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Shannon entropy as an indicator of correlation and relativistic effects in confined atoms
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Relativistic and correlation effects in endohedrally confined atoms (A@C60) have been investigated using
many-body techniques. The endohedral environment is approximated as an atom trapped in a spherically
symmetric Gaussian annular square well model potential. The objective of the work is to present Shannon
entropy as an indicator of (i) correlation effects and (ii) relativistic effects in confined atoms. The correlation
energy in Be@C60 is studied as a function of the depth of the confining potential to give some idea as to how
Shannon’s correlation entropy is sensitive to the minimum location of correlation energy. To see the prominent
relativistic effects in the confined atom, Shannon’s relativistic entropy of the valence subshell of Ba@C60 is
scrutinized for different confinement parameters. The influence of relativistic and correlation effects on the
Shannon entropy of confined atoms is illustrated.
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I. INTRODUCTION

The mechanism of insertion of an atom within the fullerene
cage is possible by employing “brute force” implantation. Un-
der high pressure and temperature, one of the carbon-carbon
bonds of the C60 cage is broken and an atom can pass through
the transient hole, forming a stable endohedral system [1,2].
Endohedral systems have promising applications in physics
and other fields because of the interesting features that are
relevant to a broad range of research areas [3–6] including
quantum computing [7], medical science [8], superconduc-
tivity [9], material science [10,11], etc. The properties of
endohedral atoms have been studied theoretically, and these
have opened experimental avenues to investigate the elec-
tronic structure and dynamics [12,13] in them. For instance,
the level ordering and shell filling of endohedral atoms are
predicted to be different compared to free atoms [12,14,15].
The electron scattering and photoionization from confined
atoms gained wide interest, and has been investigated both
theoretically and experimentally (see [16–23], and references
therein). A combination of theoretical and experimental inves-
tigation is extremely important for a complete understanding
of the endohedral systems.

An endohedral system being multielectronic in nature, it
is expected that the many-electron correlation effects have a
decisive role in the electronic structure and dynamics. Even
though the C60 confinement lowers the electronic energies,
the electrons which have higher overlap with the C60 shell
are modified preferentially [12,14]. This selective modifica-
tion can bring one subshell level energetically close to the
other, which makes the electron correlation stronger in endo-
hedral atoms in comparison to bare atoms. Also, relativistic
effects have governing importance in confined atoms. Among
the various synthesized metallofullerenes, La@C60 attracted
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attention because of the relativistic effects in the electronic
structure also [24]. Needless to say, properties of the A@C60

are significantly governed by both the relativistic and correla-
tion effects; therefore, it is important to include higher orders
of these corrections in the theoretical investigation.

Correlation energy (ECorr), a term coined by Lowdin [25],
is one of the useful parameters in the study of bound and ex-
cited states. The correlation energy is defined as the difference
between the exact ground-state energy and the Hartree-Fock
(HF) energy. The exact energy in the definition refers to
the experimental energy of the ground-state from a complete
measurement. It is well known that the HF limit is always
above the exact energy, therefore the inclusion of correla-
tion effects in any theory brings the energy closer to the
exact energy. From this perspective, the energy difference
between many-body techniques with and without correlation
effects can be considered as the correlation energy introduced
due to the corrections in the former. The multiconfiguration
Dirac-Fock (MCDF) [26] methodology considers the initial-
state correlation by admixing the electronic occupation among
different relativistic configurations with appropriate weight
factors. The MCDF technique plays an important role in rel-
ativistic atomic and molecular electronic structure estimates
[27–30]. The difference between energy calculated within a
single-configuration description of the atom, i.e., Dirac-Fock
(DF) [31] and the MCDF can also be treated as the corre-
lation energy of the atomic system: ECorr = EMCDF − EDF,
where EDF and EMCDF are respectively the atomic energies
in the DF and MCDF treatments. The ECorr from the DF
and MCDF thus reflects the correlation effects included due
to the mixing of relativistic configurations to represent the
atomic initial state. Also, the ECorr encodes the augmented
correlation effects due to the relativistic splitting of subshells.
Likewise, the energy due to the relativistic correction (ERel)
can be viewed as ERel = EDF–EHF, where EDF and EHF are
respectively the atomic energies in the single configuration DF
and nonrelativistic HF treatments.
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It is well reported that the correlation effects play a de-
cisive role in the electronic structure and dynamics of Be,
a low-Z element [32,33]. Similarly, the intemeridate-Z ele-
ment Ba displays rich effects in photoionization parameters
due to the relativistic corrections [34–36]. Although these
free atoms were widely tested for relativistic and correla-
tion effects, a systematic investigation of these effects in the
confined Be and Ba is scanty in the literature. The fact that
the Be@C60 and Ba@C60 have been isolated in experiments
[37,38] is just intensifying the need for theoretical inves-
tigation of these confined atoms. The primary objective of
the present work is to portray the relativistic and correlation
effects in confined atoms in terms of Shannon entropy [39].
The motivation behind this objective is the following. The
electronic density calculated in a relativistic many-electron
correlation method differs from that obtained in the HF or DF
limit. Vyboishchikov reported in his works how the electronic
densities of spherically confined Be are different in HF and
configuration interaction (CI) approaches [40]. Moreover, in
the works of Hasoğlu et al. [41], an insightful connection
between electron density distribution and correlation effects
in Be@C60 is found. Likewise, the relativistic effects are also
making changes in the geometrical distribution of electronic
densities [26]. It is well known that the Shannon entropy
encodes signatures of electronic localization or delocaliza-
tion [42]. Shannon entropy is also an alternative, sometimes
superior, formalism to the dispersion relation (Heisenberg
uncertainty) to represent the delocalization of electronic den-
sity [43]. Hence the present work extrapolates the idea of
connection between ECorr/ERel and electronic density into the
Shannon entropy. There have been multiple attempts in the
literature to define correlation and relativistic effects in terms
of information entropy [44–46]. In a recent paper, Romera and
Dehesa [47] introduced the concept of the Fisher-Shannon
information plane as a specific electron correlation measure
in two-electron systems. Likewise, complexity measures of
electronic density distribution of many-electron atoms in the
relativistic and nonrelativistic calculations were contrasted
[44]. All these studies indicate that informational entropic
measures are being increasingly applied in studying the elec-
tronic structure and properties of atoms and molecules. To
remedy the glaring omission of entropic studies on confined
many-electron atoms, we define, in the present work, the
Shannon correlation and relativistic entropies, by which a
benchmarking of correlation energy (ECorr) and relativistic
energy (ERel) in terms of information entropy is accomplished
in the endohedral atoms.

While looking for the realistic simulation of endohedral
atoms, a method that explicitly includes the position of each
C atom of the C60 with the correct icosahedral (Ih) symme-
try will be an ideal choice. Therefore, ab initio calculations
which take care of the symmetry of the C60 molecule will
be preferred. However, several recent papers have clearly
demonstrated that the detailed symmetry does not affect the
electronic structure and dynamics of fullerene complexes. For
instance, the photoionization cross sections of C60 [48], other
fullerenes [49], and even carbon onions [50] were calculated
by means of time-dependent DFT (accounting for the real-
istic icosahedral geometry of the fullerenes) and compared
successfully with a model approach that assumed a spherical

symmetry of the molecules. Moreover, the experimental pho-
toionization spectrum of Xe@C60

+ is also in agreement with
what is predicted [51] employing a model potential descrip-
tion of the confinement [52,53]. This shows that the model
approach was found to provide a very accurate description of
the main features of the photoionization spectra. Moreover,
this approach was successfully used to compare with experi-
mental and ab initio calculation cross sections on elastic and
inelastic scattering of electrons from C60 [54,55]. Consider-
ing the encouraging agreement between the results, we may
conclude that the spherical model, despite its extreme sim-
plicity, is surprisingly successful in its qualitative, and even
semiquantitative, predictions compared to the far more elabo-
rate ab initio calculations. Although the results slightly differ
between different model potentials, overall the methodology
is giving a realistic representation of the C60 environment.
Nevertheless, one must look for the best model potentials
that can provide quantitative and qualitative agreement with
available experimental and ab initio level results.

Several model potentials have been employed to represent
the effects of C60 confinement in literature, such as annular
square well (ASW) [12,13,15,56], δ potential [57], attractive
Gaussian shell [58], Gaussian annular square well (GASW)
[59], power exponential model [60], Woods-Saxon (WS) [41],
etc. In the present work, we choose the diffused GASW model
potential [42,59], a hybrid of ASW and Gaussian model po-
tentials, to investigate the sensitivity of the Shannon entropy
to the relativistic and many-electron correlation effects. In the
present work, we have considered that the Be and the Ba
atoms are residing at the center of the cage where the energy
is expected to be minimum [61]. Furthermore, keeping the
endohedral atom at the center of the shell enables us to use the
spherical symmetry of the potential, and hence the calculation
becomes much simpler. Section II describes the theoretical
methods employed in the present work, which is followed by
the results and discussion in Sec. III. The work is concluded
in Sec. IV.

II. THEORY

The central field Dirac-Coulomb Hamiltonian for the N-
electron atomic system, confined by an endohedral cage, is
given by

H (�r1, �r2, ..., �rN )

=
N∑

i=1

(
c�αi · �pi + βimc2 − Z

ri
+ 1

2

∑
i �= j

1

ri j
+ Vcon(ri )

)
.

(1)

The wave function of the N-electron system �(J, M ) can
be compactly written in the form of an N × N Slater deter-
minant [26]. By employing a frozen orbital approximation,
the DF equations can be derived using the variational tech-
nique [31]. Although the DF method gives a fair estimate
of the ground-state and excited-state properties by including
relativistic and exchange interactions, the many-electron cor-
relations are not included in the technique. This creates a gap
between the exact energy and the DF energy. The initial-state
correlation effects are included in the MCDF technique by
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treating the N-electron wave function as a linear superposition
of Slater determinants. The multiconfigurational wave func-
tion of an atom can be written as [26]

�(J, M ) =
K∑

i=1

Wi�(γiJ, M ), (2)

where J, M are the quantum numbers of the coupled angular
momenta of the electrons and γi denotes other labels such
as for the configurational composition and the angular mo-
mentum coupling scheme, which are needed to identify the
state [26]. {�(γiJ, M )|i = 1, 2, . . . , K} is a set of orthonormal
configuration state functions (CSFs) and the Wi‘s are expan-
sion coefficients (weight coefficients), which are obtained self
consistently. The weight coefficients are constrained by the
normalization of probability:

∑N
i=1 |Wi|2 = 1. Calculations in

the optimized level (OL) mode are performed for Be@C60, in
which coefficient weights are chosen for a single atomic state
function [26]. For the free atomic system, the details of the
procedure for obtaining these wave functions are elaborately
discussed in the literature [26,31].

To perform the study of relativistic and correlation effects
in confined atoms, we have modified the GRASP92 relativistic
atomic structure program by adding Vcon(r) to the regular
atomic potential [62]. The individual atomic orbitals of the
A@C60 are then solved self-consistently, similarly to the case
of free atoms [62]. Note that the methodology and codes are
applicable only if the atom is situated in the center of the C60

shell, i.e., for a spherically symmetric confinement potential
and that potential does not depend upon the angle. The widely
used confining environment of endohedral systems (A@C60)
is the ASW potential, defined as

VASW(r) =
{−U, rc − �

2 � r � rc + �
2

0, otherwise,
(3)

where rc is the mean radius and � is the thickness of the C60

cage. The ASW potential has unrealistic discontinuity at the
shell boundaries; we have, therefore, used an alternative po-
tential that is spatially smeared out, but has compact borders.
We employ a parametrically adjustable superposition of the
Gaussian and ASW contribution, referred to as the Gaussian
annular square well (VGASW) model potential [42,59],

VGASW(r) = A√
2πσ

e−((r−rc )
/√

2σ )2 + VASW(r), (4)

where A = −3.59 a.u., standard deviation σ = 1.70 a.u., rc =
6.7 a.u., and � = 2.8 a.u. The values of Gaussian amplitude
and VASW are parametrically adjusted to get the best fit with
the potential used by Puska and Nieminen (VPN) [16]. In
their work, the energy spectrum of C60 is obtained using the
local density approximation (LDA) of the density-functional
theory (DFT); the formalism accounted for the interaction of
240 electrons of the cage. The above-fitted model potential,
VGASW(r), thus includes an average effect of the electron-
electron and electron-proton interactions of the carbon atoms
of C60 and has the advantage of removing unrealistic discon-
tinuities at the shell boundaries. Moreover, the GASW model
belongs to the class of potentials with a nonflat bottom and
hence this could properly simulate the C60 shell instead of
the very often used ASW model potential [63]. Details of

FIG. 1. GASW model potentials for the depth of 1.0 a.u.

the GASW model potential can be found elsewhere [42,59].
Figure 1 shows the GASW model potential for a depth of
1.0 a.u. The smooth, rather than sharp, edge regions of the
GASW potential waive any possibility of unphysical effects
owing to a discontinuity in the ASW potential.

The difference between energy obtained in the DF and
MCDF can be considered as the correlation energy (ECorr)
of the A@C60. Likewise, the difference between DF and HF
energy (ERel) can be accepted as a measure of relativistic
effect in atoms. The correlation effects of the Be@C60 and
the relativistic effects of the Ba@C60 are studied by varying
the depth of the GASW confinement potential. We try to
attribute the relativistic and correlation effects to change in
the electronic density through the Shannon entropy, which is
described below.

Shannon entropy [39] in an atomic system provides in-
depth knowledge of electron correlations, the electronic
probability density, and especially about the localization of
electron density. The radial part of Shannon entropy of the
probability density in the position spaces is given by [39]

Sr = −
∫ ∞

r=0
ρ(r) ln ρ(r)r2dr, (5)

where ρ(r) denotes normalized one electron probability den-
sity in position space. Information entropy quantifies the
extent of distribution of the probability density in the posi-
tion space. Bound-state energy and the corresponding position
space wave function of the orbital electron of a confined atom
are obtained in the present work by solving the central Dirac-
Coulomb field equation in the DF and MCDF methodology as
described above. To a good approximation, the nonrelativistic
HF parameters are obtained by solving the DF equations the
high-c limit [64].

Due to the relativistic many-electron correlation effects
in the initial state, the total electron density can be altered,
preserving the normalization conditions. In other words, the
change in the electronic probability density and therefore
change in the localization properties can be thought of as a
signature of relativistic and correlation effects. For example,
modifications in the electron density of confined He, Be, and
Be2+, reflected in the density moments (μn) due to the cor-
relation effects, is illustrated in the work of Vyboishchikov
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[40]. Similarly, the DF electrons are more bound than the non-
relativistic counterpart; consequently, the DF radial density
distribution is more compact than that of HF formalism [26].
Therefore, we can also expect a change in Shannon entropy
due to the change in the localization of electronic cloud owing
to these effects. An objective of the present work is to look for
signatures of relativistic and correlation energies in Shannon’s
information entropy in confined atoms. For elucidating the
change in the Shannon entropy due to the inclusion of cor-
relation and relativistic effects, we define an absolute change
in the electronic density between two different methods. In the
present work, the change in the electronic probability density
between the DF and MCDF is defined as correlated electron
density: ρCorr (r) = |ρMCDF(r) − ρDF(r)| and that between DF
and HF is considered as the change in electron density due to
relativistic effects: ρRel(r) = |ρDF(r) − ρHF(r)|.

The electronic densities in the MCDF level, ρMCDF(r),
were calculated in a straightforward way employing the
weight coefficients and the CSFs obtained in the SCF pro-
cedure. The ρCorr (r) and the ρRel(r) represent the incremental
change in the electronic density due to correlation and rela-
tivistic effects respectively, which also encodes the change in
localization due to these effects. Therefore, Shannon’s corre-
lation entropy measures the degree of localization or diffusion
of ρCorr (r) due to the correlation effects, defined as

(Sr )Corr = −
∫ ∞

r=0
ρCorr (r) ln ρCorr (r)r2dr, (6)

and Shannon’s relativistic entropy is a measure of relativistic
effects, given as

(Sr )Rel = −
∫ ∞

r=0
ρRel(r) ln ρRel(r)r2dr. (7)

The present work aims to bring a connection between
(Sr )Corr and ECorr in the confined Be atom and (Sr )Rel and ERel

in the confined Ba atom using the GASW confinement model.

III. RESULTS AND DISCUSSION

A. Correlation effects in Be@C60

The ground state of Be@C60 in the DF approach is rep-
resented by a single configuration, 1s2 2s2. It is well known
that the interaction between 1s2 2s2 and 1s2 2p2 configu-
rations contributes the most to the initial-state correlation
effects in a free Be atom [41,65]. However, this may not
be true for confined Be@C60. Therefore, the MCDF initial
state of the confined Be is obtained by allowing the two-
electron excitations to the low-lying bound orbitals 2p1/2,
2p3/2, and 3s. The two-electron excitations are selectively
included and thereby two separate multiconfigurational initial
states are considered for contrasting the correlation effects
in Be@C60: (1) 1s2{2s2 + 2p1/2

2 + 2p3/2
2}, J = 0, and (2)

1s2{2s2 + 2p1/2
2 + 2p3/2

2 + 3s2}, J = 0; the former config-
uration is denoted as configuration 1 (C1) and the latter as
configuration 2 (C2) in this work. Comparison of correlation
energy from the calculations employing C1 and C2 configu-
rations will showcase the contribution of 3s subshells in a
confined atom. This will also test whether the configuration
interaction is similar in free Be and Be@C60.

FIG. 2. Correlation energy of confined Be as a function of well
depth.

Using the configuration interaction (CI) terms in the
MCDF wave function, the total energies and subshell thresh-
olds of confined Be were calculated for a range of potential
depths starting from free case to Vcon(rc) = 1.5 a.u. The
DF energies were also computed in the confining poten-
tial for the same range of depths. The total energies of
the free Be in the MCDF calculations employing C1 and
C2 configurations are −14.6197 a.u. and −14.6212 a.u.,
whereas the same in the single configuration DF formalism is
−14.5759 a.u.; the difference of DF and MCDF energies sig-
nify the correlation correction. Note that the energy is slightly
different from the MCHF result [41], which is −14.6659 a.u.
from a CI expansion including 52 configurations [65]. The
total energy of Be@C60 from the C2 configuration calculation
is slightly higher in magnitude compared to C1 calculation,
which indicates that the correlation effects are increased with
the addition of more CI terms, which is natural to expect.
The insignificant difference in the total energies in the C1

and C2 calculation indicates that the 3s orbitals play less
role in contributing to the realistic ground state of free Be.
Nevertheless, this claim may not be true for Be@C60, which
will be scrutinized in the present work.

It is of special interest to know the evolution of correlation
energy, ECorr = EMCDF − EDF, as a function of well depth
of the model potential, which is shown in Fig. 2. Although
the ECorr from the C1 and C2 configuration calculations are
qualitatively similar, it is quantitatively increased for C2 as
expected; the difference is apparent for intermediate con-
finement depths considered. Starting from the free Be, the
magnitude of correlation energy becomes smaller as the depth
of the confining potential increases up to a certain well depth
(∼0.44 a.u. for C1 and ∼0.52 a.u. for C2), and then increases
as the strength of the well increases further. It needs to be
emphasized that the peak in the ECorr represents a minimum
of the correlation energy. The minimum location of the cor-
relation energy is shifted slightly to the deeper well side in
the C2 calculation, which is evidently due to the admixing
of the additional configuration 1s2 3s2 with the terms in C1

configuration. Moreover, up to a well depth of ∼0.7 a.u.,
the magnitude of the correlation energy in the C2 calculation
is larger compared to that in the C1 calculation, with the
difference being largest at the peak position of the correla-
tion energy. Beyond the well depth ∼0.7 a.u., the correlation
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FIG. 3. Position probability density distribution of 2s (left), 2p (middle), and 3s (right) one-electron orbitals in Be@C60 for a selection
of well depths of model potential using the C2 configuration.

energy in the C1 and C2 calculation becomes identical. This
trend of ECorr means that the effect of the configuration 1s2 3s2

is significant only for Be@C60 with intermediate confinement
depths. The present analysis, hence, shows that the configu-
rations in the C1 calculation adequately represents the initial
state of free Be, but additional configurations are required for
confined Be.

To understand the behavior of ECorr, we first trace out the
variation of the position probability density distribution of
the spectroscopic 2s, correlation 2p3/2, and 3s one-electron
orbitals for a selection of well depths, which is shown in
Fig. 3. Note that the orbitals from the C2 configuration cal-
culation are plotted in Fig. 3; the trend of variation of 2s
and 2p orbitals is identical to that from the C1 configuration
calculation. The 2p1/2 electronic density (not shown) is not
different from that of 2p3/2 because spin-orbit forces are less
dominant for confined Be. At first, the evolution of electronic
density from the C1 calculation is investigated. Up to the depth
Vcon(rc) = 0.3a.u., the electronic probability density of both
2s and 2p orbitals are mostly distributed close to the nuclear
region, beyond which both the density distributions are seen
comoving towards the C60 shell region [Figs. 3(a) and 3(b)].
This behavior is quite opposite to that of 1s and 2s probability
densities of H@C60, where the orbitals are shifted in opposite
directions when the confinement strength is increased; the 1s
electron density is shifted to the C60 shell region, whereas the
density of the 2s electron is moved to the nuclear side [42].
This behavior in H@C60 is attributed to the avoided level
crossing between orbitals of the same symmetry, famously
known as the von Neumann–Wigner noncrossing rule [56,66].
In the Be@C60 case, since the ground and excited states have
different symmetries, they don’t repel each other, rather they
are seen moving together. When VGASW(rc) reaches ∼0.7 a.u.,
both the electronic density of 2s and 2p radial orbitals are
predominantly sucked by the C60 shell.

We investigate next the evolution of 3s probability density
distribution [Fig. 3(c)] as the confinement depth is varied. For
the free case, the probability amplitude of the 3s state spans
over a wide range of radial distance, with significant contri-
bution near the nuclear side. When the well depth is 0.4 a.u.,
the 3s position space wave function is equally distributed over
the nuclear and well region; the electron density is highly
delocalized. This posture of 3s electron density is akin to the
behavior of 2s and 2p electrons. As depth increases further
up to depth 0.7 a.u., the 3s position space wave function is

transferred from the confinement region to the inner Coulom-
bic region. The evolution of orbitals of C1 configuration is
quite contrary to that of the 3s orbital. There exists a compe-
tition between the gain of the population of 3s electron and
loss of 2s and 2p electrons in the atomic region. A reverse
competition is exhibited in the confinement region also. It is
noteworthy that this competition is absent in the C1 calcula-
tion. Thus, the minimum location of the correlation energy is
slightly shifted to the deeper well side for the case of C2 due
to this competition and the associated correlation effect.

The correlation energy (Fig. 2) and the delocalization of
electronic cloud of the Be@C60 are intrinsically connected,
which was shown in the work of Hasoğlu et al. [41]. Accord-
ing to their work, more delocalized 2s and 2p orbital electrons
tend to occupy a larger radial space, which causes the 2s and
2p orbital electrons to be further apart, thereby contribution of
the interaction term (1/|rij|) reduces. The delocalization of 2s
and 2p electrons, thus, is responsible for the minimum in the
correlation energy. In our calculations, the minimum of ECorr

happens at ∼0.44 a.u. for C1 and it is at this depth the 2s,
2p1/2, and 2p3/2 electrons have almost equal probabilities in
the atomic well region and C60 shell region. On the contrary,
on both sides of the minimum location of ECorr, the 2s and
2p electrons occupy a smaller range of volume at extremely
high and low confinement depths, which is why the electron-
electron interaction and thereby the correlation effects are
enhanced. A similar explanation can be given for the nature
of the ECorr curve in the C2 calculation. The peak happens at
∼0.52 a.u. of well depth in the C2 configuration calculation.
It is at this depth the 3s electrons are highly delocalized,
with similar delocalization features for 2s and 2p electrons.
Hence the electron densities of 2s, 2p, and 3p subshells are
overlapped in a wider region, which reduces the interac-
tion term (1/|rij|) and consequently a minimum correlation
energy.

It is well known that the information entropies do carry
signatures of the spread of probability density [42]. The in-
formation entropies like Shannon entropy, Fisher entropy,
etc., have been instrumental in predicting electronic struc-
ture properties, including correlation effects [67–71]. Having
understood the agreement between the delocalization of elec-
tronic densities and correlation effects, we aim to discover
an insightful connection between correlation energy and
Shannon entropy. For accomplishing the same, the radial part
of Shannon correlation entropy in position space (Sr )Corr is
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FIG. 4. Radial part of (a) Shannon entropy in position space and (b) correlation entropy of confined Be as a function of confinement well
depth.

defined in Eq. (3), employing ρCorr (r). The ρCorr (r) represents
the incremental change in the electronic densities due to cor-
relation effects, which also signifies delocalization in electron
density due to the correlation effects. Therefore, the (Sr )Corr

is expected to convey meaningful information regarding the
change in electron density due to the correlation effects.

The evolution of position radial Shannon entropy and the
correlation entropy as a function of well depth is shown
in Fig. 4 in C1 and C2 configuration calculations. With the
increase in depth of the confinement potential, the position
radial Shannon entropy is also seen increased, exhibiting a
similar trend as that of the delocalization of electrons; the
trend is uniform in both C1 and C2 calculations. At depth
∼0.44 a.u., the DF and the MCDF position radial entropies
intersect with each other for the case of C1, where the correla-
tion energy is minimum, i.e., at this depth the MCDF density
distribution tends to that of DF. The crossing of MCDF
and DF entropies in the C2 configuration happens at depth
∼0.52 a.u., where the minimum location of the correlation en-
ergy is also located. At the minimum correlation energy point,
the electronic density of correlated Be@C60 is represented
predominantly by the 2s electrons, which is reflected from
the intersection of position Shannon entropies from DF and
MCDF approaches. As the confinement potential is increased
further from 0.44 to 1.0 a.u., position space wave function
shifts towards the shell region and the separation between
MCDF and DF entropies widens, i.e., correlation energy in-
creases. The position radial Shannon entropy (Sr) attains its
maximum value at ∼0.6 a.u. depth of confining potential,
indicating that the 2s and 2p electrons are now well states.
With further increase of potential depth, a gradual decrease in
the position radial entropy is seen, which hints that the 2s and
the 2p electrons are getting more and more localized in the
confining well; an increase in correlation energy will be the
consequence.

The Shannon entropy does not exhibit any specific fea-
tures of minimum correlation energy at ∼0.44 a.u. for C1

(∼0.52 a.u. for C2) in the form of a maximum or minimum.
The Shannon correlation entropy (Sr )Corr in Fig. 4(b), on the
other hand, shows a surprising similarity with the correlation
energy graph shown in Fig. 2 that there exists a minimum at
depth ∼0.44 a.u. in the C1 calculation, which is correspond-
ing to the peak in the ECorr; the peak in ECorr indicated the

minimum correlation energy. Similarly, a global minimum is
exhibited in the (Sr )Corr in the C2 calculation at well depth
∼0.52 a.u., which is where the minimum correlation energy
is seen. First, we analyze the correlation entropy from the C1

calculation. Incidentally, two maxima have been seen (at con-
finement depth ∼0.3 a.u. and ∼0.6 a.u.) around the minimum
location of the (Sr )Corr in the case of the C1 calculation. This
indicates that the changes in the electron density [ρCorr (r)]
due to the correlation effects are delocalized most at these
depths; the C60 state and the atomic state contribute to the
additional electron densities due to correlation effects at these
well depths. This claim is verified from the analysis of cor-
related electron density ρCorr (r) (figure not presented). For
the free case, the correlation density ρCorr (r) is mostly con-
tributed by the atomic state and least by the shell state. On the
contrary, at depths ∼0.3 and ∼0.6 a.u. an equal contribution
to correlation density from the atomic state and shell state
occurs. This implies the maximum spreading of ρCorr (r) and
consequent peaks in the correlation entropy. The Shannon
correlation entropy is quite a meaningful quantity as it is an
indicator of dissimilarity in the electron density of DF and
MCDF formalism due to correlation effects. In the confined
Be, the spread of the correlated electron density is minimum
at the minimum of correlation energy, which is reflected as the
minimum in the (Sr )Corr graph. This is quite expected as the
2p orbitals are least contributing at this point; MCDF and DF
densities tend to be alike.

A slightly different qualitative nature is seen in the corre-
lation entropy curve from the C2 calculations; a local shallow
minimum is exhibited at ∼0.3 a.u., which makes a broader
maximum compared to that in the C1 calculation. The shallow
minimum embodies as a shoulderlike structure in the (Sr )Corr.
The differences in the C2 calculation are indicative of the
competition between 1s2 3s2, 1s2 2p2, and 1s2 2s2 configura-
tions. In short, the (Sr )Corr reflects the incremental changes in
the electron densities due to the correlation effects. Moreover,
the signature of contribution from different configurations is
also evident. A global minimum at well depth 0.52 a.u. in the
correlation entropy is indicative of the minimum correlation
energy in the system. Hence, a detailed analysis of the (Sr )Corr

reveals rich information regarding changes due to the correla-
tion effects in the electron densities, its localization properties,
weightage of different configuration, etc.
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FIG. 5. Position probability density distribution of 6s one-
electron orbitals in Ba@C60 for a selection of well depths of model
potential.

B. Relativistic effects in Ba@C60

In the case of confined Ba, the effect of relativity on the
Shannon entropy of valence subshell, 6s, is investigated as it
has larger overlap with the GASW. In particular, the focus is
on the systematic variation of relativistic Shannon entropy as
the confinement depth is altered. To illustrate the contrasting
delocalization properties of Ba@C60 in HF and DF formalism,
Fig. 5 shows the probability density distribution of the 6s
orbital with varying confinement depths. One can notice that
the DF electronic densities are more compact compared to
the nonrelativistic counterpart owing to the increased binding
energy of the relativistic orbitals. For the free case, the DF and
HF orbitals lie predominantly inside the C60.

As the strength of confinement is increased, the orbital
is mixed with a wave function localized in the confining
well, i.e., “hybridization” results from this superposition. It
is noteworthy that the 6s orbital of Ba@C60 gains an extra
node at a well depth of 0.6 a.u. in DF and at 0.8 a.u. in the
HF formalism. It is well known that the orbitals of C60 are
commonly classified as σ or π according to whether they
have zero or one radial node located near the carbon cage
[55]. Thus, the present calculations are suggestive of the fact
that the Ba orbital is hybridized with the π orbital of the
C60 leading to a node in the probability density on the C60

shell. This observation is further supported by conclusion of
combined experimental and theoretical electronic structure
studies of Ba@C60, that the Ba atoms can hybridize strongly
with the π -type functions of the C60 [72]. A similar feature is
exhibited in the density-functional theory studies of Xe@C60,
where powerful hybridization of the Xe 5s subshell with C60 π

function is reported, leading to a node in the electronic density
within the shell region [73]. It is worth mentioning that de-
spite the use of simplified model C60 confinement potentials,
the present calculations realistically encode the hybridization
properties of Ba@C60 very similar to an ab initio level cal-
culation. Furthermore, the present work infers that the nodal
behavior of confined atom orbitals could be different from that
of hydrogenic orbitals.

In addition to the compactness of the DF orbitals, the
hybridization properties of Ba orbitals are also sensitive to
the relativistic effects. While the hybridization of DF orbitals
happens at 0.6 a.u. of well depth, it requires additional well
depth for the similar hybridization to occur in HF calculations.
This could be due to the altered screening potential that the
HF and DF electron sees as it moves from the atom side to
the well side upon changing the well depth. This is suggestive
of the fact that the relativistic effect changes the localization
properties of 6s orbitals since the hybridization is sensitive
to it. Furthermore, one may expect enhanced ERel for those
confinement depths, at which hybridization happens.

From the perspective of geometrical changes to the elec-
tron density due to the relativistic effects, Fig. 6 shows the
ground-state properties of Ba@C60 6s orbital as function of
well depth. The 6s binding energy [Fig. 6(a)] shows consid-
erable differences in the HF and DF formalisms; the energies
increase gradually as the confinement depth is increased up
to 0.5 a.u. in the DF and 0.7 a.u. in the HF methodology.
In this region, the 6s electrons are moving from the atomic
side to the well side. This is marked by a gradual increase in
the Shannon entropy [Fig. 6(c)], which indicates the enhanced
delocalization and therefore disorder consequent to the drift of
electrons to the fullerene side. The Shannon entropy becomes
stabilized as the electrons are shifted to the well side, but
maintaining the same nodal behavior as that of free atoms.
The strong hybridization with the π orbital is marked by a
sudden drop in the binding energy of the 6s orbital at 0.6 a.u.
of well depth in DF and at 0.8 a.u. in the HF case. It is as if
the Coulomb repulsion with the fullerene electrons has made
the Ba 6s orbital less bound. This observation is much akin
to the less bound hybridized orbital in the Xe@C60 case [73].
The additional node of hybridized Ba 6s orbital is indicated
by the sudden increment in the Shannon entropy from 0.4
to 0.6 a.u. of well depth in DF and 0.6 to 0.8 a.u. in HF.
This is consequent to the increased delocalization due to the
bimodal distribution of electron density within the C60 shell.
Note that the Shannon entropies of the DF and HF orbitals
are largely different in this region. With further increases in
the well depth the binding energy increases and the Shannon
entropy gradually decreases. This means that the hybridized
6s electrons are getting more and more compact within the
shell region.

Of particular interest is the ERel [Fig. 6(b)] and (Sr )Rel

[Fig. 6(d)] as the confinement depth is varied, which is in-
dicative of the changes in the binding energies and electronic
density distribution respectively due to the relativistic effect.
One may note that ERel and (Sr )Rel show identical qualitative
features upon variation of confinement depth. For instance,
the disorder of the system and the energy change due to the
relativistic effect are quite small when the strength of the
confinement is very low. The only small difference could be
due to the more bound nature of the DF orbitals compared to
HF, which makes the former less entropic up to a depth of
0.4 a.u. But when the strength of confinement is high enough
to transfer the electron from the atomic region to the well re-
gion, then the dynamics is completely different. The ERel and
(Sr )Rel attain a maximum at ∼0.64 a.u. of well depth, which is
the hybridization region. At this point, the relativistic effect is
so strong that there exists high complexity in the DF orbitals
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FIG. 6. Properties of 6s orbital of Ba@C60 as a function of the C60 well depth: (a) DF and HF energies, (b) ERel, (c) radial part of Shannon
entropy in position space, and (d) relativistic Shannon’s entropy.

compared to that of HF. This means that the relativistic effects
are mostly due to the changes in the hybridization in Ba@C60.
The enhanced (Sr )Rel indicates that the delocalization due to
the relativistic effect is owing to the sensitivity of DF and
HF orbitals to the hybridization properties. After the depth
0.8 a.u., ERel and (Sr )Rel maintains a low value as in the case
of low confinement depths. In this region also, the major effect
of relativity is to compactify the 6s orbitals by making them
more bound compared to HF. Consequently, the DF orbitals
will be less entropic.

The Shannon entropy, in the present context, is a measure
of the delocalization or the lack of structure in the electronic
probability distribution of confined atoms. It is well known
that information entropic measures provide evidence of cor-
relation and relativistic effects [44,74]. The present work
belongs to the same category which tries to identify features
of Shannon entropy with reference to the geometrical changes
in electronic density in endohedrals due to the relativistic
and correlation effects. At this point, it will be worth dis-
cussing the scope for measurable quantities of endohedrals
in an experiment to verify the predictions employing the in-
formation entropic quantities. A possibility of measurement
of information entropy, in particular Shannon entropy, could
be only realized if electron density can be measured. Hay-
man et al. have shown that the average electron density is a
measurable quantity from the x-ray-scattering studies [75].
According to the work of Hayman et al. [75], the average
electron density 〈ρ〉 of an atom is intrinsically connected to
the scattered x-ray intensity. Along similar lines, a result con-
necting x-ray-scattering and average electron densities was
derived by Stewart et al. [76]. These works hint that the aver-
age entropy of an atom could, in principle be measured in an

x-ray-scattering experiment. With the unprecedented ad-
vancements in the spectroscopy field, it is quite possible to
accomplish x-ray scattering from confined systems [77]. An
impetus to the experimental realization from confined atoms
is already in place after the photoionization experiments with
Xe@C+

60 [52,53]. This suggests that the Shannon entropy
of endohedrals can be measured which will carry informa-
tion related to relativistic and correlation effects; for instance,
the altered Shannon entropy owing to the sensitivity of hy-
bridization of confined atom to the relativistic effects could be
measured.

IV. CONCLUSION

The present work attempts to draw a connection between
delocalization properties of atomic electrons and relativistic or
correlation effects employing Shannon information entropy in
a confined atom, Ba@C60/Be@C60. Correlation and relativis-
tic entropies have been defined, which carry the information
of relativistic many-electron correlation effects; a global min-
imum is exhibited by the (Sr )Corr at the minimum location
of correlation energy and a maximum in the (Sr )Rel at the
location of peak of the relativistic energy. Other features of
the (Sr )Rel or (Sr )Corrsuch as local minimum and maximum
unveiled the delocalization properties of ρRel(r) or ρCorr (r),
which represents the incremental change in the electron prob-
ability density due to the relativistic or correlation effects.

Two separate configurational states, C1(1s2{2s2 +
2p1/2

2 + 2p3/2
2}) and C2(1s2{2s2 + 2p1/2

2 + 2p3/2
2 + 3s2}),

are considered to show the effects of correlation in Be@C60

as the confinement depth is varied. There is a small window
of depth, in which the 1s2 3s2 configuration plays a major role
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in the correlation effects in Be@C60. The minimum location
of the correlation energy is shifted to the deeper well side in
the C2 calculation due to the admixing of the additional
configuration 1s2 3s2 with the terms in C1; minimum
correlation energy in C1 and C2 configuration calculation
are respectively at 0.44 and 0.52 a.u. of confinement depth.
The features of the correlation energy variation are rightly
reflected in the correlation entropy; the (Sr )Corr exhibited a
global minimum at the location of the minimum correlation
energy. The 2s, 2p1/2, 2p3/2, and 3s electrons have almost
equal probabilities in the atomic well region and the C60

shell region at the location of minimum correlation energy,
and therefore almost the same delocalization properties. The
similar electronic probability spread signifies an enhanced
overlap between them reducing the e-e interaction and
consequently a minimum in the ECorr and (Sr )Corr.

The delocalization properties of electrons in confined atom
and the impact of relativistic effects are intrinsically con-
nected. The DF electrons are less entropic than the HF
electrons. In addition, the present work demonstrated that the

relativistic effects are enhanced in the Ba@C60 compared to
free Ba; relativistic effects predominantly affect the hybridiza-
tion of atomic orbitals with the C60 states. For sufficiently high
depths, the electronic densities are completely transferred to
the C60 side due to hybridization, acquiring a bimodal elec-
tronic distribution within the shell region. As a result, the
Shannon entropy and the (Sr )Rel increases, which in turn max-
imizes the ERel.

A major highlight of the present work is the insightful
connection between the relativistic or correlation energy and
the Shannon entropy, from the perspective of differences in
the electron density due to these effects. This work illustrates
and provides evidence that the entropic information may be
used as a relativistic and correlation measure, and this could
influence the measurable characteristic of A@C60.
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