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The computation of strongly correlated quantum systems is challenging because of its potentially expo-
nential scaling in the number of electron configurations. Variational calculation of the two-electron reduced
density matrix (2-RDM) without the many-electron wave function exploits the pairwise nature of the electronic
Coulomb interaction to compute a lower bound on the ground-state energy with polynomial computational
scaling. Recently, a dual-cone formulation of the variational 2-RDM calculation was shown to generate the
ground-state energy, albeit not the 2-RDM, at a substantially reduced computational cost, especially for higher
N-representability conditions such as the T2 constraint. Here we generalize the dual-cone variational 2-RDM
method to compute not only the ground-state energy but also the 2-RDM. The central result is that we
can compute the 2-RDM from a generalization of the Hellmann-Feynman theorem. Specifically, we prove
that in the Lagrangian formulation of the dual-cone optimization the 2-RDM is the Lagrange multiplier. We
apply the method to computing the energies and properties of strongly correlated electrons—including atomic
charges, electron densities, dipole moments, and orbital occupations—in an illustrative hydrogen chain and
the nitrogen-fixation catalyst FeMoco. The dual variational computation of the 2-RDM with T2 or higher
N-representability conditions provides a polynomially scaling approach to strongly correlated molecules and
materials with significant applications in atomic and molecular and condensed-matter chemistry and physics.
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I. INTRODUCTION

Strong electron correlation can be critically impor-
tant in the accurate prediction of energies and properties
of molecules and materials including conjugated organic
molecules, transition-metal catalysts, spintronic molecules,
and superconductors. Strongly correlated quantum systems
arise when a linear increase in system size produces an
exponentially increasing number of electron configurations
that contribute significantly to the quantum-mechanical wave
function [1–4]. Traditional wave-function methods that are
based upon a single-reference determinant such as density-
functional theory [5] and coupled cluster theory [6] can have
difficulty in describing strongly correlated wave functions.
Recent advances in the description of such wave func-
tions include density matrix renormalization group [7] as
well as sparse configuration-interaction methods [8–10]. An
alternative approach to strong correlation is the direct varia-
tional calculation of the two-electron reduced density matrix
(2-RDM) without the computation or storage of the many-
electron wave function [1,2,11–36]. The 2-RDM method
exploits the pairwise nature of the electron-electron inter-
action in the electronic Hamiltonian. Variational calculation
of the 2-RDM has been applied to the accurate computa-
tion of a range of strongly correlated phenomena including
polyradical character in conjugated polyaromatic hydrocar-
bons [19], non-innocent ligand effects in transition-metal
complexes [37,38], entanglement-driven non-superexchange
mechanisms in bridged transition-metal dimers [39,40], and
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exciton condensation in molecular-scale electron double
layers [41,42].

The 2-RDM must be constrained by conditions to en-
sure that it represents at least one N-electron density matrix,
known as N-representability conditions [43–47]. Most ap-
plications of the variational 2-RDM method employ a set
of N-representability constraints known as the two-positivity
conditions. The two-positivity conditions are part of a hi-
erarchy of p-positivity conditions in which p-body metric
matrices are constrained to be positive semidefinite [13,43].
While the two-positivity conditions typically generate an ac-
curate lower bound to the ground-state energy, the bound
can often be significantly improved through three-positivity
or partial three-positivity conditions such as the T2 condition
[11,13,15,23,48,49]. In the conventional (primal) formulation
of the variational 2-RDM method in which N-representability
constraints are placed directly on the 2-RDM, however,
the computational cost r9 of the three-positivity conditions
including T2 is much greater than the cost r6 of the two-
positivity conditions [48,49]. Recently, we proposed and
implemented a dual formulation of the variational 2-RDM
method with an r6 scaling for the T2 condition [29] in
which the lower bound to the ground-state energy is directly
computed by fitting the N-representability conditions to the
Hamiltonian. In its original formulation [29], however, this
dual approach generates only the ground-state energy. In this
paper we show theoretically and computationally how the
dual-cone approach can be extended to compute not only the
energy but also the 2-RDM.

To obtain the 2-RDM in the dual-cone approach, we em-
ploy an extension of the Hellmann-Feynman theorem for
2-RDM theory. While the proof of the Hellmann-Feynman
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theorem is well known for wave functions [50], it must be gen-
eralized for 2-RDM theory to treat not only N-representable
2-RDMs but also approximately N-representable 2-RDMs
[51]. With this extension we show that the derivative of the
energy from the variational 2-RDM method with respect to
the reduced Hamiltonian matrix generates the 2-RDM. Using
this relation, we prove the central result of the paper that in
the Lagrangian formulation of the dual-cone optimization the
2-RDM is the Lagrange multiplier. This result allows us to
compute the 1- and 2-RDMs as well as all one- and two-body
properties efficiently in a dual formulation of the variational
2-RDM theory. To illustrate the method, we apply the dual
2-RDM method with the T2 condition to computing the Mott
metal-insulator transition of the hydrogen chain (H4) as well
as the electronic structure of the strongly correlated, nitrogen-
fixation catalyst FeMoco.

II. THEORY

After a review of the primal formulation of variational 2-
RDM theory in Sec. II A, we present a generalization of the
Hellmann-Feynman theorem for 2-RDM theory in Sec. II B,
which we use in Sec. II C to derive a relation for the 2-RDM
in the dual formulation of variational 2-RDM theory.

A. Primal formulation of two-electron reduced density
matrix theory

For a many-particle quantum system with only pairwise
interactions the minimization of the ground-state energy as a
functional of the 2-RDM can be written as [1,2,11–34,44–47]

E∗ = min
2D∈P̃2

N

Tr(2K 2D), (1)

where E∗ is the energy at the minimum for a given two-
electron reduced Hamiltonian matrix 2K . For a finite basis of r
orbitals the two-particle reduced Hamiltonian and density ma-
trices are square Hermitian matrices of dimension r(r − 1)/2.
Minimization is performed with respect to an approximate set
P̃2

N of ensemble N-representable 2-RDMs. We define P̃2
N to be

convex and a superset of the exact convex set P2
N of ensem-

ble N-representable 2-RDMs, that is P2
N ⊆ P̃2

N . A 2-RDM is
ensemble N-representable if and only if it is representable by
at least one N-particle density matrix [2,43,45–47]. Because
P2

N ⊆ P̃2
N , the minimum energy E∗ is a lower bound to the

exact ground-state energy of the Schrödinger equation in the
finite basis set with the N-particle Hamiltonian corresponding
to 2K . As the approximate set P̃2

N approaches the exact set P2
N ,

the minimum energy E∗ approaches the exact ground-state
energy from below.

B. Hellmann-Feynman theorem of the two-electron
reduced density matrix

We can derive an extension of the Hellmann-Feynman
theorem for approximate N-representable sets of 2-RDMs.
Consider the derivative of the minimum energy in
Eq. (1) with respect to an arbitrary parameter R to

obtain

∂E∗

∂R
= Tr

(
∂ (2K )

∂R
2D∗

)
+ Tr

(
2K

∂ (2D∗)

∂R

)
(2)

= Tr

(
∂ (2K )

∂R
2D∗

)
. (3)

The second term in Eq. (2) vanishes because the energy E∗
has been minimized with respect to all variations about the
optimal 2-RDM 2D∗. Hence, the derivative of the energy E∗
with respect to R, given by Eq. (3), depends only upon the
derivative of the two-electron reduced Hamiltonian matrix
with respect to R and the 2-RDM 2D∗.

This result extends the Hellmann-Feynman theorem [50] to
approximate N-representable sets of 2-RDMs P̃2

N . If P̃2
N = P2

N ,
then the result is equivalent to the conventional Hellmann-
Feynman theorem. A similar result was previously presented
by Schlimgen and the author [51] in the context of comput-
ing analytical gradients for variational 2-RDM calculations.
Substituting the elements of the two-electron reduced Hamil-
tonian matrix for R in Eq. (3) yields

∂E∗

∂
(

2K
i j
kl

) = (
2D

i j
kl

)
, (4)

or
∂E∗

∂ (2K )
= 2D∗. (5)

The response of the minimum energy E∗ to a variation in
an element of the reduced Hamiltonian matrix generates the
2-RDM 2D∗ in the approximate N-representable set P̃2

N that
minimizes the energy.

C. Dual formulation of two-electron reduced density
matrix theory

The minimization of the energy with respect to its 2-RDM
in Eq. (1) can be recast in a dual (or polar) formulation [29]

min
E ,2Bi

E (6)

subject to
∑

i

2Bi − (
2K −E 2I

)
, (7)

where the energy is treated as a variable and the two-particle
matrices 2Bi provide the N-representability conditions that
define the set P̃2

N :

P̃2
N = {

2D such that Tr
(

2Bi
2D

)
� 0 for all i

}
. (8)

The collection of 2Bi forms a special type of convex set in
which α 2Bi is a member of the set for all α � 0, known as
a convex cone [52]. Because the cone of 2Bi determines the
approximate convex set of 2-RDMs P̃2

N by Eq. (8), it is said to
be the dual (or polar) cone of the set of 2-RDMs [43,46] and
denoted by (P̃2

N )∗. The dual cone (P̃2
N )∗ can represent the two-

positivity conditions [44,45], the two-positivity plus T1 and
T2 conditions [15,47,48], or higher-order N-representability
conditions [13,43,49]. In the dual formulation the energy in
Eq. (6) is minimized subject to fitting the extreme elements
2Bi of the dual cone to the reduced Hamiltonian 2K shifted by
the energy E [29]. For concreteness the dual-cone matrices 2Bi

of the T2 condition are derived in the Appendix.
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The constraints of the dual formulation can be incorporated
into the energy functional through a matrix 2X of Lagrange
multipliers:

E∗ = min
E ,2Bi

max
2X

L
(
E , 2Bi,

2X
)
. (9)

where the Lagrangian L(E , 2Bi,
2X ) is

L
(
E , 2Bi,

2X
) = E − Tr

[
2X

(∑
i

2Bi − 2
K̃

)]
, (10)

2
K̃ = 2K −E 2I . (11)

Taking the derivative of the minimum energy E∗ with respect
to the elements of the reduced Hamiltonian matrix yields

∂E∗

∂ (2K )
= 2X ∗. (12)

Comparison of Eq. (12) with Eq. (5) from the extension of the
Hellmann-Feynman theorem reveals a crucial result:

2X ∗ = 2D∗, (13)

namely, that the optimal Lagrange multiplier matrix is the
2-RDM. The elements of the 2-RDM provide the correct
weighting of the constraints to generate the stationary La-
grangian functional for the energy. Importantly, by Eq. (5)
the 2-RDM 2D∗ satisfies the approximate N-representability
conditions given by 2Bi in Eq. (8) without any additional
restrictions. Hence, while Eqs. (6) and (7) involve the energy
but not the 2-RDM, the 2-RDM can be directly computed
from its dual cone through the determination of the Lagrange
multipliers.

As shown in Ref. [29], because the interactions in the
Hamiltonian scale linearly with the size of the system, the
number of 2Bi matrices from the G2 and T2 conditions scales
linearly with the rank r of the one-electron basis set. The
one-body part of the two-particle reduced Hamiltonian is
correctly described by only the 2Bi matrices from the D2 and
Q2 conditions, which imply the necessary and sufficient D1
and Q1 conditions [43], and hence, the 2Bi matrices from the
remaining conditions, G2, T2, and higher N-representability
conditions, describe the two-electron Coulomb interaction
which scales linearly with system size. This is equivalent
to a rank reduction since the total number of 2Bi matrices
scales as r2 and r3 for the G and T2 conditions, respectively.
This important reduction from the physical scaling of the
interaction of electrons reduces the computational cost of the
DQGT calculation from r9 to r6. With the identification of
the Lagrange multipliers in Eq. (9) with the 2-RDM we can
use the dual variational 2-RDM theory to compute both the
energy and one- and two-electron properties of atoms and
molecules at a substantially reduced computational scaling.

III. APPLICATIONS

After a discussion of the methodology, we present applica-
tions of the dual variational 2-RDM (v2RDM) method to the
hydrogen chain H4 and the nitrogen-fixation catalyst FeMoco.

A. Methodology

The dual v2RDM method is implemented with 2Bi matrices
that correspond to the DQGT conditions with rank reduction
as discussed in Ref. [29]; r 2Bi matrices are used for the G2
and T2 conditions. The computed 2-RDM allows us to calcu-
late both 1- and 2-electron properties and implement v2RDM-
based complete-active-space self-consistent-field (CASSCF)
calculations [19,37,53]. In CASSCF, a set of molecular or-
bitals in the valence band, known as active orbitals, is treated
by solving the Schrödinger equation while the remaining
(inactive) orbitals are treated by a mean-field calculation.
Typically, the solution of the Schrödinger equation with re-
spect to the space of active orbitals is accomplished by a
diagonalization of the Hamiltonian in the basis set of N-
electron determinants, known as the configuration interaction;
however, as shown in previous work [19], the configuration
interaction can be replaced by a v2RDM method without
computation of the wave function. The v2RDM method must
produce the 2-RDM because the active-space 2-RDM is
required to perform the orbital rotations of the active and inac-
tive orbitals. The dual-cone v2RDM method does not depend
upon rotations among the active orbitals because the objective
and constraints of the optimization problem are invariant to
orbital rotations. Calculations with only DQG conditions are
performed by using the boundary-point algorithm in Ref. [22]
implemented in the Quantum Chemistry Package (QCP) in
MAPLE [54].

B. Results

1. Hydrogen chain

Equally spaced metallic hydrogen chains, which exist
under high-pressure conditions such as the surface of Saturn,
undergo a Mott metal-to-insulator transition upon dissociation
[55,56]. The transition involves strong electron correlation
that is difficult to treat with conventional single-reference
wave-function methods. Consequently, hydrogen chains
have become a benchmark for treating strongly correlated
systems in quantum chemistry and condensed-matter physics.
Here we examine the dissociation of the H4 chain in a
four-electrons-in-four-orbitals [4,4] active space in the
correlation-consistent polarized quadruple-zeta (cc-pVQZ)
basis set [57]. The active space v2RDM method with the
DQG and DQGT conditions is compared with the “exact”
results in this active space from the CASSCF method with
the Schrödinger equation solved by configuration interaction
(see Table I). Figure 1(a) shows the potential energy curves
and Fig. 1(b) shows the potential-energy-curve errors of the
equally spaced H4 dissociation. The lower-bound v2RDM
energies with the DQG and DQGT conditions agree with
those from CASSCF to about 10−3 and 10−5 a.u., respectively.

The Mott metal-to-insulator transition in the H4 chain can
be captured by examining the chain’s metallic character as a
function of the distance R between the equally spaced hydro-
gen atoms. While various criteria can be selected for metallic
character, here we define and compute metallic character from
the sum of the squares of the atomic-orbital 1-RDM elements
between atoms. These elements will decay to zero as the metal
becomes an insulator. Based on this criterion as shown in
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TABLE I. For the H4 chain, the total energy as a function of the
distance R between the equally spaced hydrogen atoms is shown
with a [4,4] active space in the cc-pVQZ basis set. Lower-bound
energies from the variational 2-RDM method with DQG and DQGT
conditions agree with those from the complete-active-space self-
consistent-field (CASSCF) method until the third and fifth decimals,
respectively.

Energy (a.u.)

Wave function methods 2-RDM methods

R (Å) Hartree-Fock CASSCF DQG DQGT

0.8 −2.177825 −2.219294 −2.220533 −2.219308
1.0 −2.171201 −2.225488 −2.227122 −2.225493
1.2 −2.114056 −2.184800 −2.187026 −2.184811
1.6 −1.974969 −2.092035 −2.095296 −2.092048
2.0 −1.855050 −2.035218 −2.038315 −2.035226
2.4 −1.763186 −2.011306 −2.012997 −2.011307

Fig. 2, the Hartree-Fock theory predicts that the chain remains
a metal upon dissociation while the v2RDM method with the
DQG and DQGT conditions and the CASSCF predict a Mott
metal-to-insulator transition. The metallic character data from
the v2RDM method with the DQG and DQGT conditions,
shown in Table II, agree with that from CASSCF to the third
and fifth decimals, respectively.

2. Nitrogen-fixation catalyst FeMoco

Nitrogen fixation, the reduction of nitrogen to ammonia,
occurs in bacteria by the FeMoco catalyst in the nitroge-
nase protein [58,59]. Despite being mainly treated by density
functional theory (DFT), FeMoco is known to be strongly
correlated [60,61]. We recently used the v2RDM method with
DQG conditions in a thirty electrons in thirty orbitals [30,30]
active space in the polarized double-zeta (DZP) basis set [62]
to compute and study the electron correlation in FeMoco
[60]. The experimental FeMoco was modified by capping the

TABLE II. For the H4 chain the metallic character as a function
of the distance R between the equally spaced hydrogen atoms is
shown with a [4,4] active space in the cc-pVQZ basis set. The
metallic character from the variational 2RDM method with the DQG
and DQGT conditions agrees with that from CASSCF to the third
and fifth decimals, respectively. The metallic character is computed
from the sum of the squares of the atomic-orbital 1-RDM elements
between atoms.

Metallic character

Wave function methods 2-RDM methods

R (Å) Hartree-Fock CASSCF DQG DQGT

0.8 0.42226 0.33871 0.33493 0.33872
1.0 0.36429 0.28100 0.27623 0.28095
1.2 0.36311 0.24844 0.24214 0.24836
1.6 0.37279 0.15554 0.14674 0.15550
2.0 0.42410 0.07323 0.07024 0.07328
2.4 0.49635 0.02567 0.02700 0.02569

FIG. 1. The (a) total energy and the (b) energy errors of the po-
tential energy curve of the H4 chain are shown for its equally spaced
dissociation in a [4,4] active space in the cc-pVQZ basis set. Errors,
shown with a base-10 log, are relative to CASSCF. The variational
2-RDM energies with the DQG and DQGT conditions agree with
those from CASSCF to about 10−3 and 10−5 a.u., respectively.

terminal sulfur, nitrogen, and two oxygen with hydrogens, as
shown in Fig. 3(a). The v2RDM method with DQG conditions
uses less than a million variables to represent a wave function
with 1015 degrees of freedom. Here we extend these results
with a v2RDM calculation with the DQGT conditions for a
complete-active-space configuration-interaction-like calcula-
tion with the optimized orbitals from the DQG calculation.
The addition of the T2 N-representability condition to the
two-positivity (DQG) conditions raises the energy from
−17031.7065 to −17031.5855 a.u., showing the importance
of the T2 condition. Correlation energy from DQGT is
−0.8634 a.u. With the computed 2-RDM we can also com-
pute both one- and two-electron properties. For example, the
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FIG. 2. The metallic character of the H4 chain as a function of
the distance R between the equally spaced hydrogen atoms is shown
with a [4,4] active space in the cc-pVQZ basis set. The metallic
character is computed from the sum of the squares of the atomic-
orbital 1-RDM elements between atoms. Based on this criterion, the
Hartree-Fock theory predicts that the chain remains a metal upon
dissociation while the variational 2RDM method with the DQG and
DQGT conditions and CASSCF predict a Mott metal-to-insulator
transition.

two-body property 〈1/r12〉 is 0.21219 and 0.21196 a.u. from
the DQG and DQGT conditions, respectively. Both values
imply that, on average, in FeMoco two electrons are approx-
imately 5 a.u. apart. The electrons are slightly further apart
with the DQGT conditions than with the DQG conditions,

FIG. 3. (a) The structure of FeMoco and (b) the atomic charges
of FeMoco are shown. The Mulliken charges are computed from the
1-RDM of the variational 2-RDM method with DQGT conditions.
The red indicates positive charge while blue denotes negative charge
with the magnitudes of the charges given in Table III.

TABLE III. The average charges for each atom type in FeMoco,
based on the Mulliken populations computed from the 1-RDM, are
shown with the atoms arranged from most positive to most negative.
With the exception of N and O, the electron correlation decreases the
absolute values of the charges.

Average atomic charge (a.u.)

Atom Hartree-Fock DQG DQGT

Mo 1.2450 1.1659 1.1812
Fe 0.5763 0.5359 0.5446
H 0.2022 0.1882 0.1882
S −0.3289 −0.2961 −0.3027
O −0.5156 −0.5268 −0.5267
N −0.5455 −0.5593 −0.5596
C −1.4243 −1.2843 −1.2943

which is consistent with DQGT exhibiting less electron corre-
lation than DQG.

Mulliken atomic charges of FeMoco are shown schemati-
cally in Fig. 3(b) and numerically in Table III. The Mulliken
charges [63,64] are computed from the 1-RDM of the v2RDM
method with DQG and DQGT conditions as well as the
Hartree-Fock method. Figure 3(b) shows the charges from
DQGT conditions with red and blue indicating positive and
negative charges, respectively. We observe that the Mo and
Fe atoms are positive while the S and C atoms are negative.
The six-bonded C atom is especially negative with Mulliken
charges of −1.4243, −1.2843, and −1.2943 a.u. from the
Hartree-Fock, DQG, and DQGT methods. Except for the O
and N atoms the electron correlation decreases the absolute
values of the atomic charges; in general, the atomic charges
from DQGT are slightly larger in magnitude than those from
DQG. The net dipole moment decreases from 2.3799 debyes

FIG. 4. The fractional occupations of the natural orbitals of the
lowest singlet state of FeMoco are shown visually from the active-
space variational 2-RDM method with the DQGT conditions for a
[30,30] active space in the DZP basis set. The blue and red lines
correspond to orbitals that are occupied or unoccupied in the Hartree-
Fock limit, respectively.
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TABLE IV. Natural-orbital occupations of the lowest singlet state
of FeMoco are reported from the active-space variational 2-RDM
method with DQG and DQGT conditions for a [30,30] active space
as well as Hartree-Fock (HF) in the DZP basis set. While many
orbitals become slightly less correlated—with occupations closer to
0 and 2—from DQG to DQGT, orbitals 207 through 213 with the
exception of 212 become more correlated with the addition of the T2
condition.

Orbital No. occupations Orbital No. occupations

index HF DQG DQGT index HF DQG DQGT

195 2 1.9113 1.9233 210 0 0.7475 0.7782
196 2 1.8970 1.9073 211 0 0.6039 0.6278
197 2 1.8855 1.8948 212 0 0.5286 0.5255
198 2 1.8658 1.8776 213 0 0.3784 0.3886
199 2 1.8493 1.8617 214 0 0.3089 0.3062
200 2 1.8317 1.8491 215 0 0.2781 0.2801
201 2 1.8277 1.8454 216 0 0.2229 0.2084
202 2 1.8145 1.8297 217 0 0.2182 0.2062
203 2 1.7935 1.8038 218 0 0.2053 0.1886
204 2 1.7816 1.7931 219 0 0.1806 0.1670
205 2 1.7035 1.7073 220 0 0.1605 0.1442
206 2 1.6881 1.6953 221 0 0.1471 0.1371
207 2 1.5597 1.5504 222 0 0.1405 0.1273
208 2 1.2548 1.2136 223 0 0.1318 0.1187
209 2 1.0490 1.0163 224 0 0.0344 0.0275

for the Hartree-Fock method to 1.7495 and 1.6549 debyes for
DQG and DQGT conditions, respectively.

Natural-orbital occupations of FeMoco in the [30,30] ac-
tive space are presented in Fig. 4 and Table IV. Figure 4 shows
the highly fractional nature of the occupations from v2RDM
with DQGT conditions with multiple occupations deviating
significantly from 0 and 2. The blue and red colors, indicating
orbitals that are occupied or unoccupied in the Hartree-Fock
limit, emphasize that orbitals that are both occupied and
unoccupied in the mean-field limit become fractionally occu-
pied. Table IV reveals that, while many orbitals become less
correlated—with occupations closer to 0 and 2—from DQG
to DQGT, orbitals 207 through 213 with the exception of 212
become more correlated with the addition of the T2 condition.
The von Neumann entropy of the occupation numbers [65],
which is 0 for the Hartree-Fock method, decreases slightly
from 5.5689 for DQG to 5.4371 for DQGT. Figure 5(a) shows
the electron density of the 209th natural orbital from the
Hartree-Fock method and Fig. 5(b) shows the density of the
209th natural orbital from the v2RDM method with DQGT
conditions. This orbital is the highest occupied molecular
orbital of the Hartree-Fock method, but in the v2RDM method
it is half filled and much more localized on the Fe centers.

IV. DISCUSSION AND CONCLUSIONS

The Hellmann-Feynman theorem yields the derivative of
a stationary-state energy with respect to an arbitrary param-
eter without the derivative of the wave function. Here we
examine an analog of the Hellmann-Feynman theorem for
variational 2-RDM theories. When the energy is variationally
minimized with respect to a 2-RDM that is constrained by

FIG. 5. The electron density of the 209th natural orbital of
FeMoco from the (a) Hartree-Fock method and the (b) variational
2-RDM method with DQGT conditions is displayed. The highest
occupied molecular orbital of the Hartree-Fock method becomes half
filled and much more localized on the Fe centers in the variational
2-RDM method.

approximate N-representability conditions, the derivative of
stationary-state energy with respect to an arbitrary param-
eter does not depend on the 2-RDM. The proof relies on
the variational principle of the approximate N-representable
set–specifically, the stationarity of the energy with respect to
variations in the 2-RDM constrained by the approximate N-
representability conditions. Because the proof is also correct
in the limit of the exact N-representable set, it can be viewed
as a generalization of the traditional Hellmann-Feynman theo-
rem [50]. Previously, this extension of the Hellmann-Feynman
theorem was examined and employed in the context of com-
puting analytical gradients for the v2RDM method. Here we
use the extended Hellmann-Feynman theorem to compute the
2-RDM in the dual v2-RDM theory.

The v2RDM method has been employed extensively as
a polynomially scaling replacement for the configuration-
interaction solver in CASSCF theory [19,37–42]. The compu-
tation of the 2-RDM in the dual v2RDM method, presented
here, is crucial for its implementation as a solver in the
CASSCF theory because at each iteration CASSCF uses the
2-RDM of the active space to perform the self-consistent-field
orbital optimization. While the conventional (primal) formu-
lation of v2RDM with DQGT conditions has a computational
scaling of r9, the dual formulation of the v2RDM method
decreases this scaling to r6. We illustrate the dual active-space
v2RDM method in the calculations of both the potential-
energy surface and the Mott metal-to-insulator transition of
a hydrogen chain. The reduction in computational cost of the
v2RDM method in its dual formulation arises from the fact
that because the interaction of the Hamiltonian scales linearly
with system size, the number of N-representability conditions
from the G and T2 matrices required to fit this interaction
scales linearly with the rank r of the orbital basis set [29].
This linear scaling is valid for higher N-representability con-
ditions [13,43] and, hence, the dual v2RDM method provides
a framework for applying these conditions at reduced com-
putational cost. Recent work on a variation of the v2RDM
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method has explored applying a linear-scaling number of
higher N-representability conditions in spin systems [35].

In summary, a dual-cone formulation of the variational
2-RDM method substantially reduces the computational cost
of implementing the T2 or higher N-representability condi-
tions in both floating-point operations and memory storage
[29]. The central result of this paper is that we can compute
the 2-RDM in the dual v2RDM method from a general-
ization of the Hellmann-Feynman theorem. Moreover, in its
Lagrangian formulation the 2-RDM can be identified as the
Lagrange multiplier of the Lagrangian functional. We ap-
ply the method to computing the energies and properties of
strongly correlated electrons—including atomic charges, elec-
tron densities, dipole moments, and orbital occupations—in
an illustrative hydrogen chain and the nitrogen-fixation cat-
alyst FeMoco. While there are improvements in upgrading
from DQG to DQGT, the degree of electron correlation does
not change appreciably and, hence, the DQGT computations
reinforce the qualitative understanding of strong correlation
in hydrogen chains [56] and FeMoco [60] from previous
studies with DQG. The dual variational computation of the
2-RDM with the T2 or higher N-representability conditions
provides a powerful approach to computing strongly corre-
lated molecules and materials with significant applications
throughout chemistry and physics.
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APPENDIX: DUAL-CONE MATRICES
OF THE T2 CONDITION

For concreteness we explicitly derive the dual-cone matri-
ces 2Bi of the T2 condition. The T2 condition can be expressed
as

Tr
(
T̂ (i)

2
2D

)
� 0 ∀ i, (A1)

where

T̂ (i)
2 = ĈiĈ

†
i + Ĉ†

i Ĉi, (A2)

in which

Ĉi =
∑
jkl

c(i)
jkl â

†
j â

†
k âl . (A3)

The â†
j and â j are second-quantized operators that create and

annihilate a fermion in orbital j, respectively. Rearranging the
second-quantized operators, we can express the T2 operators
as

T̂ (i)
2 =

∑
jklm

2B jk;lm
i â†

j â
†
k âmâl , (A4)

in which

2B jk;lm
i = Â jkÂlm

4

∑
p

(
cpjkc∗

plm + 4clkpc∗
j pm

)
(A5)

+ Â jkÂlm

2(N − 1)
δk

m

∑
pq

cl pqc∗
j pq. (A6)

The antisymmetrization operator Â jk antisymmetrizes a tensor
over the indices j and k by subtracting the permuted tensor
from the original tensor. Each Bi in Eq. (A5) is an extreme
element of the dual cone and, collectively, they enforce the T2
condition. The 2Bi from other N-representability conditions
are derivable in an analogous fashion.
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