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The largest hyperfine interaction coefficients in the hydrogen molecular ion HD+, i.e., the electron-proton
and electron-deuteron spin-spin scalar interactions, are calculated with estimated uncertainties slightly below 1
ppm. The (Zα)2EF relativistic correction for which a detailed derivation is presented, QED corrections up to
the order α3 ln2(α) along with an estimate of higher-order terms, and nuclear structure corrections are taken
into account. Improved results are also given for the electron-proton interaction coefficient in H+

2 , in excellent
agreement with rf spectroscopy experiments. In HD+, a 4σ difference is found in the hyperfine splitting of the
(v, L) = (0, 3) → (9, 3) two-photon transition that was recently measured with high precision. The origin of
this discrepancy is unknown.
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I. INTRODUCTION

The interest of laser spectroscopy of the HD+ molecular
ion for the metrology of fundamental constants was pointed
out more than 40 yr ago [1]. This potential was recently
realized in two experiments in which a one-photon rotational
transition [2] and a two-photon vibrational transition [3] were
measured in the Lamb-Dicke regime thereby suppressing
the first-order Doppler broadening. In these works, a spin-
averaged transition frequency was deduced from the measured
hyperfine components with respective accuracies of 13.5 and
2.9 parts per 1012, and compared to theoretical predictions [4],
allowing to improve the determination of the proton-electron

mass ratio. On the other hand, the experimental data also
enable a high-precision investigation of the hyperfine struc-
ture of HD+. In the case of the rotational transition [2], six
hyperfine components were measured with uncertainties of
a few tens of hertz, whereas in the vibrational transition [3],
two hyperfine components were measured with uncertainties
below 1 kHz.

On the theoretical side, the hyperfine structure of HD+

has been calculated within the Breit-Pauli approximation [5]
including the anomalous magnetic moment of the electron,
yielding a relative accuracy on the order of α2. The effective
spin Hamiltonian introduced in that work reads

Heff = E1(L · se) + E2(L · Ip) + E3(L · Id ) + E4(Ip · se) + E5(Id · se) + E6{2L2(Ip · se) − 3[(L · Ip)(L · se) + (L · se)(L · Ip)]}
+ E7{2L2(Id · se) − 3[(L · Id )(L · se) + (L · se)(L · Id )]} + E8{2L2(Ip · Id ) − 3[(L · Ip)(L · Id ) + (L · Ip)(L · Id )]}
+ E9

{
2L2I2

d − 3
2 (L · Id ) − 3(L · Id )2

}
, (1)

where se, Ip, and Id are the spins of the electron, pro-
ton, and deuteron, respectively, and L is the total orbital
angular momentum. The largest coefficients are the spin-
spin scalar interactions, E4 ∼ 900 and E5 ∼ 140 MHz in the
ground vibrational state, followed by the spin-orbit term E1 ∼
30 MHz and the tensor interaction constants E6, E7 in the
few-megahertz range. Other coefficients range from a few
kilohertz to a few tens of kilohertz. In order to improve the
theory further, the first priority is to calculate higher-order
corrections to the spin-spin coefficients. This has been per-
formed in Refs. [6,7] in the case of H+

2 ; here, we extend

this paper to the HD+ case [2,3,8]. In doing so, we make
further improvements in the treatment of nuclear structure
corrections and higher-order QED corrections and present
extensive numerical results for a range of rovibrational states.
This will allow a detailed comparison with recent and future
experiments when the theoretical precision of next largest
coefficients (E1, E6, E7) is sufficiently improved. Preliminary
results for the E1 coefficient have been obtained in Ref. [9].

The paper is organized as follows. In Sec. II, we briefly
review the theory of the ground-state hyperfine splitting in
atomic hydrogen and deuterium. The theory of higher-order
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corrections to E4 and E5 in HD+ is described in Sec. III.
Two contributions that require new calculations are consid-
ered separately in the next sections: the relativistic correction
on the order of (Zα)2EF , and a vibrational contribution at the
next order of α(Zα)2EF . Finally, numerical results are pre-
sented in Sec.VI and compared with available experimental
data.

II. GROUND-STATE HYPERFINE STRUCTURE IN THE
HYDROGEN AND DEUTERIUM ATOMS

The ground-state hyperfine splitting of a hydrogenlike
atom is given in the nonrelativistic approximation by the
so-called Fermi energy [10], which may be written in (SI)

frequency units as

EF = 4

3
μ0

μB

h
〈(se · μM )F=I+1/2 − (se · μM )F=I−1/2〉〈δ(r)〉

= 8

3
Z3α2cR∞μM

m

Mp

2I + 1

2I

(
1 + m

M

)3
. (2)

Here, μM is the nuclear magnetic moment, and μM is its
value in units of the nuclear Bohr magneton: μM = μMμN I/I
with μN = |e|h̄/2Mp. I is the nuclear spin, F is the total spin
quantum number (F = I + se), and Z is the nuclear charge.
Finally, m, Mp, and M are, respectively, the masses of the
electron, proton, and nucleus.

QED corrections without recoil terms have been known for
some time [11–15] and may be expressed as

�Ehfs(QED) = EF

{
ae + 3

2
(Zα)2 +

(
ln 2 − 5

2

)
α(Zα) + α(Zα)2

π

[
−8

3
ln2(Zα) + 8

3
ln(Zα)

(
ln 4 − 281

480

)
+ 16.903 772 · · ·

]

+ 0.77099(2)
α2(Zα)

π
+ D(4)(α, Zα) + · · ·

}
, (3)

where ae is the electron anomalous magnetic moment. We have kept Z in all expressions in order to identify the origins of
different corrections. Corrections on the order of α4EF have been partially evaluated [13,15]

D(4)(α, Zα) = 17

8
(Zα)4 + α(Zα)3

[(
−5 ln 2 + 547

48

)
ln(Zα) − 2.102(3)

]

+ α2(Zα)2

π2

[
−4

3
ln2(Zα) + 1.278 001 · · · ln(Zα) + 10(2.5)

]
− 1.358(1.0)

α3(Zα)

π2
. (4)

Note that the term [−2.102(3)] on the order of α(Zα)3 actu-
ally includes corrections of higher order in Zα [16–19].

In addition to QED corrections, there are recoil and nu-
clear structure corrections. In the hydrogen atom case (see
Refs. [11,13,20,21] for a detailed discussion), these correc-
tions are written as

�ES = �EZ + �E p
R + �Epol. (5)

The first and largest term is the Zemach correction [22] that
reads, including radiative corrections [23],

�EZ = −2(Zα)m
(
1 + δrad

Z

)
rZEF ∼ −40 × 10−6EF , (6)

where δrad
Z = 0.015, and rZ is the Zemach radius, a mean

radius associated with a convolution of the proton’s charge
and magnetization distributions,

rZ = 1

π2

∫
d3q

q4

[
1 − GE (−q2)GM (−q2)

μp

]
. (7)

GE and GM are the proton’s electric and magnetic form
factors. The second term of Eq. (5) is the recoil correc-
tion where contributions at orders (Zα)(m/M )EF [21,24–
26], (Zα)2(m/M )EF [26], and the α(Zα)(m/M )EF radiative-
recoil correction [23] add up to around 5.8 × 10−6EF [21,27].
Finally, the last term is the proton polarizability correc-
tion, evaluations of which yielded the values of 1.4(6) ×
10−6EF [27] and 1.88(64) × 10−6EF [21].

The deuterium atom case is different due to the deuteron
being a much more weakly bound system than the proton.

Nuclear structure corrections are dominated in this case by the
deuteron polarizability contribution which amounts to about
240 × 10−6EF [28], whereas the Zemach term contributes at
a level of ∼− 100 × 10−6EF [29].

In order to get accurate predictions of the HD+ Fermi
interaction terms, we will make use of the fact that the
total nuclear corrections can be determined phenomeno-
logically with very good accuracy by subtracting the re-
sults of the pure QED calculation from the experimental
value,

�Ehfs(nucl) = Ehfs(exp) − Ehfs(QED), (8)

with Ehfs(QED) = EF + �Ehfs(QED). Being due to short-
range interactions, the nuclear correction is mainly deter-
mined by the squared value of the electronic wave function
at the nucleus [ψ (0)2] and only very weakly depends on its
value at finite distances. This dependence may be neglected
without serious loss of accuracy, which allows us to directly
plug the nuclear correction as determined phenomenologi-
cally from the experimental atomic hyperfine splitting in the
theory of hydrogen molecular ions as detailed in the next
section.

A summary of QED contributions and the nuclear correc-
tion obtained from Eq. (8) are shown in Table I for both the
H and the D atoms. For completeness, one should mention
additional small corrections not included in Ehfs(QED) from
muonic and hadronic vacuum polarizations [23] and weak
interaction [30]. Ehfs(nucl), therefore, corresponds to a sum
of nuclear corrections and of these contributions.
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TABLE I. Contributions (in kilohertz) to the ground-state hyper-
fine splitting in the hydrogen and deuterium atoms. The first row is
the Fermi energy [Eq. (2)], and rows 2–5 are the QED corrections as
written in the first line of Eq. (3). �Eho corresponds to the terms ap-
pearing in the second line of Eq. (3); uncertainties take into account
the theoretical uncertainties indicated in Eq. (4) as well as uncertain-
ties of the nuclear magnetic moment values. The experimental values
are, respectively, taken from an adjustment performed in Ref. [31] for
the hydrogen atom and from Ref. [32] for deuterium.

H D

EF 1 418 840.093 326 967.681
aeEF 1 645.361 379.169
�E(Zα)2 113.333 26.117
�Eα(Zα) −136.517 −31.460
�Eα(Zα)2 ln2 (Zα) −11.330 −2.611
�Eho 1.089(1) 0.251(1)
Ehfs(QED) 1 420 452.028(1) 327 339.147(1)
Ehfs(exp) 1 420 405.751 768(1) 327 384.352 522(2)
Ehfs(nucl) −46.276 45.205
Ehfs(nucl)/EF (ppm) −32.616 138.256

III. SPIN-SPIN SCALAR INTERACTIONS IN HD+

From here on, we use atomic units. Such as in atoms, the
electron-proton and electron-deuteron spin-spin scalar inter-
actions are given at the leading orders (mα4 and mα5) by the
Fermi term appearing in the Breit-Pauli Hamiltonian, taking
into account the anomalous magnetic moment ae of the elec-
tron [5],

H (0)
ss = α2 8π

3
(1 + ae)

m

Mp

×
[
μpδ(rp)(se · Ip) + μd

2
δ(rd )(se · Id )

]
. (9)

The leading contributions to the E4 and E5 hyperfine coeffi-
cients [see Eq. (1)] are then

E (lo)
4 = (1 + ae)E (F )

4 , E (F )
4 = α2 8π

3

m

Mp
μp〈δ(rp)〉, (10)

E (lo)
5 = (1 + ae)E (F )

5 , E (F )
5 = α2 4π

3

m

Mp
μd〈δ(rd )〉. (11)

This corresponds to the leading-order contribution of Eq. (2)
with the first term of Eq. (3) included as well and was the only
contribution considered in Ref. [5].

In order to improve the theoretical values of E4 and E5, one
should consider higher-order QED corrections and nuclear
structure effects as seen for the atomic case in the previous
section. A key point is that the major part of these contri-
butions are state independent, i.e., contact-type interactions
only depending on the value of the squared density of the non-
relativistic wave function at the electron-nucleus coalescence
point. Such contributions are given by a fixed coefficient taken
from the H (respectively, D) atom theory regarding corrections
to E4 (respectively, E5) multiplied by the expectation values
of δ-function operators in HD+, which have been already
obtained with very high accuracy from variational three-body
wave functions [33]. Thus, they do not require any new cal-
culations. The most important state-dependent contribution is

the relativistic correction on the order of (Zα)2EF [the second
term of Eq. (3) in the atomic case, also known as the “Breit
correction”]. This term requires an independent calculation,
which is presented in the next section. All other terms are
included in the form of contact interactions,

Eα(Zα)
4,5 =

(
ln 2 − 5

2

)
α2E (F )

4,5 , (12)

Eα(Zα)2 ln2(Zα)
4,5 = − 8

3π
ln2(α)α3 E (F )

4,5 , (13)

E (ho)
4,5 = 0.767 × 10−6E (F )

4,5 , (14)

E (nucl)
4 = −32.616 × 10−6E (F )

4 , (15)

E (nucl)
5 = 138.256 × 10−6E (F )

5 . (16)

The expressions of the first two terms are exact, whereas the
next ones are obtained by neglecting the state dependence of
the respective contributions. Among the higher-order nonre-
coil QED corrections [Eq. (14)], the largest state-dependent
term is that on the order of α(Zα)2 ln(Zα) [the first term
in the second line of Eq. (3)]. Among nuclear corrections
[Eqs. (15) and (16)], the only term having a non-negligible
state dependence is the recoil correction on the order of
(Zα)2(m/M )EF [26], whereas for other terms the state de-
pendence is much smaller, e.g., they contribute to the specific
difference D21 = 8Ehfs(2S) − Ehfs(1S) at the level of a few
hertz only [31]. The uncertainty induced by the approximate
expressions (14)–(16) can be estimated as equal to the sum
of all state-dependent contributions, leading to a theoretical
uncertainty,

�E4 ∼ 0.93 × 10−6E (F )
4 , �E5 ∼ 0.59 × 10−6E (F )

5 . (17)

The difference between the proton and the deuteron cases
stems from the different magnitude of the (Zα)2(m/M )EF

recoil correction [26].

IV. THE (Zα)2EF RELATIVISTIC CORRECTION

We now derive the Breit correction to the spin-spin scalar
interaction coefficients (E4 and E5) in HD+. In the H+

2 ion,
the corresponding contribution was calculated in Refs. [6,7].
The derivation presented here for HD+ is similar in spirit
but differs in the details due the existence of two separate
interaction constants instead of a global interaction between
the electron spin and the total nuclear spin.

We use the adiabatic approximation and calculate the cor-
rection to the bound electron. The nonrelativistic electronic
Hamiltonian is

H0 = p2

2m
+ V, V = −Z1

r1
− Z2

r2
, (18)

where p is the electron’s impulse operator, Z1, Z2 are the nu-
clear charges, and r1, r2 are the distances between the electron
and the nuclei. In what follows we will assume that Z1 =Z2 =
Z . We, respectively, denote by E0 and ψ0 the nonrelativistic
energy and wave function (in our numerical calculations, we
will consider only the ground 1sσ electronic state).

The first step consists in deriving the effective potentials on
the order of mα6(m/M ) by the nonrelativistic QED approach.
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This was performed in Ref. [6], and these potentials were
later rederived in Ref. [9] along with other spin-dependent
interactions on the order of mα6. Here, we use the notations

of Ref. [6]. The potentials contributing to the spin-spin scalar
interactions are the following: (Eq. (42) of Ref. [6], see also
Eq. (33) of [9]):

V4 = −α4 1

4m3

{
p2,

[
8π

3
se · μiδ(ri ) − r2

i se · μi − 3(se · ri )(μi · ri )

r5
i

]}
,

V6 = α4 Z

6m2

[
2(r1 · r2)(se · μI )

r3
1r3

2

+ (r1 · r2)(se · μI ) − 3(r1 · se)(r2 · μ2) − 3(r2 · se)(r1 · μ1)

r3
1r3

2

]
,

V8 = α4 Z

6m2

[
2(se · μi )

r4
i

+ r2
i (se · μi ) − 3(ri · se)(ri · μi )

r6
i

]
. (19)

Here, {X,Y } = XY + Y X. μ1,μ2 are the nuclear magnetic moments (μ1 ≡ μp, μ2 ≡ μd ), and μI = μ1 + μ2. In each line, the
first and second terms contribute to scalar and tensor interactions, respectively. Keeping only the terms contributing to scalar
interactions, we arrive at the total effective Hamiltonian,

H (6)
s = α4

[
− 1

6m3

{
p2, 4πδ(r1)

} + Z

3m2

(
1

r4
1

+ r1 · r2

r3
1r3

2

)]
se · μ1 + α4

[
− 1

6m3

{
p2, 4πδ(r2)

} + Z

3m2

(
1

r4
2

+ r1 · r2

r3
1r3

2

)]
se · μ2.

(20)

From now on, we focus on the se ·μ1 interaction term, calcu-
lations for the other term being identical. It may be rewritten
as

H (6)
s1 = α4

3Zm2

[
− 1

2m
{p2, ρ1} + E1 · E

]
se · μ1, (21)

with the definitions: Vi = −Z/ri, 4πρi = �Vi, E i =
−∇Vi (i = 1, 2), and ρ = ρ1 + ρ2, E = E1 + E2.

According to the nonrelativistic perturbation theory, the
total energy correction on theorder of mα6(m/M ) to the se ·μ1
interaction is given by

�E (6)
s1 = 〈

H (6)
s1

〉 + 2α4
〈
H (2)

B Q(E0 − H0)−1QH (1)
ss1

〉
. (22)

Here, we have omitted a second-order perturbation term
induced by the electronic spin-orbit and nuclear spin-orbit
interactions (respectively, denoted by Hso and HsoN in Eq. (28)
of Ref. [9]), which is negligibly small for σ electronic states.
The brackets denote an expectation value over the nonrela-
tivistic electronic wave function ψ0, and Q is a projection
operator on a subspace orthogonal to ψ0. H (1)

ss1 is the leading-
order Fermi interaction, and H (2)

B is the spin-independent part
of the Breit-Pauli Hamiltonian accounting for leading-order
relativistic corrections to the bound electron,

H (2)
B = − p4

8m3
+ Z

8m2
4π [δ(r1) + δ(r2)],

H (1)
ss1 = 2

3m
H (1)

B1 se · μ1, (23)

here H (1)
B1 = 4πZδ(r1). Both terms in Eq. (22) are divergent,

but their sum is finite. They need to be transformed in order to
separate and cancel divergent terms as was performed in [6]
for H+

2 .
The first-order term can be transformed using the rela-

tionship p2	0 = 2m(E0 − V )	0, commutation relations, and
integration by parts (see the Appendix for details). One gets,

using Eq. (A4b),

〈
H (6)

s1

〉 = α4

3Zm2
[−〈E1 · E〉 + 4m〈V1V

2〉 − 4mE0〈V1V 〉
+ 2〈pV1V p〉 + 4π〈V2ρ1 − V1ρ2〉
− 8πE0〈ρ1〉]〈se · μ1〉. (24)

Let us now consider the second-order term. We introduce
the first-order perturbation wave function 	

(1)
B1 , solution of the

equation,

(E0 − H0)	 (1)
B1 = QH (1)

B1 	0. (25)

This wave function behaves, such as 1/r1 in the limit r1 → 0.
The 1/r1 singularity can be separated by setting

	
(1)
B1 = −2Zm

r1
	0 + 	̃

(1)
B1 = U1	0 + 	̃

(1)
B1 , U1 = 2mV1,

where 	̃
(1)
B1 is a less singular function, behaving, such as ln r1

at r1 → 0 and is a solution of the equation,

(E0 − H0)	̃ (1)
B1 = (

H ′(1)
B1 − 〈

H ′(1)
B1

〉)
	0,

H ′(1)
B1 = −(E0 − H0)U1 − U1(E0 − H0) + H (1)

B1 .

Similarly, for HB
(2), we introduce the first-order wave-function

	
(2)
B ,

(E0 − H0)	 (2)
B = QH (2)

B 	0, (26)

and separate its 1/r1 and 1/r2 singularities,

	
(2)
B = Z

4m

[
− 1

r1
− 1

r2

]
	0(r) + 	̃

(2)
B = U2	0 + 	̃

(2)
B ,

U2 = − 1

4m
V.

Here 	̃
(2)
B is a solution of the equation,

(E0 − H0)	̃ (2)
B = (

H ′(2)
B − 〈

H ′(2)
B

〉)
	0,

H ′(2)
B = −(E0 − H0)U2 − U2(E0 − H0) + H (2)

B .
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Then, the divergent part of the second-order term can be separated as follows:

�EA1 = α4 4

3m
〈	0|H (2)

B Q(E0 − H0)−1QH (1)
B1 |	0〉〈se · μ1〉

= α4 4

3m
(〈	0|(H (2)

B − 〈H (2)
B 〉)U1|	0〉 + 〈	0|U2(H ′(1)

B1 − 〈H ′(1)
B1 〉)|	0〉 + 〈	0|H ′(2)

B Q(E0 − H0)−1QH ′(1)
B1 |	0〉)〈se · μ1〉.

In this expression, the last term is finite. The divergences are located in the first two terms, which can be written as the expectation
value of an effective Hamiltonian,

H ′(6)
s1 = α4 2

3m

{(
H (2)

B U1+ U1H (2)
B

) + (
H (1)

B1 U2 + U2H (1)
B1

) − 2
〈
H (2)

B

〉
U1− 2

〈
H (1)

B1

〉
U2− U1(E0 − H0)U2− U2(E0− H0)U1

}
(se · μ1)

= α4 2

3Zm

[
− p4V1+ V1 p4

4m2
+ 4πZ[ρ2V1− ρ1V2]

2m
− (V1 p2V + V p2V1)

4m
− V1V

2 + E0V1V − 4m
〈
H (2)

B

〉
V1+

〈
H (1)

B1

〉
V

2m

]
(se · μ1).

(27)

Using Eqs. (A3a) and (A4a) (see the Appendix), the expecta-
tion value of H ′(6)

s1 can be transformed to

〈
H ′(6)

s1

〉 = α4 1

3Zm2
[〈E1 · E〉 − 4m〈V1V

2〉 + 8mE0〈V1V 〉

− 4π〈V2ρ1 − V1ρ2〉 − 4mE2
0 〈V1〉 − 8m2

〈
H (2)

B

〉〈V1〉
+ 〈

H (1)
B1

〉〈V 〉]〈se · μ1〉. (28)

Finally, the total correction on the order of mα6(m/M ) to
the E4 coefficient is given by

�E (6)
4 = �E ′(6)

A1 + �E ′(6)
B1 , (29)

�E ′(6)
A1 = α4 4

3

m

Mp
μp〈	0|H ′(2)

B Q(E0 − H0)−1QH ′(1)
B1 |	0〉,

(29a)

�E ′(6)
B1 = α4 2

3Z

m

Mp
μp

[
〈pV1V p〉 + 2mE0〈V1V 〉 − 2mE2

0 〈V1〉

− 4πE0〈ρ1〉 − 4m2
〈
H (2)

B

〉〈V1〉 + 1

2

〈
H (1)

B1

〉〈V 〉
]
.

(29b)

Both the second-order term and the first-order term in
which the divergent terms proportional to 〈E1 · E〉 and
to 〈V1V 2〉 have been canceled out in the sum 〈H (6)

s1 〉 +
〈H ′(6)

s1 〉 are now finite. Expressions for the E5 coefficient
are identical except that the prefactor (m/Mp)μp is replaced
by [m/(2Mp)]μd .

Comparing our final result (29a) and (29b) with the ex-
pression obtained in H+

2 , Eqs. (49) and (50) of Ref. [6], it is
easily seen that they are equivalent under the assumption that
the electronic wave function is symmetric with respect to the
exchange of nuclei, which is the case in the standard adiabatic
approximation that we will use here [34]. Indeed, under this
assumption the following equalities hold:

〈pV1V p〉 = 1
2 〈pV 2p〉, 〈V1V 〉 = 1

2 〈V 2〉,
〈V1〉 = 1

2 〈V 〉, 〈ρ1〉 = 〈ρ2〉.
In the adiabatic framework, corrections to rovibrational en-
ergy levels are obtained by averaging the correction curve
�E (6)

4,5 (R) over the adiabatic vibrational wave functions

χv,L(R). The second-order perturbation term induced by the
leading-order Fermi interaction and the spin-independent
Breit-Pauli Hamiltonian requires specific attention. The cor-
rection written in the second term of Eq. (22) accounts for
the perturbation of the electronic part of the wave function
only, and one should also take into account the perturbation
of the vibrational wave function caused by the shift of the
potential-energy curve [7]. The total correction is

�E (Zα)2

4 (v, L) = �E (Zα)2(el)
4 (v, L) + �E (Zα)2(vb)

4 (v, L),

(30)

�E (Zα)2(el)
4 (v, L) = 〈χv,L|�E (6)

4 (R)|χv,L〉, (30a)

�E (Zα)2(vb)
4 (v, L)

= 2α4〈χv,L|E (2)
B (R)Q′(E0 − Hvb)−1Q′Ess1(R)|χv,L〉.

(30b)

In the last line, Ess1(R) = 〈Hss1〉, E (2)
B (R) = 〈H (2)

B 〉, Q′ is a
projection operator onto a subspace orthogonal to χv,L, and
Hvb is the nuclear radial Hamiltonian [34],

Hvb = −�R

2μ
+ U (R) + L(L + 1)

2μR2
,

U (R) = E0(R) + Z2

R
− 〈�r〉

8μ
− 〈�R〉

2μ
,

where μ = mpmd/(mp + md ), and r denotes the electronic
coordinates.

V. VIBRATIONAL CORRECTION ON THE ORDER OF
α(Zα)2EF

There is one last contribution that should be included
in our theory. As illustrated in the preceding section, in a
molecular system, second-order correction terms consist of
an electronic contribution [the second term of Eq. (22)] and
a vibrational one [Eq. (30b)]. Our estimate of higher-order
corrections in Eq. (14) only includes the electronic part so
that the vibrational part must be included separately. One such
contribution is significant at the level of the theoretical uncer-
tainties (17), namely, the α(Zα)2EF -order term induced by the
leading-order Fermi interaction and leading-order radiative
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corrections,

�Eα(Zα)2(vb)
4 (v, L)

= 2α5〈χv,L|Erad(R)Q′(E0 − Hvb)−1Q′Ess1(R)|χv,L〉,
(31)

with

Erad(R) = 4

3

[
ln

1

α2
− β(R) + 5

6
− 1

5

]
Z〈δ(r1) + δ(r2)〉.

(32)
β(R) is the nonrelativistic Bethe logarithm for the bound
electron. Its values as a function of R can be found in the
Supplemental Material of Ref. [35].

Before discussing numerical results, it is worth summariz-
ing the improvements brought in our present treatment with
respect to that presented in Refs. [6,7] in H+

2 and used in HD+

in Refs. [2,3,8]:
(1) Nuclear corrections are determined phenomenologi-

cally from the difference between the experimental ground-
state hyperfine splitting in the H and D atoms and the QED
prediction [Eq. (8)]. Note that the treatment of Ref. [6] where
nuclear correction terms were calculated individually is ac-
tually similar in spirit since a value of the proton’s Zemach
radius deduced from the experimental H-atom ground-state
hyperfine splitting was used in that work [20]. The more self-
consistent approach used here only leads to small differences
in E4 and E5 (∼100–200 Hz).

(2) More importantly, we take into account an estimate
of higher-order nonrecoil QED corrections [Eq. (14)], which
includes as well the vibrational contribution on the order
of α(Zα)2EF [Eq. (31)]. In addition, the sum of state-
dependent corrections gives an estimate of the theoretical
uncertainty.

VI. NUMERICAL RESULTS AND DISCUSSION

We report here the results of calculations of the E4 and
E5 hyperfine coefficients in HD+ and of the bF spin-spin
coefficient in H+

2 [6,7], for a range of rovibrational states. For
the leading-order contribution [Eqs. (10) and (11)] as well
as QED and nuclear corrections [Eqs. (12)–(16)], expecta-
tion values of δ-function operators are taken from Ref. [33].
The potential curve corresponding to the (Zα)2EF relativistic
correction, E (6)

s1 (R) [Eqs. (29)–(29b)] has been shown to be
identical to that obtained in the H+

2 case [6] in the adiabatic
approximation used here. To calculate corrections to rovibra-
tional levels [Eqs. (30)–(30b) and (31)], adiabatic vibrational
wave functions are obtained by solving numerically the radial
Schrödinger equation for the nuclear motion.

In H+
2 , the results presented here represent a slight im-

provement with respect to those of Ref. [7]. As explained
above, the main improvement is that (estimated) higher-order
QED corrections are taken into account through the term
b(ho)

F = 0.767 × 10−6b(F )
F (where b(F )

F is the Fermi value of
bF ), along with the vibrational contribution [Eq. (31)]. As
shown in Table II, the excellent agreement with experiments
reported in Ref. [7] is not significantly altered by the inclusion
of higher-order QED effects. More extensive results for the
range (L = 1, 3, 0 � v � 10) are reported in Table III.

TABLE II. Theoretical and experimental values (in megahertz)
of the spin-spin scalar interaction coefficient bF for a few rovibra-
tional states of H+

2 . The rotational quantum number is L = 1.

v [7] This paper Experiment [36]

4 836.7294 836.7287(8) 836.7292(8)
5 819.2272 819.2267(8) 819.2273(8)
6 803.1750 803.1745(7) 803.1751(8)
7 788.5079 788.5075(7) 788.5079(8)
8 775.1714 775.1712(7) 775.1720(8)

In HD+, all contributions to E4 and E5 are shown in
detail in Table IV for a few rovibrational states probed in
high-precision experiments [2,3,37], whereas complete results
for a range of states (0 � L � 4, 0 � v � 10) are given in
Table V. Inspection of Table IV reveals that our values of
E4(E5) are smaller than those given in Refs. [2,3] by about
1.7 kHz (0.25 kHz) for v = 0 states, whereas differences are
much smaller for v = 9 (∼0.2 kHz for E4 and 0.03 kHz for
E5) due to the smaller value of the α(Zα)2EF vibrational
correction. This shifts the measured hyperfine components of
the L = 0 → 1 rotational transition [2] by only a few tens
of hertz, which does not significantly change the level of
agreement between theory and experiment. This is due to
a strong cancellation effect as transition frequencies essen-
tially depend on the differences E4(v = 0, L = 1) − E4(v =
0, L = 0) and E5(v = 0, L = 1) − E5(v = 0, L = 0). The
rotational transition is, thus, not a stringent test for the theory
of spin-spin scalar interactions and is much more sensitive to
the spin-orbit and tensor coefficients (E1, E6, E7) in the L = 1
state. A more detailed analysis requires calculation of higher-
order corrections to these coefficients, which is currently in
progress [9].

In the (L, v) = (3, 0) → (3, 9) two-photon transition [3],
the additional contributions included in the present paper de-
crease the theoretical value of the separation between the two
measured hyperfine components by about 1.5 kHz down to

fhfs,theo = 178.2462(18) MHz, (33)

TABLE III. Values (in megahertz) of the spin-spin scalar interac-
tion coefficient bF for rovibrational states (L, v) of H+

2 .

v bF (L = 1, v) bF (L = 3, v)

0 922.9301(9) 917.5297(9)
1 898.7493(8) 893.6950(8)
2 876.3961(8) 871.6699(8)
3 855.7560(8) 851.3422(8)
4 836.7287(8) 832.6136(8)
5 819.2267(8) 815.3988(8)
6 803.1745(7) 799.6241(7)
7 788.5075(7) 785.2269(7)
8 775.1712(7) 772.1546(7)
9 763.1211(7) 760.3644(7)
10 752.3219(7) 749.8233(7)
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TABLE IV. Contributions to E4 and E5 (in megahertz) for a few rovibrational states (L, v) of HD+ (columns 3–9). Our final theoretical
values are given in column 10. The theoretical values given in Refs. [2,3] are shown in the last column for comparison.

L v lo (Zα)2 α(Zα) α(Zα)2 ho α(Zα)2 (vb) Nucl. This paper

0 0 925.4559 0.0669 −0.0889 −0.0074 0.0007 −0.0029 −0.0301 925.3942(9) 925.39588 [2]
1 0 924.6295 0.0669 −0.0889 −0.0074 0.0007 −0.0029 −0.0301 924.5677(9) 924.56943 [2]

E4 3 0 920.5415 0.0665 −0.0885 −0.0073 0.0007 −0.0029 −0.0300 920.4800(9) 920.48165 [3]
3 9 775.7556 0.0572 −0.0746 −0.0062 0.0006 −0.0012 −0.0253 775.7061(7) 775.70633 [3]
1 6 816.7692 0.0597 −0.0785 −0.0065 0.0006 −0.0018 −0.0266 816.7161(8)

0 0 142.27278 0.01027 −0.01367 −0.00113 0.00011 −0.00045 0.01965 142.28756(8) 142.28781 [2]
1 0 142.14591 0.01026 −0.01366 −0.00113 0.00011 −0.00045 0.01963 142.16067(8) 142.16092 [2]

E5 3 0 141.51840 0.01020 −0.01360 −0.00113 0.00011 −0.00044 0.01954 141.53307(8) 141.53332 [3]
3 9 119.41918 0.00879 −0.01148 −0.00095 0.00009 −0.00019 0.01649 119.43193(7) 119.43196 [3]
1 6 125.64226 0.00916 −0.01207 −0.00100 0.00010 −0.00027 0.01735 125.65551(7)

to be compared with the experimental value,

fhfs,exp = 178.2544(9) MHz. (34)

The values of the other hyperfine coefficients can be found in
the Supplementary Material of Ref. [3] except for E1 where
we used the value of Ref. [9]. To estimate the theoretical
uncertainty, we have assumed an uncertainty of 400 Hz for
the E1 coefficient [9] and a relative uncertainty of 10−4 for
the other (smaller) coefficients. The difference between theory
and experiment amounts to 8.2 kHz or 4.1 combined standard
deviations, whereas in H+

2 , excellent agreement within the

0.8-kHz experimental error bar is obtained with the same
theoretical ingredients.

The origin of this discrepancy is unknown. It is unlikely
that it is due to an error in other hyperfine coefficients as
they were calculated at the leading order from the well-known
Breit-Pauli Hamiltonian [5], and higher-order corrections are
on the order of of 1 kHz for E1 [9] and smaller for other
coefficients. In addition, experimental data on the rotational
transition [2] has confirmed the theoretical values of these
coefficients at the level of a few hundred hertz for the
(L = 1, v = 0) level. Concerning the theory of the spin-spin

TABLE V. Values (in megahertz) of the spin-spin scalar interaction coefficients E4 and E5 for rovibrational states (L, v) of HD+.

L v E4 E5 L v E4 E5

0 0 925.3942(9) 142.28756(8) 2 6 815.5646(8) 125.47914(7)
0 1 904.1471(8) 139.03010(8) 2 7 801.7350(7) 123.37411(7)
0 2 884.2889(8) 135.98714(8) 2 8 788.9278(7) 121.43086(7)
0 3 865.7411(8) 133.14692(8) 2 9 777.1025(7) 119.64475(7)
0 4 848.4337(8) 130.49899(8) 2 10 766.2212(7) 118.01236(7)
0 5 832.3039(8) 128.03411(8) 3 0 920.4800(9) 141.53307(8)
0 6 817.2953(8) 125.74423(7) 3 1 899.5058(8) 138.31764(8)
0 7 803.3575(7) 123.62237(7) 3 2 879.9078(8) 135.31479(8)
0 8 790.4451(7) 121.66266(7) 3 3 861.6089(8) 132.51296(8)
0 9 778.5169(7) 119.86036(7) 3 4 844.5404(8) 129.90192(8)
0 10 767.5349(7) 118.21194(7) 3 5 828.6406(8) 127.47263(8)
1 0 924.5677(9) 142.16067(8) 3 6 813.8543(8) 125.21721(7)
1 1 903.3665(8) 138.91027(8) 3 7 800.1320(7) 123.12888(7)
1 2 883.5519(8) 135.87404(8) 3 8 787.4294(7) 121.20197(7)
1 3 865.0459(8) 133.04026(8) 3 9 775.7061(7) 119.43193(7)
1 4 847.7786(8) 130.39852(8) 3 10 764.9249(7) 117.81546(7)
1 5 831.6874(8) 127.93962(8) 4 0 917.2621(9) 141.03904(8)
1 6 816.7161(8) 125.65551(7) 4 1 896.4674(8) 137.85123(8)
1 7 802.8145(7) 123.53928(7) 4 2 877.0404(8) 134.87475(8)
1 8 789.9372(7) 121.58507(7) 4 3 858.9052(8) 132.09817(8)
1 9 778.0434(7) 119.78818(7) 4 4 841.9938(8) 129.51139(8)
1 10 767.0951(7) 118.14511(7) 4 5 826.2452(8) 127.10551(8)
2 0 922.9238(9) 141.90827(8) 4 6 811.6051(8) 124.87277(7)
2 1 901.8138(8) 138.67192(8) 4 7 798.0247(7) 122.80652(7)
2 2 882.0862(8) 135.64910(8) 4 8 785.4602(7) 120.90121(7)
2 3 863.6634(8) 132.82815(8) 4 9 773.8718(7) 119.15243(7)
2 4 846.4759(8) 130.19874(8) 4 10 763.2228(7) 117.55703(7)
2 5 830.4616(8) 127.75173(8)
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coefficients presented here, the main approximation, apart
from neglecting the state dependence of higher-order QED
corrections [Eq. (14)], consists in using the adiabatic approx-
imation to calculate the (Zα)2EF relativistic correction. The
associated uncertainty can be estimated to be on the relative
order (m/M ), that is, smaller than 100 Hz. One additional fea-
ture of HD+ (as compared to H+

2 ) that is not taken into account
in the adiabatic framework is the g/u symmetry breaking due
to the mass asymmetry between proton and deuteron, which
strongly affects rovibrational states close to the dissociation
limit (see, e.g., Ref. [38]). However, even the (v = 9, L = 3)
level is quite far from the dissociation limit, and the asym-
metry of the wave function is still small (in the 10−3 range).
In any case, a recalculation of the Breit correction in a full
three-body approach would be highly desirable to test the
accuracy of our results. Consideration of the state-dependent
recoil correction on the order of (Zα)2(m/M )EF might also
be of interest.

In conclusion, we have presented a theory of higher-order
corrections to the spin-spin scalar interaction in hydrogen
molecular ions and applied it to obtain improved values of
the corresponding hyperfine coefficients for a range of rovi-
brational states in H+

2 and HD+. Although the agreement with
experimental data is excellent in H+

2 , a substantial discrepancy
is observed in HD+. It is currently unexplained, and will be
the object of further investigations.
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APPENDIX: RELATIONS BETWEEN DIVERGENT
MATRIX ELEMENTS

In this Appendix, we will assume that the Coulomb po-
tential V is regularized in some way and that the charge
distribution ρ (4πρ = �V ) is a smooth function of space
variables. We recall that the brackets denote an expectation
value over the nonrelativistic wave function 	0; the nonrela-
tivistic energy is denoted by E0. Other relevant definitions are
given right after Eq. (21).

The divergent terms that we want to transform are 〈V1 p4〉
and 〈V1 p2V 〉, which appear in the second-order term Eq. (27)
and 〈ρ1 p2〉, appearing in the first-order term Eq. (21). Using
the relationship p2	0 = 2m(E0 − V )	0, one obtains

〈V1 p4〉 = −2m〈V1 p2V 〉 − 4m2E0〈V1V 〉 + 4m2E2
0 〈V1〉, (A1a)

〈ρ1 p2〉 = 2mE0〈ρ1〉 − 2m〈V ρ1〉
= 2mE0〈ρ1〉 − m(〈V1ρ + V ρ1〉 + 〈V2ρ1 − V1ρ2〉). (A1b)

Using commutation relations and integration by parts one can obtain the following relationships:

〈V1 p2V 〉 = 〈V1V p2〉 − 2π〈V1ρ + V ρ1〉 + 〈(V1E + VE1) · ∇〉, (A2a)

〈V1 p2V 〉 = 〈E1 · E〉− 〈(V1E+ VE1) · ∇〉 + 〈pV1V p〉, (A2b)

2π〈V1ρ + V ρ1〉 = −〈E1 · E〉 + 〈(V1E + VE1) · ∇〉. (A2c)

Subtracting Eq. (A2c) from Eq. (A2a), and using again p2ψ0 = 2m(E0 − V )ψ0 in the second line, we obtain a suitable
expression for the first required expectation value,

〈V1 p2V 〉 = 〈E1 · E〉 + 〈V1V p2〉 = 〈E1 · E〉 − 2m〈V1V
2〉 + 2mE0〈V1V 〉. (A3a)

Adding up (A2b) and (A2c) and taking into account (A3a), we arrive at

2π〈V1ρ + V ρ1〉 = −〈E1E〉 + 2m〈V1V
2〉 − 2mE0〈V1V 〉 + 〈pV1V p〉. (A3b)

Finally, using (A1a) and (A1b) we find the following expressions for the other two expectation values:

〈V1 p4〉 = −2m〈E1E〉 + 4m2〈V1V
2〉 − 8m2E0〈V1V 〉 + 4m2E2

0 〈V1〉, (A4a)

4π〈ρ1 p2〉 = 2m〈E1E〉 − 4m2〈V1V
2〉 + 4m2E0〈V1V 〉 − 2m〈pV1V p〉 − 4πm〈V2ρ1 − V1ρ2〉 + 8πmE0〈ρ1〉. (A4b)

[1] W. H. Wing, G. A. Ruff, W. E. Lamb, Jr., and J. J. Spezeski, Ob-
servation of the Infrared Spectrum of the Hydrogen Molecular
Ion HD+, Phys. Rev. Lett. 36, 1488 (1976).

[2] S. Alighanbari, G. S. Giri, F. L. Constantin, V. I. Korobov,
and S. Schiller, Precise test of quantum electrodynamics and

determination of fundamental constants with HD+ ions, Nature
(London) 581, 152 (2020).

[3] S. Patra, M. Germann, J.-Ph. Karr, M. Haidar, L. Hilico, V. I.
Korobov, F. M. J. Cozijn, K. S. E. Eikema, W. Ubachs, and
J. C. J. Koelemeij, Proton-electron mass ratio from laser spec-

052827-8

https://doi.org/10.1103/PhysRevLett.36.1488
https://doi.org/10.1038/s41586-020-2261-5


HIGHER-ORDER CORRECTIONS TO SPIN-SPIN SCALAR … PHYSICAL REVIEW A 102, 052827 (2020)

troscopy of HD+ at the part-per-trillion level, Science 369, 1238
(2020).

[4] V. I. Korobov, L. Hilico, and J.-Ph. Karr, Fundamental Tran-
sitions and Ionization Energies of the Hydrogen Molecular
Ions with Few ppt Uncertainty, Phys. Rev. Lett. 118, 233001
(2017).

[5] D. Bakalov, V. I. Korobov, and S. Schiller, High-Precision
Calculation of the Hyperfine Structure of the HD+ Ion, Phys.
Rev. Lett. 97, 243001 (2006).

[6] V. I. Korobov, L. Hilico, and J.-P. Karr, Relativistic corrections
of mα6(m/M ) order to the hyperfine structure of the H+

2 molec-
ular ion, Phys. Rev. A 79, 012501 (2009).

[7] V. I. Korobov, J. C. J. Koelemeij, L. Hilico, and J.-P. Karr,
Theoretical Hyperfine Structure of the Molecular Hydrogen
Ion at the 1 ppm Level, Phys. Rev. Lett. 116, 053003
(2016).

[8] S. Alighanbari, M. G. Hansen, V. I. Korobov, and S. Schiller,
Rotational spectroscopy of cold and trapped molecular ions in
the Lamb-Dicke regime, Nat. Phys. 14, 555 (2018).

[9] V. I. Korobov, J.-P. Karr, M. Haidar, and Z.-X. Zhong, Hyper-
fine structure in the H+

2 and HD+ molecular ions at order mα6,
Phys. Rev. A 102, 022804 (2020).

[10] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Plenum, New York, 1977).

[11] J. R. Sapirstein and D. R. Yennie, in Quantum Electrodynamics,
edited by T. Kinoshita (World Scientific, Singapore, 1990).

[12] T. Kinoshita and M. Nio, Radiative corrections to the muonium
hyperfine structure: The α2(Zα) correction, Phys. Rev. D 53,
4909 (1996).

[13] M. I. Eides, H. Grotch, and V. A. Shelyuto, Theory of Light
Hydrogenic Bound States, Springer Tracts in Modern Physics
Vol. 222 (Springer, Berlin, 2007).

[14] J. Mondéjar, J. H. Piclum, and A. Czarnecki, Radiative-
nonrecoil corrections of order α2(Zα)EF to the hyperfine
splitting of muonium, Phys. Rev. A 81, 062511 (2010).

[15] P. J. Mohr, D. B. Newell, and B. N. Taylor, CODATA recom-
mended values of the fundamental physical constants: 2014,
Rev. Mod. Phys. 88, 035009 (2016).

[16] V. A. Yerokhin and U. D. Jentschura, Electron Self-Energy in
the Presence of a Magnetic Field: Hyperfine Splitting and g
Factor, Phys. Rev. Lett. 100, 163001 (2008).

[17] V. A. Yerokhin and U. D. Jentschura, Self-energy correction to
the hyperfine splitting and the electron g factor in hydrogenlike
ions, Phys. Rev. A 81, 012502 (2010).

[18] P. Sunnergren, H. Persson, S. Salomonson, S. M. Schneider, I.
Lindgren, and G. Soff, Radiative corrections to the hyperfine-
structure splitting of hydrogenlike systems, Phys. Rev. A 58,
1055 (1998).

[19] S. G. Karshenboim, V. G. Ivanov, and V. M. Shabaev, Vac-
uum polarization in a hydrogen-like relativistic atom: hyperfine
structure, Zh. Eksp. Teor. Fiz. 117, 67 (2000) [JETP 90, 59
(2000)].

[20] A. V. Volotka, V. M. Shabaev, G. Plunien, and G. Soff, Zemach
and magnetic radius of the proton from the hyperfine splitting
in hydrogen, Eur. Phys. J. D 33, 23 (2005).

[21] C. E. Carlson, Proton Structure Corrections to Hydrogen Hy-
perfine Splitting, Lecture Notes in Phys., Vol. 745 (Springer,
Berlin, Heidelberg, 2008), p. 93; C. E. Carlson, V. Nazaryan,
and K. Griffioen, Proton structure corrections to electronic and
muonic hydrogen hyperfine splitting, Phys. Rev. A 78, 022517
(2008).

[22] A. C. Zemach, Proton structure and the hyperfine shift in hy-
drogen, Phys. Rev. 104, 1771 (1956).

[23] S. G. Karshenboim, Nuclear structure-dependent radiative cor-
rections to the hydrogen hyperfine splitting, Phys. Lett. A 225,
97 (1997).

[24] R. Arnowitt, The hyperfine structure of hydrogen, Phys. Rev.
92, 1002 (1953).

[25] W. A. Newcomb and E. E. Salpeter, Mass corrections to the
hyperfine structure in hydrogen, Phys. Rev. 97, 1146 (1955).

[26] G. T. Bodwin and D. R. Yennie, Some recoil corrections to the
hydrogen hyperfine splitting, Phys. Rev. D 37, 498 (1988).

[27] R. N. Faustov and A. P. Martynenko, Proton polarizability con-
tribution to hydrogen hyperfine splitting, Eur. Phys. J. C 24, 281
(2002).

[28] J. L. Friar and G. L. Payne, Nuclear corrections to hyperfine
structure in light hydrogenic atoms, Phys. Rev. C 72, 014002
(2005).

[29] J. L. Friar and I. Sick, Zemach moments for hydrogen and
deuterium, Phys. Lett. B 579, 285 (2004).

[30] M. A. Beg and G. Feinberg, Exotic Interactions of Charged
Leptons, Phys. Rev. Lett. 33, 606 (1974); 35, 130(E) (1975).

[31] S. G. Karshenboim, Precision physics of simple atoms: QED
tests, nuclear structure and fundamental constants, Phys. Rep.
422, 1 (2005).

[32] D. J. Wineland and N. F. Ramsey, Atomic deuterium maser,
Phys. Rev. A 5, 821 (1972).

[33] D. T. Aznabayev, A. K. Bekbaev, and V. I. Korobov, Leading-
order relativistic corrections to the rovibrational spectrum of H+

2

and HD+ molecular ions, Phys. Rev. A 99, 012501 (2019).
[34] L. Wolniewicz and J. D. Poll, The vibration-rotational energies

of the hydrogen molecular ion HD+, J. Chem. Phys. 73, 6225
(1980).

[35] V. I. Korobov, L. Hilico, and J.-Ph. Karr, Calculation of the
relativistic Bethe logarithm in the two-center problem, Phys.
Rev. A 87, 062506 (2013).

[36] K. B. Jefferts, Hyperfine Structure in the Molecular Ion H+
2 ,

Phys. Rev. Lett. 23, 1476 (1969).
[37] Z.-X. Zhong, X. Tong, Z.-C. Yan, and T.-Y. Shi, High-precision

spectroscopy of hydrogen molecular ions, Chin. Phys. B 24,
053102 (2015).

[38] A. Carrington, I. R. McNab, and C. A. Montgomerie, Spec-
troscopy of the hydrogen molecular ion, J. Phys. B: At., Mol.
Opt. Phys. 22, 3551 (1989).

052827-9

https://doi.org/10.1126/science.aba0453
https://doi.org/10.1103/PhysRevLett.118.233001
https://doi.org/10.1103/PhysRevLett.97.243001
https://doi.org/10.1103/PhysRevA.79.012501
https://doi.org/10.1103/PhysRevLett.116.053003
https://doi.org/10.1038/s41567-018-0074-3
https://doi.org/10.1103/PhysRevA.102.022804
https://doi.org/10.1103/PhysRevD.53.4909
https://doi.org/10.1103/PhysRevA.81.062511
https://doi.org/10.1103/RevModPhys.88.035009
https://doi.org/10.1103/PhysRevLett.100.163001
https://doi.org/10.1103/PhysRevA.81.012502
https://doi.org/10.1103/PhysRevA.58.1055
https://doi.org/10.1134/1.559094
https://doi.org/10.1140/epjd/e2005-00025-9
https://doi.org/10.1103/PhysRevA.78.022517
https://doi.org/10.1103/PhysRev.104.1771
https://doi.org/10.1016/S0375-9601(96)00861-4
https://doi.org/10.1103/PhysRev.92.1002
https://doi.org/10.1103/PhysRev.97.1146
https://doi.org/10.1103/PhysRevD.37.498
https://doi.org/10.1007/s100520200927
https://doi.org/10.1103/PhysRevC.72.014002
https://doi.org/10.1016/j.physletb.2003.11.018
https://doi.org/10.1103/PhysRevLett.33.606
https://doi.org/10.1103/PhysRevLett.35.130
https://doi.org/10.1016/j.physrep.2005.08.008
https://doi.org/10.1103/PhysRevA.5.821
https://doi.org/10.1103/PhysRevA.99.012501
https://doi.org/10.1063/1.440117
https://doi.org/10.1103/PhysRevA.87.062506
https://doi.org/10.1103/PhysRevLett.23.1476
https://doi.org/10.1088/1674-1056/24/5/053102
https://doi.org/10.1088/0953-4075/22/22/006

