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The thermal electron-emission rate constant for C60
− has been deduced for internal energies from 9.7 to

14.1 eV from storage ring measurements of the decays of ions reheated with single-photon absorption. The
thermal radiation from the ions is quantified from the data with respect to continuous cooling and discrete photon
quenching.
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I. INTRODUCTION

Measurements of rate constants in molecular beams with
standard approaches require very good control over the exci-
tation energy. A width in the internal energy distribution in a
decaying particle or molecule will also introduce a width in
the distribution of rate constants in the beam molecules, and
due to the strong dependence of rate constants on excitation
energy, any spread in energy is strongly amplified for the rate
constants. This makes direct measurement of rate constants
very difficult, even for relatively narrow internal energy dis-
tributions. The problem is not solved by extracting molecules
from canonical thermal distributions into molecular beams,
as demonstrated in Ref. [1] with a calculation of a numerical
example for C60

−.
The detrimental consequence of a finite width of the in-

ternal energy distribution to a simpleminded determination of
rate constants is perhaps best demonstrated by considering
the measured decay rates vs the rate constants present in
the ensemble. Allowing for measurements over all possible
timescales, an Arrhenius-type analysis would be based on the
approximation

k(〈E〉)
?≈ 〈k(E )〉, (1)

where the average is over the energy distribution. This is
emphatically wrong. Adding a finite dynamic time range to
the measurement of the right-hand side will make this poor
approximation even worse.

In fact, when the energy distribution of the molecules in
a beam is sufficiently broad and in the absence of competing
channels, molecular decay will occur with a rate with a time
dependence close to 1/t [2]. In the presence of the frequently
occurring phenomenon of thermal radiation, this power law
will be suppressed at long times with an almost exponential
time dependence [3].

Situations with broad energy distributions are seen for
all particle sizes but arise particular frequently for large
molecules and clusters because, for these, excitation to inter-
nal energies where reactions occur on measurable timescales
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will require large amounts of energy, up to several tens of
eV. Deposition of precise amounts of energies of such magni-
tudes is a very challenging experimental task. Photoexcitation
experiments with a single high-energy photon, for example,
will often lead to direct (first or secondary) ionization of the
molecules or to electron detachment from anions. The alterna-
tive strategy of multiple absorption of smaller energy photons
suffers from the inherent spreads in absorption statistics. Col-
lisional excitation is possible, as demonstrated with electron
collisions with fullerenes [4,5], but these suffer from a broad
energy transfer efficiency, requiring a detailed quantitative
analysis of the reaction products with a number of highly
nontrivial assumptions.

The origin of the power-law behavior is the loss of a
well-defined energy scale in the excitation energy distribution
caused either by such postproduction excitation or by the use
of hot sources, which almost unavoidably produce clusters
with broad energy distributions. For a unimolecular decay in
vacuum, loss of an energy scale is equivalent to loss of a
timescale. This is reflected in the absence of a characteristic
timescale in the 1/t dependence of the decay rate.

If one wants to measure absolute energies under such
conditions, it is therefore necessary to introduce an energy
scale by hand. Doing so, it turns out that such a procedure
allows us to determine the rate constant also for these broad
energy distributions. The demonstration of this procedure is
the purpose of this article.

The reheating experiments that provide the data for the
analysis here were obtained with C60

− in the experiments
reported in Ref. [6]. In these experiments, the anions were
created hot from the source and injected into an electrostatic
storage ring, where they decayed by spontaneous electron
emission. At a variable time after production, a small fraction
of the un-decayed ions were reheated by one-photon exci-
tation. The photon energy absorbed and dissipated caused
a heating of the molecule that led to an enhanced delayed
thermal electron emission. The time profile of the enhanced
decay was used to locate the equivalent backshifted time, i.e.,
the time where the spontaneously decaying ions decayed with
the same time dependence as the laser excited ions. An overall
multiplicative constant on the enhanced decay, which reflects
quantities such as laser fluence, beam overlap, and photon
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absorption cross section was only relevant for the amplitude
of the laser-enhanced signal and did not enter the analysis.

Together with the instrumental laser firing time, the de-
termination of this apparent shift of the zero time of the
power-law decay due to the reheating provides the time inter-
val during which one photon energy was lost. The procedure
can therefore be used to determine the absolute cooling rate
of the ions. The results obtained were in very good agreement
with the known facts of C60

−, such as the electron affinity,
and also with the model for the radiative cooling developed in
Ref. [7].

The data from this experiment somewhat surprisingly also
allow for the determination of the parameters that determine
the energy resolved rate constants. Furthermore, they provide
a measure of the relative importance of continuous and dis-
crete cooling. These two types of thermal photon emission
differ only by the magnitude of the energies of the photons
emitted, and thereby by the effect they have on the measured
decay dynamics of the ions.

The outcome of the analysis of the C60
− data will provide

the absolute decay rate, parametrized by the product of acti-
vation energy and heat capacity, the frequency factor of the
rate constant, and a binary spectral distribution of the ther-
mally emitted photons, all pertaining to the excitation energy
interval between 9.7 and 14.1 eV.

The remainder of the paper is divided into a section where
the theory behind the experimental data and the present anal-
ysis is described in some detail. This is followed by a section
where the experiments are described, after which a section
presents the data analysis and the results. Finally, the proce-
dure and the results are summarized and discussed.

II. THEORETICAL BACKGROUND

The spontaneous statistical decay rate of an ensemble of
particles in a molecular beam is given by the decay rate
constant averaged over all excitation energies present in the
ensemble [1,3]:

R(t ) ∝
∫ ∞

0
g(E )k(E ) exp [−k(E )t]dE . (2)

where R is the measured decay rate, i.e., the number of decays
per time unit, and k(E ) is the decay rate constant of an ion
with excitation energy E . The decay rate on the left-hand side
of Eq. (2) is not any proxy for a rate constant, it should be
emphasized. Decays of systems with a specific energy remain
exponential, as the equation also assumes. The quantity g(E )
is the ensemble density of excitation energy at the time it
was created in the source, and t is the time elapsed from the
creation of g in the source to the measurement. The constant
of proportionality is the combined transmission and detection
efficiency. When g(E ) is broad, the integrand peaks at the rate
constant km for which

d

dE
km(E ) exp [−km(E )t] = 0 ⇒ km(E )t = 1, (3)

corresponding to a peak value of exp(−1)/t for
k(E ) exp[−k(E )t]. This result is derived without specifying
the expression for k(E ) and holds generally, insofar as
Eq. (3) has solutions, which may not be the case for ultrafast

FIG. 1. The product of rate constants and survival probability for
a broad energy distribution after 1 ms for a few different parameters
for the rate constant given in the main text. The line is the calculated
value of 1000/ exp(1) s−1. The parameters are, from low to high
peak energies: (ω, φCv, E ′) = (1014 Hz, 434 eV, 10 eV),
(1012 Hz, 434 eV, 10 eV), (1014 Hz, 300 eV, 0), and
(1012 Hz, 434 eV, 0).

processes but will be the case for measurement times relevant
here. Implicit in the calculation is the assumption that the
decay process involves an activation energy, and the obvious
requirement that it is observable, i.e., leads to a change in
mass or charge state. The equation only has one solution if
k(E ) is a monotonically increasing function of E , which can
also be safely assumed here, but which might not be true
around a phase transition.

It is worth demonstrating the generality of the result in
Eq. (3) with some different expressions for rate constants.
Figure 1 shows a few examples. The expression for the decay
constant, which will also be used in the analysis, is of the
simple form

k = ω exp

(
− φCv

E + E ′

)
. (4)

Here Cv is the canonical heat capacity in units of kB, less one
due to the microcanonical correction [8] (kB = 1 will be used
throughout), and φ is the decay channel activation energy. The
parameter ω plays the same role as the frequency factor in the
canonical Arrhenius expression, although the two numerical
values are in general different. The energy E ′ is the offset in
the caloric curve, E = CvT + E ′, which cannot be assumed
zero. For thermionic emission from C60

−, the parameter φ is
to a first approximation expected to be the electron affinity of
2.67–2.68 eV [9,10]. In spite of its simplicity, Eq. (4) is very
accurate for our purpose because only an energy interval of
ca. 4 eV is covered in the experiments here. This question is
discussed in the Appendix and corrections to parameters made
in the discussion section.

The rate constants used in Fig. 1 are all variations of the
rate constant in Eq. (4). Other examples with different func-
tional forms are given in Ref. [3], with an identical conclusion
concerning the peak values.

The decay rate is the integral of the peaks in Fig. 1. The
integral is on the order of the width times the height. The order

052823-2



C60
− THERMAL ELECTRON-EMISSION RATE PHYSICAL REVIEW A 102, 052823 (2020)

of magnitude of the widths of the peaks, δE , is given by

d ln (e−kt )

dE
δE ≈ 1 ⇒ δE ∼

(
d ln k

dE

)−1

, (5)

where k = 1/t was used. Given the rapid variation of k with
energy, this will remain fairly constant over a wide range of
times. This suggests the possibility that also the decay rate
may vary approximately as 1/t . To examine this question
the decay rate is calculated by considering the time depen-
dence of the energy distributions. Ignoring the variation of
g with energy, the energy distribution of the surviving ions,
exp[−k(E )t], is essentially constant up to an energy close to
the value defined by k(E ) = 1/t , at which point it bends over
and rapidly approaches zero. The motion of this crossover
energy with time represents the decay rate. Solving Eq. (4)
for E and differentiating with respect to time then gives the
decay rate:

R(t ) = −c′g
dE (k = 1/t )

dt
= c′g

φCv

[ln (ωt )]2

1

t
, (6)

where c′ is a constant that includes the detection, transmission
efficiency, and other instrumental parameters, and g(E ) is
set to a constant, g = g(E (k = 1/t )). Absorbing g into the
constant, c ≡ c′g, and rewriting gives

1

t
= km = R(t )

[ln (ωt )]2

cφCv

, (7)

where km is the value for which the decay peaks. The differ-
ence between the time dependence of the decay rate and the
rate constant at the peak decay rate is the time variation of the
width of the decaying peak considered a function of excita-
tion energy and is summarized by the factor [ln(ωt )]2. This
equation has been established previously; see, e.g., Ref. [3]
and references therein, and has been used to determine heat
capacities of water clusters and radiative cooling of cationic
carbon clusters experimentally, for example.

In the presence of thermal radiation, relevant for C60
−

in the experimental data used here, the relation must be re-
considered. In principle also the C2 emission is a possible
channel. However, this has an activation energy which is close
to four times that of electron emission from the anion and can
safely be ignored. The only channel competing with electron
emission is therefore thermal radiation.

In the context of ensembles there are two categories of
thermal radiation, defined by the magnitude of the energies
of the emitted photons. When the emission is by sufficiently
low energy photons, the radiation is effectively a continuous
cooling. This means that the energy distribution shifts down
with time similarly to the nonradiative situation, just faster.
The shape of the crossover region of the energy distribution is
virtually unchanged in this small photon energy limit. When
only this type of radiation is present, its effect can be de-
termined from the observed decay rate with an expression
analogous to Eq. (7), where t ′ is given by

R(t ) = cgφCv

t ′ ln (ωt ′)2 , (8)

from which the peak rate constant is identified as

k(t ) = 1

t ′ , (9)

where t ′ is a fictitious time which is equal to the time needed
to wait to have an identical decay rate in the absence of
radiation. The decay at short times which is not influenced
by any radiative cooling can be used to determine the constant
of proportionality that links t and t ′. In the logarithm the dif-
ference between the physical time and t ′ can often be ignored.

When high-energy photons are emitted, the simple power-
law relation needs to be modified once more. Photon energies
are considered large if the emission of a single photon will
quench the decay on a timescale corresponding to the rate
constant after emission. The precise energy where this shift
from continuous cooling to quenching happens was analyzed
in Ref. [11] and will be discussed here after the presence of
these photons is quantified.

For the fullerenes, the largest part of the radiation is well
understood as being carried by the broad surface-plasmon
resonance [7]. Although centered at 20 eV, it reaches into the
near infrared, which allows the low-energy tail to be excited
thermally with an oscillator strength which gives a radiative
energy emission rate which is two orders of magnitude higher
than the contribution from the vibrational transitions [12].
The calculated magnitude is consistent with both the anion
cooling and the original observation of the strong radiative
cooling of the much hotter fullerene cation fragments [13].
The distribution of photon energies generated by the plasmon
resonance emission covers both the small and large values,
and both types of channels therefore need to be considered in
the analysis.

Whereas for small photon energies the emitted power is
the relevant quantity, for large photon energies it is the emis-
sion rate constant. Although photon emission rate constants
vary with the temperature to the power six [12], this is still
slow compared with the variation of the rate constant of the
observed thermionic emission rate constant, and we can here
set the discrete energy emission rate constant to a single value,
kp. Interestingly, the power of six which originates in a photon
absorption cross section that varies with the square of the
photon energy, has also been observed for larger, metallic
nanoparticles [14,15]. The presence of high-energy photon
radiation means that the abundances at the decaying edge,
and hence also the decay rates, are reduced by the factor
exp(−kpt ). Together with the effect of the continuous cooling
and after normalization to the short time behavior of 1/t , the
observed rate Rn is then equal to

Rn(t ) = 1

t ′ e
−kpt = k(t )e−kpt , (10)

or

k(t ) = Rn(t )ekpt , (11)

where k(t ) is the thermionic rate constant at the peak of the
energy distribution. The fitted curve from the experimentally
measured spontaneous decay rate of C60

− from the hot source
used gives the function [6]

Rn(t ) = 1

t
exp(−122s−1t + 1320s−2t2), (12)
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FIG. 2. A schematic view of the energy distributions immedi-
ately before (dotted line) and after (full line) a photon with energy
hν has been absorbed at tlas.

and hence

k(t ) = ekpt

t
exp(−122s−1t + 1320s−2t2). (13)

The analysis so far has only dealt with the spontaneous
decay. If the molecule is exposed to a laser pulse some time
after production, the absorbing fraction of the energy distribu-
tion will be shifted up by the photon energy. The situation is
illustrated schematically in Fig. 2. The small fraction of the
distribution that has been shifted up in energy has almost the
same shape as the unshifted distribution had at some earlier
time, apart from the absolute height. This has been shown
in Ref. [16] to which the reader is referred for details of the
calculation. After photon absorption at tlas the decay rate is
therefore given by

Rlas(t ) = pe−kp(tlas−t0 )R(t − tlas + t0) + (1 − p)R(t ), (14)

where t0 is a backshifted time, and p is the photon absorption
probability. The spontaneous decay rate is a function of time
and the physical interpretation of t0 is that it is the time where
the decay rate was equal to the rate observed after photon
absorption. This time can therefore be determined by a fit of
the first term on the right-hand side of Eq. (14) to the decay
rate at earlier times. The fraction of absorbing ions, p, was so
low in the experiments that it is practically unobservable in
the second term in the equation. This facilitated the analysis
although it is not an essential requirement. The nonzero value
of kp has no effect on this part of the analysis. It was not
explicitly considered in Ref. [6], but the cooling rates obtained
there remain unchanged, although it is clear that they only
refer to the small photon energy cooling power.

The nonexponential decay is essential to determine the
cooling with this procedure because, for nonexponential de-
cays, the value of both p (or more precisely pe−kp(tlas−t0 )) and
t0 can both be determined, a possibility which is not present
for an exponential decay.

As shown, decay rates are proportional to decay constants
and Eq. (14) therefore also holds for the peak distribution val-
ues km(t ) with the substitution R(t ) → km(t )e−kpt . The values

of t0 depend on the photon energy and tlas but are independent
of the absorption cross section and instrumental parameters.
Keeping the laser firing time tlas fixed and varying the photon
energy, it is therefore possible to obtain the variation of the
rate constant with photon energy as

km(E (tlas) + hν) = ekpt0 Rn(t0(tlas, hν)), (15)

and similarly

km(E (tlas)) = ekptlas Rn(tlas). (16)

The energy E (tlas) is the energy where the decay rate peaks
at time tlas. It is unknown but both hν and t0 are known.
As indicated in Eq. (15), the measured values of t0 depend
on both the laser firing time and the photon energy. When
considering decay rates in the following, the term energy will
always refer to this particular energy or the corresponding
peak rate energy for the shifted distributions. In statements
about the rate constant, the energy will refer to the argument
in Eq. (4). Equations (15) and (16) are the basic equations for
the analysis of the experimental data. They will be used below
to express the ks in terms of known, experimental times and
parameters of the decay. The subscript m indicates that the rate
constant refers to a specific energy here. It will be dropped
below.

It should be noted that, although a number of measured
values of t0 correspond to times before the mass selection has
been completed in these experiments, this causes no problem
for the analysis, because other experiments on C60

− have es-
tablished the short-time behavior as a well behaved power law,
see e.g., [12], and this behavior is also well established as a
general phenomenon, see, e.g., the examples listed in Ref. [3].

III. EXPERIMENTS

The data used for the analysis were recorded at the Tokyo
Metropolitan University electrostatic storage ring, TMU e-
ring. The analysis of the absolute cooling rates derived from
these data was published in Ref. [6], and the description of
the experiment here will be limited to the pertinent points. For
a detailed description of electrostatic storage rings and their
use for decay measurements, the reader is referred to the rich
literature on the subject, see e.g., Refs. [17–22].

The C60
− anions were produced in a laser ablation source

without any cooling gas and injected into the ring together
with some amount of other anionic carbon species produced
during the ablation, mainly other fullerenes. The circulation
time of C60

− in the ring was 122 μs. A set of pulsed deflec-
tion plates was used to eject the unwanted species, based on
their mass-dependent circulation time. This beam purification
process was completed within 1 ms after production of the
ions in the source.

After a variable storage time, the C60
− beam was exposed

to a laser pulse from a tunable optical parametric oscillator
(OPO) laser, with photon energies which were varied between
1.9 and 2.7 eV in steps of 0.1 or 0.2 eV. Pulse energies were
kept low, typically a few mJ or lower, to ensure single-photon
absorption conditions. Spectra were recorded with laser firing
times between 4 and 35 ms.

Figure 3 shows two example spectra that were recorded
with laser firing time 12.5 ms and photon energies 2.0 and
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FIG. 3. Two spectra with photo-enhanced decays.

2.7 eV. Reference spectra without exposure to laser light were
recorded under identical source and ring conditions, time-wise
interleaving laser-on and laser-off spectra. The ion source
was found to be very stable, with reproducible spontaneous
decay rates as a function of time, with variations restricted
to minor and slow fluctuations in the absolute overall ion
intensity. Such source intensity variations were accounted for
by a normalization using prelaser time counts of the laser-on
and the laser-off spectra. The spontaneous decay showed no
variation with respect to the exponential cutoff caused by the
radiative cooling, and the decay rate as a function of time was
in good agreement with the rates previously observed from a
plasma source [12].

The main result of the experiments were the backshifted
times of the photoinduced decays. As illustrated with a couple
of examples in Ref. [6], the photon enhanced signal can be
represented well by the expression

Rp(t ) ∝ 1

t − tlas + t0
, (17)

where t is the time after production of the ions in the source,
tlas is the laser firing time, and t0 the backshifted time. This
simple expression only works for situations where, like here,
the backshifted time is located in the pure power-law sector
before radiative cooling modifies the decay. Irrespective of in
which sector the backshifted time is located, its interpretation
is the same, viz., as the reciprocal of the rate constant of the
molecule at the energy E (tlas) + hν, modified with kp as given
above.

0.00 0.01 0.02 0.03
0.0000
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t 0 
(s

)

tlas (s)

FIG. 4. Traces of t0 as a function of laser firing time measured
with the photon energies hν = 2.0 eV (circles) and 2.7 eV (squares).
The error bars are statistical. Some amount of fluctuation beyond
statistical are present, due to the so-called betatron oscillations, a
well-known phenomenon from ion storage rings.

Figure 4 shows examples of the fitted t0 for experiments
with two different photon energies and a range of different
laser firing times.

IV. DATA ANALYSIS

The data analysis proceeds from the data set comprising
associated values of laser firing times tlas, backshifted times
t0, and photon energies hν together with the rate constants for
these times, k(E (t )), derived from the measured decay rates,
as explained above.

The first part of the analysis is initiated by assigning a zero
energy arbitrarily to the edge energy E (tlas) at some given
laser time. In this case it was chosen to be tlas = 0.00994 s.
A few alternative starting points were tried without any sig-
nificant change in the result. The rates at both this time and
after absorption of a photon are known, as is the difference
in energy. This places all rates measured with the same laser
firing time on the energy axis with known relative positions.
Such data for different laser firing times are linked to each
other when the different t0s are close, ideally identical, for
different laser firing times and photon energies. The criterion
for two t0s being identical was chosen to be a difference of no
more than 10% in value. The computational procedure is illus-
trated in Fig. 5. All 62 measured combinations of laser firing
times and photon energies were linked to the common energy
reference this way. The linked energies are independent of the
values of kp, but the rate constants for each time are not. They
need to be calculated with Eq. (11).

As the value of kp is not known at this point, curves of the
thermionic emission rate constant k(E ) were calculated for
different assumed values of kp, varying it from 10 to 100 s−1

in steps of 10 s−1. For each of these, the logarithmic slope was
fitted. The logarithmic slope takes the form

d ln k

dE
= φCv

E2
= ln(ω/k)2

φCv

, (18)
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FIG. 5. The computational flow in the calculation linking the rel-
ative energies, illustrated with three laser firing times, two of which
are identical. The energy assignment begins at the top right corner by
choosing this as the zero of energy and flows in the direction of the
arrows. The points at times around 10 ms correspond to data at tlas,
and those at a few hundred μs are data at the corresponding t0s. As
described in the main text, all points can be assigned a known rate
constant, modulo the value of kp.

where k is the logarithmic midpoint of the data range for
which the derivative is fitted.

The second step in the analysis is taken by considering the
variation of the rate constants when the laser time is changed
and the photon energy is kept constant. Taking the ratio of the
rate constant at the backshifted time to the rate constant at the
laser firing time one gets, with Elas denoting the energy edge
at the laser firing time and using the expression for the energy
resolved rate constant in Eq. (4),

k(t0)

k(tlas)
= exp

(
− φCv

Elas + hν
+ φCv

Elas

)

≈ exp

(
φCvhν

E2
las

− φ(hν)2

E3
las

)
, (19)

or

ln

(
k(t0)

k(tlas)

)
≈ φCvhν

E2
las

(
1 − hν

Elas

)
. (20)

The left-hand side of this expression is expressed with the
relations between rate constant and time in Eqs. (15) and (16).
The value of Elas can be expressed in terms of the rate constant
as

k(tlas) = ω exp

(
−φCv

Elas

)
⇒ Elas = φCv

ln (ω/k(tlas))
. (21)

Inserting this and taking the square root gives the quasilinear
relation

[
ln

(
k(t0)

k(tlas)

)]1/2

=
(

hν

φCv

)1/2

[ln (ωtref ) − ln (k(tlas)tref )]

(
1 − hν ln (ω/k(tlas))

φCv

)1/2

, (22)

where tref is a reference time that can conveniently be taken as
1 s.

Repeating this procedure with tlas replaced by t0 on the
right-hand side gives a similar result apart from the exchange
tlas → t0, and a change of sign on the last term in the last
bracket. Averaging the two and dividing by

√
hν gives

1√
hν

[
ln

(
k(t0)

k(tlas)

)]1/2

≈
(

1

φCv

)1/2[
ln (ωtref ) − 1

2
ln

(
k(tlas)k(t0)t2

ref

)]
. (23)

When evaluating the quality of this approximation, it was
compared with that of the ratio of rate constants expressed
as

ln

(
k(t0)

k(tlas)

)
= − φCv

Elas + hν
+ φCv

Elas
= φCvhν

Elas(Elas + hν)

= hν

φCv

ln

(
ω

k(t0)

)
ln

(
ω

k(tlas)

)
. (24)

This is inconvenient for graphical representation, but a test
using it (not shown) confirms the validity of the above ap-
proximation.

Equation (23) defines a straight line. The value of kp enters
into the values of k(t0) and k(tlas) and hence also of the slope
and the intercept of the straight line. The intercept squared al-
lows a comparison with the value obtained with Eq. (18) after

a correction for the difference between timescales used in the
factor ln(ωt ) in the two equations. The comparison of the two
values is shown in Fig. 6 vs kp. Consistency requires identical
values for the two curves, yielding the value kp = 60 s−1. This
value inserted into Eq. (23) gives the line in Fig. 7.

Another possible contribution to the analysis shown in
Fig. 7 should be mentioned. It is obtained by replacing the rate
constant at the laser firing time with one for a different photon
energy, i.e., using two different photon energies and hence two

FIG. 6. The values of ln(ω × 1 s)2/φCv vs kp calculated with
Eq. (18) (circles) and Eq. (23) (triangles).
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FIG. 7. Plot of the data calculated with Eq. (23) and kp = 60 s−1.
The points are grouped in bunches 0.1 wide and the error bars are
calculated as the statistical average of the mean. For a few points
where there is only one datum in the bunch, the error is set to 0.05.

different backshifted times from the same laser firing time.
The equation then reads

1√
hν1 − hν2

[
ln

(
k(t0(1))

k(t0(2))

)]1/2

≈
(

1

φCv

)1/2[
ln (ωtref ) − 1

2
ln

(
k(t0(1))k(t0(2))t2

ref

)]
,

(25)

where the arguments (1) and (2) refer to different photon
energies at the same laser firing time. The present data (not
shown) are too scattered to provide any strong confirmation
of the analysis, but are consistent with it.

The parameters of the line in Fig. 7 gives the values

ln (ω 1s) = 33.8 ± 6.0, φCv = 510 ± 180 eV, (26)

corresponding to a frequency factor of ω = 4.9 × 1014 s−1

with a 1σ uncertainty of a factor 400.
The above results can be used to verify the procedure by

applying them to the rate constants found with the linking
procedure illustrated in Fig. 5. As kp is known, also these
rate constants are known, apart from the offset in energy. The
expression for the rate constant is rewritten, reintroducing the
offset energy E ′, as

1

ln (ω/k(E ))
= E + E ′

φCv

. (27)

Using the value of ω fitted above, the left-hand side is plotted
vs E in Fig. 8. The expected straight line behavior is observed,
and the fitted value of φCv is consistent with the previously fit
values, although the uncertainty is significant larger than the
fit value indicates. The rate constant calculated with the two
fit parameters from Fig. 8 and the previously determined ω

from Eq. (26) is shown in Fig. 9. Also shown are the measured
rate constants from Eqs. (11), calculated with the large photon
energy parameter value kp = 60 s−1, the experimentally mea-

FIG. 8. Plot of Eq. (27) with rate constants calculated with the
linking procedure explained in the main text, and the value kp =
60 s−1. The line is a straight line fit. The parameters of the line give
the values φCv = 546 ± 12 eV and E ′ = 18.6 ± 0.4 eV. The error in
ω is not included in these two standard deviations.

sured rates R(t ) and the fit values of the energies based on the
measured values of t0, as described in detail above.

V. DISCUSSION

The analysis has been based on experimental data and the
result in Fig. 9 gives the rate constant from experimental data
alone. The different determinations of the parameters can be
summarized as a value for the frequency factor of ω = 5 ×
1014 s−1 with an uncertainty of a factor 400; two values of
φCv of which 510 ± 180 eV must be considered the primary.
The second value is consistent with this number but is derived
assuming the above value of the frequency factor. Finally, the

FIG. 9. The thermionic rate constant of C60
− vs energy. Error

bars can be taken as the average point-to-point fluctuation. The
full line are the values calculated with the parameters ω = 4.9 ×
1014 s−1, φCv = 546 eV, and E ′ = 18.6 eV. The latter is added to the
energy. As it includes the offset in the caloric curves, this is added as
E0.
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zero of energy has been fitted to a value of 18.6 eV. The first
two parameters in this list have obvious interpretations, but
the energy offset also contains information about the reacting
species.

The parameters extracted from the fits differ from the
values that can potentially be measured in other experiments
because approximating a microcanonical rate constant, which
is essentially approximating a ratio of level densities with an
exponential, will generate some finite-size corrections. These
corrections were calculated in Ref. [23]. To leading order in
the reciprocal heat capacity they can be summarized as

Cv = s − ln (ωt )2

12s
, (28)

φ = Ea + Er − Et , (29)

where s is the average of the number of thermally activated
oscillators of precursor and product, and the two energies
Er, Et are the offsets in the canonical caloric curves for the
anion (Er) and the neutral molecule (Et ), defined as

E = siT − Ei, (30)

where i represents either r or t and sr, st are the s values for
the reactant (the anion) and the transition state (the neutral) as
indicated by the subscripts. Ea is the adiabatic electron affinity
with the previously cited value of 2.67 or 2.68 eV.

The correction to the heat capacity is very minor for C60,
on the order on 1 in the units of kB used, and can be ignored
here. Also, the slight variation in the heat capacity due to its
temperature dependence will be ignored (see the Appendix for
a discussion of this question).

The correction to the activation energy is the most im-
portant. It vanishes for a harmonic-oscillator system if the
number and frequencies are identical in the precursor and
product because, for harmonic oscillators, the offsets are just
the sum of their zero-point energies. Although the number of
oscillators is identical for the anion and the neutral molecule
and the oscillators can be considered harmonic because the
degree of excitation is very low, a correction arises because
the frequencies differ.

The entire sets of frequencies of the neutral and the anion
are not known. The two anion infrared-active modes reported
in Ref. [24] of 570 and 1374 cm−1 are shifted slightly rel-
ative to the neutral values of 570 and 1411 cm−1 [25]. If
the reduction of the highest frequency is used as the scal-
ing for all frequencies, the corresponding reduction in total
zero-point energy of the anion compared with the neutral is
0.26 eV. For this estimate the set of vibrational frequencies
of Ref. [26] was used. Although these frequencies refer to
fullerite and not to gas-phase molecules, the values should be
sufficiently precise for this purpose. The net result is to reduce
the effective activation by 10%. At the same time the reduced
vibrational quantum energies push the heat capacity up toward
the classical canonical limit of 3N − 6. The combined effect
is therefore less than the 10% reduction of the activation
energy alone. As the anion vibrational spectrum is by and
large unknown, a more accurate estimate of the expected value
of φCv will not be attempted.

In the definition of an emission temperature which is used
here, some offsets enter the energy content of the decaying

anions [23]. To a sufficient precision the emission temperature
is, in terms of the physical excitation energy E equal to

Te = 1

Cv

(
E − Ea

2
+ Er

)
. (31)

The quantity in the bracket is the energy that appears on
the abscissa in Fig. 9, i.e., the offset energy E0 is equal to
Er − Ea/2. With the reduced frequencies for the anion, this
amounts to E0 = 7.7 eV. To get the physical energy on the
abscissa in Fig. 9 this number therefore needs to be subtracted.
The rate constant has consequently been determined for the
range of energies 9.7 to 14.1 eV.

The frequency factor in the simplified expression for the
rate constant used here can be calculated from the exact value
determined by the expressions given in Ref. [1] with some
correction factors which can be found in Ref. [23]. It is not
an observable that can be compared with other measurable
quantities, and as a calculation of it involves a number of
factors with each their uncertainty, a calculation of its value
will not be attempted here.

Finally, it is worthwhile to consider the amount of radia-
tive cooling by low- and high-energy photon emission. The
distinction between these two categories is made according
to whether the emission of one photon quenches the electron
emission channel. The large photon energies are defined as
[11]

d ln k

dE
hν > 1 ⇒ hν >

φCv

[ln(ω/k)]2
w

= 510 eV

ln (4.9 × 1014/400)2 = 0.66 eV. (32)

Photons of this magnitude are within thermal reach, as can be
seen by a calculation of the microcanonical temperature. For
the anion this is (E + E0 + Ea/2)/160, where E + E0 is the
fitted effective energy content, and Ea/2 is the correction for
the finite heat bath, which can be ignored for photon emission.
The value of 160 is the heat capacity. This is slightly less
than the contribution from all oscillators, which is 174 in the
harmonic and high-temperature limit. The calculated effective
temperature is then 0.12 eV for the typical energy of 18 eV.
The phase space of the photon and the quadratic absorption
cross section [7] makes the total emission rate proportional
to the fourth power of the photon energy. In terms of the
microcanonical temperature:

kphoton(hν)dhν ∝ (hν)4 e−hν/T

1 − ehν/T
dhν. (33)

The total emitted power is bounded from below by
0.66 eV × 60 s−1 = 40 eV/s. This should be compared with
the radiative energy loss of approximately 100 eV/s reported
in Ref. [6]. As mentioned, this emitted power refers to the
radiation emitted as continuous cooling exclusively. We can
use this value to normalize Eq. (33) and find the total emitted
power as well as the distribution on low- and high-energy pho-
tons. Using the photon energies up to 0.66 eV, the low-energy
photon cooling determines the constant c as

100 eV/s = c
∫ 0.66 eV

0
(hν)5 e−hν/T

1 − e−hν/T
dhν. (34)
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The corresponding high photon energy emission rate constant
is

kp = c
∫ ∞

0.66 eV
(hν)4 e−hν/T

1 − e−hν/T
dhν. (35)

The value is calculated to be 120 s−1, i.e., a factor of two
higher than the fitted value. The value decreases to 90 s−1

for the temperature 0.11 eV. Considering that the spectrum in
Eq. (33) is somewhat schematic, the agreement is reasonable.
In any case, the data suggest that a considerable fraction of
the radiative energy is emitted as high-energy photons. This
is remarkable, both because the systems is as large as it is
and because the electron affinity, which acts as the activation
energy and therefore sets the temperature scale, is not particu-
larly large compared with activation energies for unimolecular
fragmentation, for example.

VI. SUMMARY AND PERSPECTIVES

The rate constant for thermal electron emission from C60
−

has been determined over a 4 eV energy range. The determi-
nation applies a simplified rate constant but does not rely on
any modeling. The experimental input is the set of associated
values of backshifted times, photon energies, and laser-firing
times in a reheating experiment. The experiment was per-
formed in a storage ring, which is an ion storage device which
allows us to probe a wide range of times and thereby to cover
a reasonable internal energy range.

The analysis provided the absolute value and the logarith-
mic derivative of the rate constant with respect to energy, and
the product of activation energy and heat capacity, together
with the frequency factor for the rate constant. The values
were found to be in the range of expected and physically
reasonable, although the uncertainties were not negligible.
The main problem of the analysis of the present data is the
presence of betatron oscillations. Although these are inherent
to the operation of storage rings, their magnitude decreases
in smaller rings, for simple geometrical reasons related to
relative detector size [27]. The analysis presented here is a
proof of principle for the method which provides rate con-
stants for large systems that are otherwise in practice beyond
reach of experimental measurement, and the commissioning
of still smaller storage rings promise the possibility for still
more accurate measurements. Other problems may arise with
a reduction of the betatron oscillations. Application of the
method to smaller molecules or clusters could require that
finite heat capacities are taken into account. A deviation from
the straight line behavior seen in Fig. 10 indicate that the finite
heat capacity imposes modifications on the analysis. Such
effects have been seen, e.g., in Ref. [28] for SF−

6 . Because
the method described in this work is most urgently needed
for large systems where heat capacities tend to vary smoothly
with energy over the measured range, such complications are
not expected to constitute a major drawback. Another limi-
tation associated with level densities and thermal properties
should be mentioned, viz. the possibility of a liquid-solid
phase transition or, more correctly, the finite-size equivalent
of this. This will modify the power-law decay as described
in Ref. [3], essentially with an increase, in contrast with the
decrease induced by radiative cooling, and is therefore

FIG. 10. The test of the approximation of the rate constant by the
expression in Eq. (A1).

directly observable in the measured spectra of spontaneous
decays.
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APPENDIX: THE APPROXIMATION
OF THE RATE CONSTANT

The use of Eq. (4) requires that parameters extracted from
the experiments must be corrected before they can be com-
pared with parameter values from other types of experiments.
The corrections are known [23] and have been applied in the
Discussion section.

The energy in the denominator, E + E ′, is the sum of the
true thermal energy E and an offset E ′, which is required
to account for situations where the thermal energy is not
simply proportional to the temperature. The offset includes the
zero-point energy of the harmonic oscillators, which provide
the largest part of the heat capacity of the molecule, but also
accommodates any other thermal offset that may be present
below E , for whatever reasons.

The main energy dependence of the electron-emission rate
constant is the contribution from the ratio of level densities, ρ,
and the main question therefore concerns the accuracy of the
approximation

ρ(E − φ)

ρ(E )
= exp

(
− φCv

E + E ′

)
. (A1)

The quality of this approximation is best seen by plotting E
vs ln(ρ(E − φ)/ρ(E )). For this purpose the known electron
affinity and the known frequencies of the molecule in combi-
nation with the Beyer-Swinehart algorithm are used. From the
rewritten relation

E = φCv

ln
(

ρ(E−φ)
ρ(E )

) − E ′, (A2)
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a straight line is expected. It is indeed also seen in Fig. 10.
The slope is 434 eV and the offset gives E ′ = 4.64 eV,
both in good agreement with the expected values. Impor-
tantly, the line is straight to a good approximation. The

value where the expected abscissa is located is centered
slightly below −0.04, with an ±2 eV range at each sides
on the ordinate. This is well in the linear part of the
curve.
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