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Theoretical determination of polarizability and magnetic susceptibility of neon

Michał Lesiuk ,* Michał Przybytek ,† and Bogumił Jeziorski ‡

Faculty of Chemistry, University of Warsaw and Pasteura 1, 02-093 Warsaw, Poland

(Received 27 June 2020; accepted 20 October 2020; published 17 November 2020)

We report theoretical determination of the dipole polarizability of the neon atom, including its frequency
dependence. Corrections for the relativistic, quantum electrodynamics, finite nuclear mass, and finite nuclear
size effects are taken into account. We obtain the value α0 = 2.66080(36) for the static polarizability, and
α2 = 2.850(7) and α4 = 4.932(14) for the first two polarizability dispersion coefficients (Cauchy moments);
all values are in atomic units (a.u.). In the case of static polarizability, our result agrees with the best ex-
perimental determination, Gaiser et al. [Phys. Rev. Lett. 120, 123203 (2018)], but our estimated uncertainty
is significantly larger. For the dispersion coefficients, the results obtained in this work appear to be the most
accurate to date overall compared to published theoretical and experimental data. We also calculated the static
magnetic susceptibility of the neon atom, needed to obtain the refractive index of gaseous neon. Our result,
χ0 = −8.484(19) × 10−5 a.u., is about 9% larger in absolute value than the recommended experimental value,
Rumble et al. [CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2019)].
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I. INTRODUCTION

Electric dipole polarizability, α, is one of the fundamental
properties of atomic and molecular systems as it determines
response to a perturbation by an external electric field. The
importance of polarizability manifests itself also through the
Clausius-Mossotti equation,

εr − 1

εr + 2
= 4π

3
αρ, (1)

which connects the relative electric permittivity εr of an
atomic gas at low densities ρ with an atomic property. A
formula analogous to Eq. (1) holds also for the second im-
portant quantity—relative magnetic permeability, μr . In this
case the polarizability in Eq. (1) is replaced by the magnetic
susceptibility of the gas, χ . Together, the values of εr and μr

determine the refractive index, n = √
εr μr , which is funda-

mental in determination of optical properties of materials. The
relation given by Eq. (1) is valid only in the low-density limit,
but corrections to this equation proportional to higher powers
of ρ (expressed through the so-called virial coefficients) are
relatively small for noble gases [1].

The connection between the microscopic quantities, α and
χ , and the macroscopic ones, εr and μr , becomes particularly
important if one notices that the latter two are directly acces-
sible by experimental techniques. The relative electric per-
mittivity can be determined from capacitance measurements
[2–6] with accuracy reaching one part per million. In fact,
such measurements (dielectric-constant gas thermometry) are
the source of currently the most accurate experimental values
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of atomic polarizabilities [7]. The refractive index can be mea-
sured by several microwave [8] and optical methods [9,10].

Development of new experimental techniques [2–10] has
been critical for the progress in modern thermal metrology.
For example, it has been proposed to establish a new pressure
standard based on the measurements of εr , or on laser refrac-
tometry measurements of the refractive index [10]. The link
between the pressure p of the gas and the refractive index n is
provided by the following equation:

p = kT

2π (α + χ )
(n − 1), (2)

valid in the low-pressure limit. Since the value of the Boltz-
mann constant k is now fixed according to the new SI
definition of the unit of temperature T [11,12], the knowledge
of α and χ is required to obtain p directly from n, via Eq. (2).

A significant portion of the experimental effort in this field
targets noble gases due to numerous favorable properties such
as being chemically inert and stable, etc. The simplest member
of this family, i.e., helium, has been intensively studied in
recent years also by theoretical methods [13–20]. The static
dipole polarizability of the helium atom is now known from
theory with relative accuracy of 10−7 [21]. This is more
than sufficient for the purposes of metrology. However, the
same cannot be said about the heavier noble gas atoms. For
example, most systematic theoretical studies of the polariz-
ability of the neon atom were undertaken more than a decade
ago [22–29]. Additionally, if one aims at the accuracy better
than one part per thousand it is necessary to include various
corrections accounting for effects beyond the clamped-nuclei
nonrelativistic Schrödinger equation which has not been sys-
tematically done thus far.

The main purpose of the present work is state-of-the-art
theoretical determination of the static and dynamic po-
larizability of the neon atom at experimentally relevant
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frequencies. To this end, we employ high-level ab initio elec-
tronic structure methods and basis sets designed specifically
for the task. Our study is not limited to the nonrelativistic
picture and we consider corrections that account for other
relevant physical effects. This includes relativistic, quantum
electrodynamics (QED), finite nuclear mass, and finite nuclear
size effects.

We also compute the magnetic susceptibility χ relevant for
the measurements of the refractive index. Since χ is about
five orders of magnitude smaller than α, it does not have
to be known with very high accuracy when used in Eq. (2).
Therefore, we determine χ using the nonrelativistic theory.
An estimate of the neglected relativistic and QED effects is
included in the final uncertainty estimate.

Atomic units (a.u.) are used throughout the present work
unless explicitly stated otherwise. The following values of
physical constants are assumed: speed of light in vacuum,
c = 137.035 999 084, proton-to-electron mass ratio, mp/me =
1836.152 673 43, Bohr radius, a0 = 0.529 177 210 903 Å,
Avogadro number, NA = 6.022 140 76 × 1023, according to
the most recent CODATA database [30]. All results given in
this paper refer to the most abundant 20Ne isotope of neon
with the nuclear mass equal to 36434.0 me [31].

II. THEORETICAL CALCULATIONS

A. Clamped-nucleus nonrelativistic polarizability

Polarizability is a quantity that depends on the frequency
of the external electric field ω that perturbs the system. This
frequency dependence is nonnegligible in accurate treatments
and must be taken into account in calculation of quantities
appearing in Eq. (1). Assuming that the necessary range of fre-
quencies corresponds to energies well below the first atomic
resonant frequency [32] (ω ≈ 0.6107 a.u), we can use the
following expansion:

α(ω) = α0 + α2 ω2 + α4 ω4 + . . . , (3)

where α2, α4, . . . are the so-called dispersion coefficients
(Cauchy coefficients) and α0 := α(0) is a shorthand notation
for the static polarizability.

For frequencies that are of particular experimental interest,
e.g., helium-neon laser operating at wavelengths near 633 nm
(which corresponds to ω ≈ 0.072 a.u.), the expansion of the
right hand side of Eq. (3) is rapidly convergent. The inclusion
of terms only up to ω4 is sufficient to reach relative accuracy in
α(ω) better than 10−6 for the neon atom at this frequency. By
retaining only the quadratic term in Eq. (3), the 10−4 accuracy
level is attainable. Moreover, assuming that α0 was calculated
with relative accuracy of about 10−5 and the same accuracy
level is to be retained in α(ω), the coefficient α2 must be
accurate to a few parts per thousand, and the coefficient α4

to only about 10%. This greatly simplifies the incorporation
of frequency dependence into the theoretical results.

The first step in the calculations is an accurate determi-
nation of the nonrelativistic polarizability of the neon atom
with inclusion of the frequency-dependence, i.e., α0, α2, and
α4. These calculations were performed using the basis sets of
Slater-type orbitals (STO) [33,34] optimized specifically for
the purposes of the present work. The basis sets are designated
wtccX (well-tempered correlation-consistent) where X =

TABLE I. Linear-response CCSD static polarizability α0 calcu-
lated for the helium atom.

wtcc2 wtcc3 wtcc4 wtcc5 wtcc6 wtcc7

no-aug 1.37181 1.37576 1.37886 1.38118 1.38198 1.38253
s-aug 1.38402 1.38345 1.38335 1.38355 1.38344 1.38339
d-aug 1.38414 1.38384 1.38354 1.38365 1.38350 1.38341
t-aug 1.38401 1.38388 1.38358 1.38366 1.38350 1.38340
q-aug 1.38392 1.38390 1.38359 1.38367 1.38350 1.38340

2, . . . , 7, referred usually to as the cardinal number, stands
for the highest angular momentum l included in the basis.
They are designed according to the correlation-consistency
principle [35] which allows for a reliable extrapolation to-
wards the complete basis set limit (the basis wtcc2 has the
composition 6s4p1d and each consecutive basis has one more
function for each angular momentum l � X ). To properly
allow for the polarization by the electric field, these bases
are augmented by adding diffuse functions (with small expo-
nents). The notation “no-aug” means no augmentation, while
“s-aug,” “d-aug,” “t-aug,” and “q-aug” stand for the inclusion
of one, two, three, and four diffuse functions for each angular
momentum. These bases, optimized using the methodology
established in Refs. [36,37], are available from authors upon
request. Computer codes for the STO integrals, described in
Refs. [38–40], were used in all relevant calculations. Most
calculations reported in this paper were accomplished using
variants of the coupled cluster (CC) theory; for a detailed
review of this family of methods see Ref. [41].

To test the quality of the basis sets developed in this work,
the static polarizability of the helium atom was calculated.
The optimization and composition of the helium basis sets
is fully analogous to the ones described above—the only
difference is that the number of the s functions is smaller by
one at each augmentation and polarization level. The helium
atom constitutes an excellent benchmark for the purposes of
this work since a practically exact value of the nonrelativis-
tic clamped-nuclei static polarizability is known, α0(He) =
1.383 192 174 455(1), as reported by Pachucki and Sapirstein
[15]. Various corrections beyond this level of theory were also
reported in the literature [15–21,42,43].

In Table I, the static polarizability of helium atom calcu-
lated using the coupled cluster theory with single and double
substitutions [44,45] (CCSD) is presented. Since for two-
electron systems the CCSD method is equivalent to the full
configuration interaction (FCI), the only source of error in
these results (compared with the reference value cited above)
is the incompleteness of the basis set. While the results are
well-saturated with respect to the augmentation level, the
same is not true when considering the maximum angular
momentum l = X included in the basis set. To circumvent
this problem and to improve the convergence with increasing
cardinal number X , the results were extrapolated by using the
conventional X −3 formula [46–48]. The value extrapolated
from two consecutive basis sets (X and X + 1) shall be de-
noted CBS(X, X + 1) where the abbreviation CBS stands for
the complete basis set limit. For simplicity, extrapolation with
respect to the augmentation level was not attempted and q-aug
basis sets were used throughout. The results of the performed
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TABLE II. Linear-response CC3 static polarizability α0 calcu-
lated for the neon atom with all electrons correlated.

wtcc2 wtcc3 wtcc4 wtcc5 wtcc6 wtcc7

no-aug 0.81910 1.49892 1.60219 1.99140 2.13575 2.26198
s-aug 2.43166 2.33238 2.49043 2.55603 2.58556 2.60764
d-aug 2.65436 2.65557 2.67004 2.66564 2.66406 2.66294
t-aug 2.66676 2.68160 2.67124 2.66674 2.66474 2.66362
q-aug 2.66926 2.68142 2.67115 2.66678 2.66473 2.66361

extrapolations are

CBS(3, 4) = 1.38337,

CBS(4, 5) = 1.38374,

CBS(5, 6) = 1.38326,

CBS(6, 7) = 1.38322.

It is reasonable to assume that the error of the last re-
sult is no larger than the difference between the CBS(5, 6)
and CBS(6, 7) extrapolations. This gives our estimation for
the nonrelativistic clamped-nuclei static polarizability of the
helium atom, α0(He) = 1.38322(4). Compared with the ref-
erence value given above, the true error of this result is about
2 parts per 105. Moreover, the reference value lies within the
error bars estimated by us.

Our workhorse method for determination of the nonrela-
tivistic clamped-nuclei polarizability is the orbital-unrelaxed
linear-response CC3 method as implemented in the DALTON

program package [25,26,49,50]. For the purposes of this work,
the STO integral code was interfaced with the DALTON pro-
gram. The CC3 method is an advanced approximate variant of
the coupled-cluster method designed to include the major part
of the contribution of three-electron excitations in a compu-
tationally efficient way. The CC3 polarizability is calculated
with help of the linear response function obtained from time-
dependent quasienergy Lagrangian. The resulting equations
for the triply excited component of the linear response func-
tion are then truncated at the second order in the fluctuation
potential enabling an efficient evaluation, see Ref. [25] for a
complete presentation.

In Table II, we present CC3 results of the static polariz-
ability of the neon atom. The values converge rather quickly
with the augmentation level, practically as fast as in the case
of the helium atom. For example, in all basis sets other than
the smallest ones, the transition from t-aug to q-aug basis sets
changes the results only at the sixth significant digit. There-
fore, the larger triply augmented basis sets can be viewed
as saturated with respect to the augmentation level. Unfor-
tunately, the convergence is not as rapid with respect to the
increasing angular momentum in the basis set. To remedy
this problem we extrapolated the results to the complete basis
set limit by using the same strategy as for the helium atom.
Extrapolations of the results from the q-aug basis sets give

CBS(3, 4) = 2.66365,

CBS(4, 5) = 2.66220,

CBS(5, 6) = 2.66190,

CBS(6, 7) = 2.66172.

TABLE III. Core contribution to the static polarizability α0 of the
neon atom calculated at the CC3 level of theory.

wtcc2 wtcc3 wtcc4 wtcc5 wtcc6

no-aug 0.00016 0.00104 0.00165 0.00322 0.00389
s-aug 0.00210 0.00325 0.00434 0.00522 0.00560
d-aug 0.00295 0.00457 0.00527 0.00584 0.00607
t-aug 0.00300 0.00492 0.00534 0.00587 0.00608
q-aug 0.00302 0.00503 0.00537 0.00589 0.00609

One can see that the extrapolated results are very stable and
that the convergence towards the limit is markedly improved.
While the estimation of errors shall be a subject of further dis-
cussion, observing the convergence pattern of the extrapolated
results allows us to suggest that the value α0 = 2.66172(18) is
a reasonable estimate for the basis set limit of the CC3 static
polarizability of the neon atom. The estimated error of this
result is thus about 7 parts per 105, about 3.5 times larger than
in the case of the helium atom.

Although all electrons were correlated to obtain the results
presented in Table II, it is of interest to see what is the con-
tribution to α0 coming from the core (1s2) and core-valence
correlation. In Table III, we show the difference between
CC3 polarizabilities calculated with frozen core and with all
electrons correlated. It turns out that the effect of the core
and core-valence correlation is relatively small and stabilizes
more rapidly with the size of the basis set than the all-electron
results reported in Table II. By extrapolating the contributions
from Table III obtained with the q-aug basis sets, we find

CBS(4, 5) = 0.00644,

CBS(5, 6) = 0.00637,

so that the final estimate for the core contribution to the static
polarizability of the neon atom is 0.00637(7). This constitutes
only about 2% of the total CC3 correlation contribution to the
static polarizability. We assume it is unlikely that this ratio in-
creases substantially in calculation of higher-order correlation
effects and use the results of Table III to justify the neglect
of core contribution to some higher-order correlation effects
discussed further in the text.

The CC3 method is an approximate model which misses
some of the effects of the triple excitations and neglects higher
excitations entirely. Therefore, it is necessary to account
for these effects using a higher-level theory. The complete
post-CC3 contribution to the polarizability is split into three
components

(1) post-CC3 triples contribution, i.e., the difference be-
tween the coupled cluster method with single, double and
triple excitations [51,52] (CCSDT) and the CC3 results;

(2) full quadruples contribution, i.e., the difference be-
tween the coupled cluster method with single, double, triple
and quadruple excitations [53,54] (CCSDTQ) and the CCSDT
results;

(3) post-CCSDTQ contributions, i.e., the difference be-
tween the FCI and CCSDTQ results.

We also explored the possibility of using methods that
account for the quadruples perturbatively, such as CCSDT[Q]
[55] and CCSDT(Q) [56]. However, we found them to be very
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TABLE IV. Post-CC3 triples and quadruples corrections to the
static polarizability, α0, of the neon atom (frozen 1s core orbital).

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z

CCSDT–CC3 correction
s-aug 0.00137 0.00212 0.00142 0.00079
d-aug 0.00119 0.00119 0.00065 0.00050
t-aug 0.00115 0.00109 0.00063 0.00049

Full Q correction
s-aug −0.00222 −0.00422 −0.00489 –
d-aug −0.00542 −0.00597 – –
t-aug −0.00555 −0.00597 – –

unreliable in (finite-field) calculation of properties. For this
reason the use of perturbative quadruple models was aban-
doned.

In CCSDT and CCSDTQ calculations, we employed the
aug-cc-pVXZ Gaussian basis set family, X = 2–5 [35,57]. To
saturate the results with respect to the augmentation level, we
additionally created the doubly augmented (d-aug-cc-pVXZ)
and triply augmented (t-aug-cc-pVXZ) variants. They were
obtained by scaling the smallest exponent of the Gaussian
function in a given shell by the ratio of the smallest two. The
CCSDT and CCSDTQ polarizabilities were calculated ana-
lytically (without orbital relaxation) with help of the MRCC
program package [58]. To reduce the computational burden,
we froze the 1s2 core of the neon atom; as discussed above this
approximation is accurate to 1–2% and thus entirely sufficient
for the present purposes.

The full T and Q corrections to the static polarizability of
the neon atom are given in Table IV. Extrapolation of the full
triples correction using the results from the t-aug basis sets
gives

CBS(3, 4) = 0.00029,

CBS(4, 5) = 0.00034,

and an extrapolation with respect to the augmentation level
does not seem to be necessary. This allows us to estimate that
the full triples correction amounts to 0.00034(5), where the
uncertainty is the difference between the last two extrapolated
values. Moving to the quadruples correction, the same proce-
dure gives only one value,

CBS(2, 3) = −0.00614,

and our final estimation of this correction is −0.00614(17),
where the error is the difference between the extrapolated
value and the result obtained with the t-aug-cc-pVTZ basis.
The results shown in Table IV show that the T and Q cor-
rections to the static polarizability of the neon atom are of
the order of a few parts per thousand, and thus are nonneg-
ligible from the present point of view. To account for even
higher-order excitations we employ the FCI method using
dedicated codes written by one of us [59]. This is very com-
putationally expensive and we managed to calculate the FCI
correction only in smaller basis sets. Since no extrapolation
can be performed we simply add the value calculated with the
d-aug-cc-pVDZ (the largest basis set for which the FCI result
could be obtained) and assign 50% uncertainty to it, getting

TABLE V. Linear-response CC3 dispersion coefficients α2 and
α4 calculated for the neon atom with all electrons correlated.

wtcc2 wtcc3 wtcc4 wtcc5 wtcc6 wtcc7

α2

no-aug 0.20491 0.90963 0.66040 1.52304 1.82238 1.94098
s-aug 1.92647 2.00067 2.14567 2.40571 2.49805 2.57002
d-aug 2.93317 2.72236 2.84814 2.84109 2.84239 2.83986
t-aug 2.94922 2.90711 2.87749 2.86330 2.85852 2.85389
q-aug 2.95149 2.91005 2.87799 2.86392 2.85861 2.85398

α4

no-aug 0.08712 1.07861 0.48510 2.36422 3.45964 3.52939
s-aug 2.66424 3.42031 3.11409 4.02005 4.13486 4.24444
d-aug 5.39007 4.57093 4.85203 4.85022 4.85212 4.85396
t-aug 5.34708 5.08456 5.00535 4.96669 4.94596 4.93349
q-aug 5.33855 5.11252 5.00519 4.96531 4.94504 4.93266

−0.00047(24). It is worth pointing out that even within this
relatively small basis, the number of configurations that were
included in the FCI calculations reached about 2 × 109.

Results of the calculations of the dispersion coefficients α2

and α4, performed with the all-electron CC3 method are given
in Table V. Extrapolation of these data by using the same
scheme as for the static polarizability gives

α2 = 2.846(5), α4 = 4.912(6).

Computation of the post-CC3 and Q corrections to the dis-
persion coefficients is very complex and is not implemented
in quantum chemistry software available to us. Therefore, we
directly corrected for all effects beyond the CC3 model by us-
ing the FCI calculations in the d-aug-cc-pVDZ basis set using
a program written specifically for this purpose [59]. Similarly
as before, a very conservative accuracy estimate of 50% is
used for this quantity, giving −0.0089(44) and −0.026(13)
contributions to α2 and α4, respectively.

B. Relativistic and QED corrections to the polarizability

To calculate the static polarizability of the neon atom with
the accuracy better than a few parts per thousand, one has
to consider a number of corrections accounting for various
effects beyond the nonrelativistic clamped-nuclei Schrödinger
equation. The list consists of

(1) relativistic correction of the order 1/c2,
(2) leading-order (1/c3) quantum electrodynamics (QED)

correction,
(3) finite nuclear mass (FNM) correction,
(4) finite nuclear size (FNS) correction,
(5) higher-order (1/c4 and higher) relativistic and QED

effects,
where c denotes the speed of light in vacuum (employed

instead of the fine-structure constant to avoid a notational
collision).

Calculation of the relativistic corrections is based on the
Breit-Pauli Hamiltonian [60],

ĤBP = P̂4 + D̂1 + D̂2 + B̂, (4)

052816-4



THEORETICAL DETERMINATION OF POLARIZABILITY … PHYSICAL REVIEW A 102, 052816 (2020)

TABLE VI. One-electron relativistic corrections to the static polarizability of the neon atom calculated at the CCSD(T) level of theory
with the finite-field approach.

s-aug d-aug t-aug

Basis set α
(2)
0 (P4) α

(2)
0 (D1) sum α

(2)
0 (P4) α

(2)
0 (D1) sum α

(2)
0 (P4) α

(2)
0 (D1) sum

wtcc2/sp 0.01826 −0.01465 0.00360 0.02183 −0.01749 0.00434 0.02195 −0.01758 0.00436
wtcc3/sp 0.01748 −0.01395 0.00353 0.02114 −0.01701 0.00413 0.02181 −0.01752 0.00429
wtcc4/sp 0.01893 −0.01521 0.00372 0.02153 −0.01732 0.00422 0.02160 −0.01736 0.00423
wtcc5/sp 0.01965 −0.01580 0.00385 0.02147 −0.01728 0.00420 0.02152 −0.01731 0.00421
wtcc6/sp 0.02004 −0.01613 0.00391 0.02145 −0.01726 0.00419 0.02149 −0.01729 0.00420

where the individual operators are defined as

P̂4 = − 1

8c2

∑
i

∇4
i , (5)

D̂1 = π

2c2
Z

∑
i

δ(ria), (6)

D̂2 = π

c2

∑
i> j

δ(ri j ), (7)

B̂ = 1

2c2

∑
i> j

[∇i · ∇ j

ri j
+ ri j · (ri j · ∇ j )∇i

r3
i j

]
, (8)

where Z is the nuclear charge. Relativistic corrections to αn,
n = 0, 2, 4, due to the operators X of Eqs. (5)–(8), will be
denoted by α(2)

n (X ). The explicit expression for α(2)
n (X ) can

be obtained by adding λX to the nonrelativistic Hamiltonian,
where λ is a formal parameter, evaluating the polarizability
αn(X ), and extracting terms linear in λ.

The explicit formulas for α(2)
n (X ) are known [19], but are

difficult to implement in practice for many-electron systems.
Therefore, we adopted a finite-field [for α

(2)
0 (X )] or finite-

difference approach [for α(2)
n (X ), n � 2]. In the case of static

polarizability, the expectation values of the operators from
Eqs. (5)–(8) were evaluated analytically by the linear response
approach [61] and then numerically differentiated twice with
respect to the strength of the applied external electric field.
The electric-field strengths in the interval 0.0 − 0.005 were
tested and in all cases at least two significant digits were
stable in the final results. These calculations were performed
with the help of the DALTON program package using the
orbital-relaxed CCSD theory with perturbative treatment of
triple excitations [CCSD(T)] as described in Ref. [61]. This
method of evaluating CC properties is based on the so-called
CC Lagrangian which, in contrast to the standard CC energy
expression, is variational with respect to all wave-function pa-
rameters [62–65]. This enables to obtain first-order properties
using a generalization of the Hellmann-Feynman theorem.

For the dispersion coefficients α2 and α4, we neglected the
two-electron relativistic corrections, i.e., D̂2 and B̂, since the
accuracy requirements are less stringent in this case. Since
differentiation with respect to the external field is not ap-
plicable for the dispersion coefficients, a different approach
was adopted. The operators P̂4 and D̂1 multiplied by a formal
parameter λ were added to the Hamiltonian and then the
dispersion coefficients were calculated analytically using the
CC3 level of theory. The values of the relativistic correc-
tions α

(2)
0 (P̂4) and α

(2)
0 (D̂1) were extracted by computing the

first derivative with respect to λ employing two-point finite-

difference formula. The results were sufficiently stable for λ

within the range 5 × 10−5 − 1 × 10−3.
The one-electron relativistic corrections to the polarizabil-

ities and dispersion coefficients were obtained by using a
modified Slater-type basis sets—a common set of 20s15p
functions (obtained by minimization of the atomic Hartree-
Fock energy) was included in all basis sets instead of the
original sets used in the nonrelativistic calculations. The re-
maining polarization functions were unchanged. These basis
sets are denoted by wtccX/sp.

The computed one-electron relativistic corrections to the
static polarizability are shown in Table VI. It is seen that the
convergence to the basis set limit is rather slow but small basis
sets already give accurate results due to the presence of the
common 20s15p functions. Based on the values provided in
Table VI, it can be assumed that

α
(2)
0 (P4) = 0.02149(10), α

(2)
0 (D1) = −0.01729(10),

where the uncertainties account for the basis set incomplete-
ness error and for the error due to the finite-field approach.
Note that there is a significant cancellation between the con-
tributions from the P̂4 and D̂1 operators. Because of that, the
error in the sum of P4 and D1 corrections is much smaller
than in the individual components. The final one-electron
relativistic correction to the atomic polarizability of the neon
atom is thus equal to 0.00420(5), where error reduction by
a factor of two with respect to the P4 and D1 corrections
was obtained. This value compares quite well with the values
0.00432, 0.00428, and 0.00443 (depending on the basis set)
obtained by Klopper et al. [22] employing the so called direct
perturbation theory (DPT) [66,67] at the CCSD(T) level.

The corresponding results for the dispersion coefficients
are given in Table VII. Note that the convergence of the results
is somewhat erratic in basis sets with low augmentation levels.
Fortunately, for triply augmented basis sets these problems
disappear allowing for the standard X −3 extrapolation. One
may also note that the relativistic corrections to the dispersion
coefficients are relatively much larger than in the case of static
polarizability. As the final values we take

α
(2)
2 (P4) = 0.0619(16), α

(2)
2 (D1) = −0.0479(1),

α
(2)
4 (P4) = 0.1799(23), α

(2)
4 (D1) = −0.1332(21).

The above results were obtained by the X −3 extrapolation
from the X = 4, 5 pair of basis sets and the error was es-
timated as a difference between the extrapolated result and
the value calculated with the X = 5 basis set. The total rel-
ativistic correction to the dispersion coefficients α2 and α4
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TABLE VII. One-electron relativistic corrections to the dispersion coefficients α2 and α4 calculated at the CC3 level of theory with the
finite-difference approach.

s-aug d-aug t-aug

Basis set α(2)
n (P4) α(2)

n (D1) Sum α(2)
n (P4) α(2)

n (D1) Sum α(2)
n (P4) α(2)

n (D1) Sum

α2

wtcc2/sp 0.04789 −0.03461 0.01328 0.06868 −0.05059 0.01809 0.06875 −0.05068 0.01807
wtcc3/sp 0.03971 −0.03623 0.00348 0.06219 −0.04596 0.01623 0.06699 −0.04942 0.01757
wtcc4/sp 0.05169 −0.03789 0.01380 0.06275 −0.04810 0.01466 0.06508 −0.04906 0.01602
wtcc5/sp 0.05453 −0.04147 0.01306 0.06268 −0.04803 0.01466 0.06354 −0.04849 0.01506

α4

wtcc2/sp 0.11947 −0.08409 0.03538 0.19957 −0.14602 0.05355 0.19769 −0.14520 0.05249
wtcc3/sp 0.13860 −0.10181 0.03680 0.17670 −0.12892 0.04778 0.19043 −0.13924 0.05119
wtcc4/sp 0.13331 −0.09515 0.03816 0.17784 −0.13225 0.04559 0.18435 −0.13729 0.04706
wtcc5/sp 0.15610 −0.11765 0.03844 0.17568 −0.13248 0.04321 0.18216 −0.13528 0.04688

equals α
(2)
2 = 0.0141(10) and α

(2)
4 = 0.0467(1), respectively.

The estimated errors are smaller than of the individual D1
and P4 corrections given above because in the present case
we directly extrapolated the sum of the P4 and D1 corrections
exploiting a systematic error cancellation.

The two-electron relativistic corrections to the static polar-
izability are shown in Table VIII. They were obtained with
help of aug-cc-pVXZ Gaussian basis sets, X = 2–5 [35,57],
which were additionally uncontracted in these calculations. In
the case of the Darwin correction, we apply the X −1 extrapo-
lation formula which gives

α
(2)
0 (D2) = 0.00002(1).

This formula is based on analytic results for the helium atom
[68] and has been used successfully in numerous studies for
larger systems [69–74]. Clearly, this correction is very small
and extrapolates to nearly zero. In the case of the Breit correc-
tion, we found that there is no need to extrapolate the results.
The values of α

(2)
0 (B) are remarkably stable with respect to the

size of the basis set, as shown in Table VIII, and this gives us
the following estimate:

α
(2)
0 (B) = 0.00128(1).

Therefore, the total two-electron relativistic contribution to
the polarizability of neon atom amounts to 0.00130(2). It
seems that there are no literature results for neon that we could
confront this value with.

The data provided above reveal a substantial mutual can-
cellation of individual contributions to the total relativistic
corrections α(2)

n . For example, the total, i.e., including both
one- and two-electron contributions, relativistic correction to

α0 is about 0.0055 while the largest of these contributions (the
mass-velocity term) is 0.02149. In the case of the dispersion
coefficients, a similar phenomenon occurs but is somewhat
less pronounced. This can be contrasted with the analogous
data for the helium atom (see Table VIII in Ref. [20]) where
the cancellation is very strong, especially for higher values
of n.

Next we consider the leading-order quantum electrody-
namics (QED) corrections; they shall be denoted as α(3)

n ,
n = 0, 2, 4, further in the text. The correction applied in this
work reads [75–77]

α(3)
n = 8

3πc

(
19

30
+ 2 ln c − ln k0

)
α(2)

n (D1), (9)

where ln k0 is the so-called Bethe logarithm [60,78]. In com-
parison with the full QED treatment that has recently been
reported for the helium atom [21], formula (9) contains two
simplifications. First, the two-electron terms are omitted in
ĤQED; this is justified because they are expected to be at least
several times smaller than the dominant correction Eq. (9).
Second, the electric field dependence of the Bethe logarithm
is neglected. Calculation of the second electric field derivative
of ln k0 is very challenging and has been accomplished thus far
only for the helium atom [17,21]. Moreover, this derivative (in
atomic units) was found to be two orders of magnitude smaller
than the zero-field Bethe logarithm and thus constitutes a neg-
ligible correction. The reason for this unexpected behavior can
be understood by noting that the value of the Bethe logarithm
is sensitive primarily to the region of the wave function close
to the nucleus. This regime is dominated by the electric field

TABLE VIII. Two-electron relativistic corrections to the static polarizability of the neon atom calculated at the CCSD(T) level of theory
with the finite-field approach.

s-aug d-aug t-aug

Basis set α
(2)
0 (D2) α

(2)
0 (B) Sum α

(2)
0 (D2) α

(2)
0 (B) Sum α

(2)
0 (D2) α

(2)
0 (B) Sum

cc-pVDZ 0.000001 0.000794 0.000794 0.000059 0.001262 0.001321 0.000060 0.001277 0.001337
cc-pVTZ 0.000037 0.001031 0.001068 0.000063 0.001286 0.001349 0.000063 0.001290 0.001353
cc-pVQZ 0.000046 0.001175 0.001221 0.000055 0.001281 0.001336 0.000055 0.001281 0.001336
cc-pV5Z 0.000045 0.001239 0.001284 0.000048 0.001279 0.001327 0.000048 0.001279 0.001327
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generated by the nucleus which is much stronger than the
(perturbative) external fields.

The Bethe logarithm for the neon atom without external
electric field was calculated at the Hartree-Fock level of the-
ory within a basis set of Slater-type orbitals that includes
1p functions. Details of these calculations will be described
in a separate publication. The final result is ln k0 = 7.595
and we estimate that this value is accurate to within 1–2%.
This assumption is based on comparisons of analogous results
for lighter atoms for which more accurate reference data are
available. By using the value of the one-electron Darwin cor-
rections given earlier, we obtain the following values of the
QED correction to the static polarizability

α
(3)
0 = −0.00031(6),

and to the dispersion coefficients

α
(3)
2 = −0.00085(17), α

(3)
4 = −0.0024(5),

where we have assumed an uncertainty of 20% that accounts
for all approximations discussed above. It turns out that in the
case of the static polarizability, this correction is not negligible
within the present accuracy standards.

To estimate the contribution of the higher-order relativistic
and QED effects, the so-called one-loop correction [79] was
calculated. This is straightforward because for atomic systems
this correction to the polarizability can be expressed as

α(4)
n = 2Z

c2

(
427

96
− 2 ln 2

)
α(2)

n (D1), (10)

and thus the computation of this correction amounts to scaling
the values of one-electron Darwin corrections given above.
If one conservatively assumes that the error of neglecting
all other higher-order QED diagrams is less than 50%, then
estimations α

(4)
0 = −0.00006(3) is obtained for the static po-

larizability, and α
(4)
2 = −0.00016(8), α

(4)
4 = −0.00043(21)

for the dispersion coefficients. This clearly indicates that
higher-order relativistic and QED effects are negligible from
the point of view of the present work and that the perturbative
series of QED corrections is rapidly convergent.

C. Finite nuclear mass and size corrections to the polarizability

We also considered the finite nuclear size (FNS) and finite
nuclear mass (FNM) corrections, denoted αFNS

n and αFNM
n

further in the text. For neon atom, the former correction can
be obtained from the formula

αFNS
n = 4

3

〈
r2

c

〉
λ̄2

α(2)
n (D1), (11)

see, e.g., Ref. [80], where 〈r2
c 〉 is the averaged square of

the nuclear charge radius and λ̄ ≈ 386.2 fm is the reduced
Compton wavelength of the electron. For the 20Ne nuclide,
the value 〈r2

c 〉 ≈ 8.952 fm2 was taken from the literature [81].
This gives αFNS

0 ≈ 1.4 × 10−6 revealing that the FNS cor-
rection changes the static polarizability of the neon atom by
only about 1 ppm and thus it is entirely negligible compared
to other sources of error. The same conclusion holds for the
dispersion coefficients.

Moving to the FNM effects, let us consider first the static
polarizability. The leading-order FNM correction is composed

TABLE IX. Final error budget of the calculations of the static
polarizability and dispersion coefficients for the neon atom.

α0 α2 α4

Clamped-nuclei nonrelativistic contributions
Unrelaxed CC3 2.66172(18) 2.846(5) 4.912(6)
Triples corr. 0.00034(5) – –
Quadruples corr. −0.00614(17) – –
FCI correction −0.00047(24) −0.009(4) −0.026(13)

Other contributions
One-el. relativistic 0.00420(5) 0.014(1) 0.047(1)
Two-el. relativistic 0.00130(2) – –
Leading-order QED −0.00031(6) −0.001(1) −0.002(1)
High-order QED −0.00006(3) 0.000(1) 0.000(1)
Finite nuclear mass 0.00022(1) 0.000(1) 0.001(1)
Finite nuclear size 0.00000(1) – –
Total 2.66080(36) 2.850(7) 4.932(14)

of two terms [15]

αFNM
0 = 3

me

mN
α0 + me

mN
∂2
E

〈 ∑
i �= j

∇i∇ j

〉
, (12)

where me and mN are the electron and the nuclear masses,
respectively, and ∂2

E 〈∑i �= j ∇i∇ j〉 denotes the second electric
field derivative of the expectation value 〈∑i �= j ∇i∇ j〉 evalu-
ated at zero field (mass-polarization term). The first term of
the above expression (resulting from the reduced-mass scal-
ing) amounts to 0.00022(1) for 20Ne. The mass-polarization
term is usually about an order of magnitude smaller than the
mass-scaling term [15] and thus can be neglected here. The
reduced-mass scaling applied the dispersion coefficients leads
to

αFNM
n ≈ (n + 3)

me

mN
αn. (13)

Neglecting the mass-polarization contribution, we find that
αFNM

2 = 0.00039(1) and αFNM
4 = 0.00094(1).

D. Final error budget of the polarizability calculations

The final theoretical results for the static polarizability and
dispersion coefficients of the neon atom are summarized in
Table IX. We show the magnitude of various contributions to
αn along with their error estimation, according to the discus-
sion from the previous sections. The final error is obtained
by summing the errors in the individual components quadrati-
cally. Clearly, the dominant source of error is the insufficiently
accurate description of higher-order excitations, particularly
of the FCI correction. In fact, with our resources it would still
probably be possible (albeit at a huge cost) to perform CC3
calculations with the cardinal number X of the basis set size
increased by one. Coupled with the CBS extrapolation, which
was shown to perform quite well at the CC3 level of theory,
this may lead to the error reduction by a factor of about two in
the CC3 component of the polarizability. However, this would
not decrease the overall uncertainty of our result since already
at the present level it is dominated by the error of the FCI
correction.

052816-7



LESIUK, PRZYBYTEK, AND JEZIORSKI PHYSICAL REVIEW A 102, 052816 (2020)

Rather surprisingly, the relativistic corrections to αn can be
calculated with a sufficient accuracy. While they are extremely
complicated from the point of view of analytical evaluation, it
appears that the mixed analytic and numerical differentiation
approach adopted by us is adequate. It is also worth mention-
ing that the approximations adopted by us in the computations
of the QED corrections do not contribute significantly to the
overall error. The errors resulting from omission of the two-
electron QED contributions and from missing electric-field
derivative of the Bethe logarithm would become important
only when other sources of error were reduced by a factor
of at least five.

The data provided in Table IX also reveal a substan-
tial cancellation between various contributions to the static
polarizability. Indeed, the one- and two-electron relativistic
corrections combined amount to about 0.0053 and are of
opposite sign to the total nonrelativistic post-CC3 correction
which is equal to −0.0063. This means that the difference
between the pure CC3 result and the experimental vale is
much smaller than one could expect a priori. The same effect
is present also in calculations of the dispersion coefficients,
albeit to a smaller extent. This may also explain an unex-
pectedly good agreement of some literature values with the
experimental results despite the fact that all post-CC3/post-
CCSD(T) and relativistic corrections were neglected.

E. Magnetic susceptibility

As mentioned in Sec. I, the determination of temperature or
pressure via measurements of the refractive index n requires
also the knowledge of the magnetic susceptibility, χ . For the
neon atom this quantity is about 3 × 10−5 times smaller in
magnitude than the static polarizability [82]. Therefore, if
the required relative accuracy in calculations of the refractive
index is of the order of 10−6, then it is sufficient to know χ

with an uncertainty of only 1 percent, as evident from the
Clausius-Mossotti relations for εr and μr . This allows us to
adopt significant simplifications in evaluation of the magnetic
susceptibility, namely, (i) the frequency dependence of χ can
be entirely neglected and (ii) the static value of χ0 can be
calculated from the “nonrelativistic” infinite-nuclear mass for-
mula [60],

χ0 = − e2

6me c2

〈∑
i

r2
i

〉
, (14)

where 〈r2
i 〉 is the mean square distance of an electron from the

nucleus.
The quantity 〈∑i r2

i 〉 was computed directly as an expecta-
tion value with the CC3 wave function using the formalism
proposed by Tucholska et al. [83] In this method one in-
troduces an auxiliary excitation operator S [84], defined by
a closed-form linear equation involving the standard cluster
operator T and its Hermitian conjugate. With help of the S op-
erator one can rewrite the CC expectation value of an arbitrary
operator as a finite commutator expansion. Since the exact
S operator corresponding to the CC3 wave function involves
excitation levels higher than triple, it is necessary to truncate it
for practical reasons. In this work we employ the truncation at
the third-order of perturbation theory as suggested in Ref. [83]

TABLE X. Expectation values 〈�ir2
i 〉 calculated for the neon

atom. The valence and core correlation contributions were obtained
at the CC3/(aug-)cc-pVXZ and CC3/(aug-)cc-pCVXZ levels of the-
ory, respectively.

DZ TZ QZ 5Z 6Z

Valence contribution
no-aug 9.1422 9.3894 9.4929 9.5544 9.5661
aug 9.7022 9.6336 9.5994 9.5802 9.5740

Core correlation contribution
no-aug −0.0017 −0.0062 −0.0079 −0.0088 –
aug −0.0026 −0.0071 −0.0085 −0.0089 –

which provides an optimal balance between the accuracy and
computational costs.

The valence results, i.e., with the frozen 1s2 core, were
obtained at the CC3/(aug-)cc-pVXZ level of theory. For the
evaluation of the core correlation contribution we used the
extended (aug-)cc-pCVXZ basis sets that include additional
tight functions (with large exponents) for a better description
of the core region. The results are shown in Table X. Both the
valence and core contributions were extrapolated to the com-
plete basis set limit from the largest two augmented basis sets
using the X −3 formula. In each case, we determine the error as
a difference between the extrapolated and the largest basis set
results. This gives us 9.565(9) and −0.009(1) for the valence
and core correlation contributions, respectively. Concerning
the augmentation level, we found the single augmentation
to be entirely sufficient for the calculation of 〈∑i r2

i 〉. We
checked that already at the quadruple-zeta level, the inclusion
of the second set of diffuse functions changes the results
shown in Table X only at the last significant digit. Finally, we
added the FCI correction that we managed to compute only
with aug-cc-pVDZ and aug-cc-pVTZ basis sets, obtaining
0.00148 and 0.00170, respectively. By extrapolating these two
values using the X −3 formula, we obtain our final estimation
of the FCI correction, equal to 0.0018(1). By combining the
valence, core correlation, and FCI contributions and adding
the errors quadratically we find〈 ∑

i

r2
i

〉
= 9.558(10), (15)

which is our final value of the mean square distance of the
electrons from the nucleus. The “nonrelativistic” diamagnetic
susceptibility of the neon atom is thus

χ0 = −8.483(8) × 10−5 a.u. (16)

or χ0 = −7.570(8) × 10−6 cm3/mol in units used conven-
tionally in experimental work.

Below we consider corrections to this result that account
for effects not included in the “nonrelativistic” approxima-
tion of Eq. (14). The finite-nuclear-mass correction, χFNM

0 ,
to the magnetic susceptibility was considered by Bruch and
Weinhold [85] for the helium atom, see also Ref. [86] for
an erratum to this work. These authors derived the complete
formula, including the mass-polarization term, for the leading
contribution to χFNM

0 of the order of me/mN. They found that
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the mass-polarization correction is by about 5 orders of mag-
nitude smaller than χ0. For the neon atom, this ratio will be
even smaller because of much larger mass of the 20Ne nucleus.
Therefore, in our work we neglected the mass-polarization
contribution to χ0. The derivation of Bruch and Weinhold was
recently generalized to many-electron atoms by Pachucki and
Yerokhin [87]. When the mass-polarization term is neglected,
their formula reads

χFNM
0 = − e2

2mN c2

〈 ∑
i

r2
i

〉
− e2

6mN c2

〈∑
i �= j

ri · r j

〉
. (17)

The first term is simply a scaling of the value of Eq. (16) by
a factor of 3me/mN. This gives a correction equal to −6.98 ×
10−9 a.u. which is not entirely negligible in the present con-
text.

Bruch and Weinhold [85,86] found that the second term
in Eq. (17), i.e., involving the operator

∑
i �= j ri · r j , is very

small, even smaller than the mass-polarization term. However,
unlike for helium, in the case of neon the expectation value
〈∑i �= j ri · r j〉 does not vanish at the uncorrelated, i.e., at the
Hartree-Fock level, due to the presence of the p orbitals in the
ground-state reference determinant. Therefore, the estimation
based on the helium results may not be reliable and we de-
cided to calculate this term in an approximate way to remove
this potential source of uncertainty. For this purpose we used
the CC3 wave function and calculated the two-electron ex-
pectation value in the leading order of the perturbation theory
[84]. Using the aug-cc-pCV5Z basis set and with all electrons
correlated, we found that〈∑

i �= j

ri · r j

〉
= −3.614. (18)

This expectation value turns out to be quite large, only about
two and a half times smaller than the one-electron counterpart,
〈∑i r2

i 〉. Still, the second term in Eq. (17) amounts to only
8.8 × 10−10 a.u. and can be neglected even in computing the
total uncertainty of χ . The inclusion of the finite nuclear mass
corrections in calculation of the magnetic susceptibility of the
neon atom will be necessary only if one aims at achieving the
accuracy level of 10−4 or better.

Let us finally consider the relativistic correction to χ0. The
leading term in this correction is of the order of 1/c4 and
will be denoted by χ

(4)
0 . Complete computation of χ

(4)
0 for

a noble gas atom represents a considerable challenge and has
not been performed thus far even for helium. In their helium
study, Bruch and Weinhold [85] neglected the magnetic-field
dependent terms in the Breit-Pauli Hamiltonian [86,88] and
found that the computed approximation to χ

(4)
0 is by a fac-

tor of 8 × 10−5 smaller than nonrelativistic value of χ0 and,
therefore, negligible for this system. Since the ratio χ

(4)
0 /χ0

scales quadratically with an effective nuclear charge Zeff , the
significance of χ

(4)
0 must certainly be much larger for neon

than for helium. Any choice of Zeff would be to a large extent
arbitrary, so we decided to estimate χ

(4)
0 assuming that the

significance of the relativistic correction to χ0 is percentage-
wise the same as in the case of the relativistic correction to
α0. From Table IX we see that α

(2)
0 = 0.00550(6) represents

0.2% of α0. Assuming the same proportion for the magnetic

TABLE XI. Comparison with other theoretical and experimental
literature values of αn. Wherever no error estimation is present it
means that they were not given by the authors. All values are given
in the atomic units.

α0 α2 α4

Experimental
Chan et al. [89] – 2.938 5.137
Kumar and Meath [29] 2.669 2.875 4.994
Orcutt and Cole [90] 2.658 – –

2.663a – –
Gaiser and Fallmuth [91] 2.66110(3) – –
Gaiser and Fallmuth [7] 2.661057(7) – –

Theoretical
Pawłowski et al. [26] 2.665 2.859 4.946
Klopper et al. [22] 2.66312 – –
Larsen et al. [23] 2.673 – –

This work
This work 2.66080(36) 2.850(7) 4.932(14)

aAfter applying the correction for the compressibility.

susceptibility, we find that that the magnitude of χ
(4)
0 can be

estimated as 0.017 × 10−5 and we add this value to the final
error budget of χ0. This is sufficient for the present purpose
but it is clear that the complete calculation of the relativistic
corrections to the magnetic susceptibility of helium and other
noble gases represents interesting topic for a future study.

III. DISCUSSION AND CONCLUSIONS

In Table XI, we compare the results of polarizability cal-
culations with other theoretical work and experimental values
taken from the literature. While our intention was to include
the most recent and representative results available currently,
we by no means claim this list to be exhaustive.

Our final theoretical value of the static polarizability α0 =
2.66080(36) has an estimated uncertainty of about one part
per 104. The most recent experimental value for this quan-
tity, α0 = 2.661057(7), obtained by Gaiser and Fellmuth [7],
lies within our error bars, but is about 50 times more accu-
rate. Therefore, unlike for helium, the present-day theoretical
methods for ten-electron atoms are not competitive in terms of
accuracy with the results obtained from the dielectric-constant
thermometry experiments. Nonetheless, it is clear from Ta-
ble XI that our results are the most reliable theoretical data
available for α0, especially taking into account the systematic
inclusion of various small physical effects and more rigorous
error estimations. The best previous theoretical estimate for
α0 presented in Ref. [7] is obtained by combining the rela-
tivistic results of Klopper et al. [22] with the FCI correction
calculated by Larsen et al. [23] resulting in α0 = 2.6617(20).
The estimated uncertainty of this value is about six times
larger than the uncertainty of our result. One may note that
the largest contribution to our error budget comes from the
approximate (small basis set) FCI treatment of n-electron
excitations, n > 4. A significant reduction of this error will
be difficult because of the exponential scaling of the time and
memory resources needed to perform FCI calculations.
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The reliability of the experimental results is less impressive
in the case of the dispersion coefficients. The older data of
Chan et al. [89] are significantly less accurate than our values.
The most recent data come from the work of Kumar and
Thakkar [29] who employed a semiempirical dipole oscillator
strength distribution (DOSD) technique to extract αn from
the experimental photoabsorption cross sections with addition
of some theoretical constraints. These authors estimated that
their results for α2 and α4 are accurate to about ±1% and,
therefore, agree to within the combined uncertainty estimates
with the values calculated here. Similarly, our results also
agree well with the theoretical data of Pawłowski et al. [26]
who also estimate a similar accuracy level. Note that the
dispersion coefficients calculated in the present work [α2 =
2.850(7) and α4 = 4.932(14)] are estimated to be accurate
to about one-two parts per thousand. Therefore, they are by
almost an order of magnitude more accurate than the best pre-
vious estimates, including both theoretical and experimental
literature data.

The value of the static magnetic susceptibility χ0 ob-
tained by us is −8.484(19) × 10−5 a.u., or −7.571(17) ×
10−6 cm3/mol, where the reported uncertainties include now
the entire value of the estimated relativistic correction. Our
result, estimated to be accurate to about 2 parts per thou-
sand, agrees quite well with the older experimental value
reported by Havens [92] equal to −7.651 × 10−6 cm3/mol,
but is about 9% larger in absolute value than the more recent
recommended experimental result of −6.96 × 10−6 cm3/mol
[82,93] One may note that also for helium there is about 7%
discrepancy between the best theoretical result [85] and the
recommended experimental value [82]. The reasons behind
these differences between theory and experiment are not clear.
In the case of neon, one can consider the following hypothet-
ical sources of the observed discrepancy:

(a) significant underestimation of the relativistic correc-
tion to χ0,

(b) neglect of the paramagnetic contribution to χ0,
(c) neglect of the temperature dependence of χ0,
(d) neglect of the density dependence of χ0.
The source (a) is unlikely since the relativistic correction

included in our uncertainty estimate represents only about
0.2% of χ0. This value is approximately 25 times larger than
the estimate obtained for helium, suggesting that the ratio
Zeff (Ne)/Zeff (He) is about 5. Even if this estimation is mul-
tiplied by a factor of 4, which corresponds to assuming the
maximal possible value of the ratio Zeff (Ne)/Zeff (He) = 10,
the experimental value remains 10σ away from our theoretical
result.

Regarding point (b), we found that the leading nonrel-
ativistic paramagnetic contribution to χ0 is of the order of
(me/mN)2 and is therefore entirely negligible. This contri-
bution was considered in the Appendix of Ref. [85] and
incorrectly claimed to vanish for helium. The argument given
in this Appendix is based on the assumption that quantum
states of the helium atom cannot have 1Pe symmetry, which is
incorrect in the continuous spectrum. There is also relativistic
paramagnetic contribution to χ0 resulting from the relativistic
3P0 component of the ground-state helium wave function.

This contribution is of the order of 1/c6 and is completely
negligible. One may note here that the frequency dependence
of χ may result only from paramagnetic terms. The arguments
given above show that this frequency dependence is extremely
weak for rare gases and entirely negligible in practice.

Regarding point (c), one can observe that for an atom
moving in the magnetic field, the center of mass cannot be
separated and the magnetic susceptibility depends on the mo-
mentum of the atom. This effect was considered by Bruch
and Weinhold in Ref. [85] and found to be four orders of
magnitude smaller than the finite nuclear mass correction
χFNM

0 (for 3He at T ≈ 10 K). For neon this correction will be
even smaller because of its greater mass and can be assumed
negligible at normal temperatures.

The point (d ), that is the density dependence, was consid-
ered by Bruch and Weinhold [94] for liquid helium. These
authors used a simple Hartree-Fock plus dispersion model for
the interaction-induced magnetic susceptibility of helium and
found that the effect of the interatomic interactions is small
and the measurement in the liquid can be used to accurately
determine the isolated atom magnetic susceptibility. This con-
clusion must obviously apply also to the gas phase. Since the
measurement for neon was made in the gas phase, the density
dependence of the magnetic susceptibility cannot explain the
observed difference between our theoretical value and the ex-
perimental one. The source of this difference remains unclear
to us and represents, as for helium, a troubling puzzle to be
hopefully resolved in the future by new theoretical ideas or
new experiments.

To sum up, we have reported state-of-the-art theoretical
determination of the static and dynamic polarizability of the
neon atom. Numerous corrections beyond the nonrelativis-
tic infinite-nuclear-mass picture, such as those due to the
quantum electrodynamics effects, have been included for the
first time for this system and the sources of error have been
carefully discussed. Additionally, we determined the magnetic
susceptibility of the neon atom with an accuracy of a few parts
per thousand. Since the magnetic contribution to the refractive
index of the gaseous neon is about five orders of magnitude
smaller than the very accurately known electric contribution,
our result is entirely sufficient to calculate the refractive index
with an accuracy of one part per million.
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