further work.
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