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Nonrelativistic energies and fine-structure splittings for the Rydberg P states of lithium
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The Schrödinger equation for the nP (4 � n � 10) states of lithium is solved using the Rayleigh-Ritz
variational method in Hylleraas coordinates, where the asymptotic behavior of the wave function that is specific
to a Rydberg state is built in explicitly to improve the accuracy of the solution. The nonrelativistic variational
energies of the nP (4 � n � 10) states reach an accuracy of 10−13 to 10−14. In addition, the fine-structure
splittings of these states are also calculated and compared with experimental results.
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I. INTRODUCTION

In the past two decades, significant progress has been made
in high-precision spectroscopy of atomic lithium, both exper-
imentally [1–7] and theoretically [8–14]. For the first three
lowest states of lithium, i.e., the 2S, 3S, and 2P states, the
nonrelativistic energies have been calculated to an accuracy
of 10−14 to 10−15 [11,13,14]. The leading-order relativistic
and QED corrections of α2 and α3 (in a.u. units), respectively,
have been evaulated precisely [10,11,13,14]. The higher-
order relativistic and QED corrections can only be evaluated
approximately at present time. However, the α4 order correc-
tion to the fine-structure splitting of the 2P state has been
calculated rigorously by Puchalski and Pachucki [12]. The
theoretical fine-structure splittings between 2P1/2 and 2P3/2

for both 6Li and 7Li agree very well with the most accurate
measurements [6,7]. The theoretical transition frequencies be-
tween the 2 2S1/2 and 3 2S1/2 states in 6Li and 7Li [10,13]
also agree with the best measurements, but less accurate than
the measured values by two orders of magnitude [3,4]. To
further improve the theoretical accuracy, one has to treat
the higher-order relativistic and QED corrections of orders
α4 and α5 rigorously, which will be very challenging for
theorists [15].

In addition to these lowest-lying states, highly excited
Rydberg states of lithium have also been studied both ex-
perimentally [16–22] and theoretically [11,14,23–28]. The
energies of the 4S to 9S states and transition frequencies
between 2S and nS (4 � n � 9) states were calculated in
Hylleraas coordinates by Puchalski and Pachucki [11], includ-
ing the relativistic and QED corrections, and compared with
available experimental values. These calculations were re-
peated and extended up to the 13S state very recently by Bralin
et al. [14] with explicitly correlated Gaussian (ECG) bases.
The nonrelativistic energies of the nP (2 � n � 10) and nD
(3 � n � 11) states were also evaluated by Adamowicz’s
group using ECG bases [26–28]. Although the Schrödinger
equation for low-lying states of Li can be solved variation-
ally with high precision, as n increases, the accuracy of the

result gradually decreases. In order to overcome this draw-
back, Drake [29,30] introduced a “zero-order” term in his
variational basis set of helium in a Rydberg state, which
reflects explicitly the asymptotic behavior of the wave func-
tion, and demonstrated its effectiveness of dealing with highly
excited states. This method was also extended to the calcu-
lations of the 2S and 2P states of lithium-like ions by Yan
et al. [31]. However, the advantage of including the zero-order
wave function is to deal with high-lying states rather than
low-lying ones.

The main purpose of the present paper is to extend this
“zero-order” strategy to three-electron atomic lithium in Ryd-
berg states and provide benchmark results for further studies.
Specifically, we focus on the nP (4 � n � 10) states of
lithium and demonstrate that the zero-order wave function
is essential in maintaining the stability of the algorithm and
the accuracy of the nonrelativistic variational energies, as
the principal quantum number increases. The nonrelativistic
energies of these states are calculated to an accuracy of 10−13

to 10−14, which are the most precise results so far. In addition,
the fine-structure splittings of these states are also calculated
and compared with available experimental values.

The physical constants used here are as follows. The
fine-structure constant is α = 1/137.035 999 046(31) [32],
the Rydberg constant is R∞ = 10 973 731.568 508(65) m−1

[33], and the atomic masses of 6Li and 7Li are, respectively,
6.015 122 8874(15) u and 7.016 003 437(5) u [34].

The present paper is organized as follows. Section II dis-
cusses the construction of the variational wave functions.
Section III presents the calculated nonrelativistic energy
eigenvalues and a comparison with other literature values.
In Sec. IV the Hamiltonian responsible for the fine structure
is introduced and the fine-structure splittings are evaluated.
Finally, a summary is given in Sec. V.

II. HAMILTONIAN AND VARIATIONAL BASIS SETS

After separating out the center of mass motion, the nonrela-
tivistic energy eigenvalue problem for a three-electron atomic
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system is [35] (in atomic units throughout, unless otherwise
stated)

H� = E�, (1)

where

H = −1

2

3∑
i=1

∇2
i − Z

3∑
i=1

1

ri
+

3∑
i< j

1

ri j
− μ

M

3∑
i< j

∇i · ∇ j, (2)

in units of 2RM with RM = (1 − μ

M )R∞, μ is the reduced
mass of electron, M is the nuclear mass, Z is the nu-
clear charge, ri denotes the distance between electron i
and the nucleus, and ri j is the distance between electron
i and electron j. Since μ/M ∼ 10−4 for light atoms, the
last term in Eq. (2) may be treated as a perturbation. Al-
ternatively, one can diagonalize the full Hamiltonian H
in Eq. (2). In the limit of infinite nuclear mass, Eq. (2)
becomes

H = −1

2

3∑
i=1

∇2
i − Z

3∑
i=1

1

ri
+

3∑
i< j

1

ri j
, (3)

in units of 2R∞. Following Ref. [31], we repartition the
Hamiltonian in Eq. (3) into

H = HS + VI , (4)

where HS is the Hamiltonian describing the core, which con-
sists of the nucleus and two 1s electrons, and the valence
electron

HS =
(

−1

2
∇2

1 − 1

2
∇2

2 − Z

r1
− Z

r2
+ 1

r12

)

+
(

−1

2
∇2

3 − Z − 2

r3

)
, (5)

and VI describes the interaction between the core and the
valence electron

VI = 1

r23
+ 1

r31
− 2

r3
. (6)

When the atom is in a Rydberg state, the valence electron
will be far away from the core, so that r23, r31, and r3 will be
large. As a result, the interaction VI will be small compared to
HS , and so HS could be considered as a good approximation
to the full Hamiltonian. Thus, the solution to the zero-order
eigenequation

HSψ0 = E0ψ0 (7)

can be written as the following direct product:

ψ0 = φc(1s2 1S)φ(nl, Z − 2). (8)

In the above, φc(1s2 1S) is the ground-state eigenfunction of
the helium-like ion with the nuclear charge Z , which can be
easily constructed variationally using Hylleraas coordinates
[30]; and φ(nl, Z − 2) is the nl-state eigenfunction of the
hydrogen-like ion with the core charge Z − 2, which has an
analytical expression.

The variational wave function for the full Hamiltonian in
Eq. (3) is expanded in the form

� = A
(

a0ψ0χ1 +
N∑

i=1

aiψi(r1, r2, r3)χ1

)
, (9)

where

ψi(r1, r2, r3) = r j1
1 r j2

2 r j3
3 r j12

12 r j23
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31 e−αr1−βr2−γ r3

×YLM
(	1	2 )	12,	3
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is a basis function with
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1 r	2

2 r	3
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∑
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×〈	12m12; 	3m3|	12	3; LM〉Y	1m1 (r1)Y	2m2 (r2)Y	3m3 (r3)

(11)

being the vector-coupled product of spherical harmonics for
the three electrons to form the eigenstate of the total angular
momentum squared L2 and its z component M. Also in the
above, χ1 is the spin wave function and A the three-particle
antisymmetrizer. With some truncations to avoid near linear
dependence, all terms in Eq. (10) are included in the basis set
such that

j1 + j2 + j3 + j12 + j23 + j31 � 
, (12)

where 
 is an integer. Further details about the construction
of variational wave functions and matrix element evaluations
can be found in Ref. [36].

III. NONRELATIVISTIC ENERGIES

In our calculations, when we enlarge the size of basis set
N in Eq. (9) from 1870 to 22302 progressively, a smooth
convergence pattern for the energy eigenvalues of the nP
(4 � n � 10) states can be formed, as shown in Table I, for the
case of infinite nuclear mass, which indicates that these energy
eigenvalues are converged to an accuracy of 10−13 to 10−14.
Also listed in the table are the energy eigenvalues calculated
by Bubin and Adamowicz with ECG bases [27]. From the
table one can see that the accuracy of their results becomes
decreased from 4×10−10 to 1×10−7 as n increases from 4
to 10. This clearly demonstrates the importance of including
the zero-order wave function in the variational wave function
to maintain computational stability and accuracy. The energy
levels for the 6Li and 7Li isotopes are also listed and compared
with the values in Ref. [27].

IV. FINE-STRUCTURE SPLITTING

After obtaining the variational wave functions, the fine-
structure splitting between the nP1/2 and nP3/2 states can
be calculated using first-order perturbation theory. The fine-
structure Hamiltonian can be written as

HFS = B3z + B3e + B5 + γ

(
2B3z + 4

3
B3e + 2

3
B(1)

3e + 2B5

)

+ me

M
�̃3z, (13)
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TABLE I. Convergence study of the nonrelativistic energies for the 1s2np 2P (4 � n � 10) states of lithium, where 
 is defined in Eq. (12)
and N is the size of basis set, in atomic units.


 N 4P 5P 6P 7P

9 1 870 −7.31188905957709 −7.30028816418607 −7.29402005312551 −7.29025490715296
10 3 300 −7.31188906045844 −7.30028816564631 −7.29402005506111 −7.29025491194212
11 5 600 −7.31188906073524 −7.30028816619148 −7.29402005531174 −7.29025491268719
12 9 160 −7.31188906075443 −7.30028816625896 −7.29402005536851 −7.29025491278110
13 13 230 −7.31188906075780 −7.30028816626384 −7.29402005537599 −7.29025491279438
14 17 094 −7.31188906075833 −7.30028816626470 −7.29402005537724 −7.29025491279614
15 22 302 −7.31188906075855 −7.30028816626505 −7.29402005537765 −7.29025491279716

∞ −7.3118890607587(2) −7.3002881662651(1) −7.2940200553779(3) −7.290254912799(2)
∞Lia −7.31188905938 −7.30028816488 −7.29402005293 −7.29025490809

7Li −7.3112951016176(2) −7.29969490233930(6) −7.2934271878104(4) −7.289662291990(2)
7Lia −7.31129510065 −7.29969490106 −7.29342718542 −7.28966228734
6Li −7.3111962542635(2) −7.29959617066065(5) −7.2933285220817(4) −7.289563667321(2)

6Lia −7.31119625321 −7.29959616923 −7.29332851960 −7.28956366258


 N 8P 9P 10P

9 1 870 −7.28781807022726 −7.28615099205447 −7.28496059869027
10 3 300 −7.28781807924023 −7.28615101903177 −7.28496064365122
11 5 600 −7.28781808040483 −7.28615102681110 −7.28496065079984
12 9 160 −7.28781808055639 −7.28615102834520 −7.28496065283604
13 13 230 −7.28781808060789 −7.28615102840383 −7.28496065307241
14 17 094 −7.28781808061356 −7.28615102842079 −7.28496065310388
15 22 302 −7.28781808061515 −7.28615102842333 −7.28496065310864

∞ −7.2878180806158(6) −7.2861510284238(5) −7.2849606531095(9)
∞Lia −7.28781806801 −7.28615097321 −7.28496052960

7Li −7.2872256236354(6) −7.2855586856755(5) −7.2843683931451(9)
7Lia −7.28722561109 −7.28555863054 −7.28436826971
6Li −7.2871270262255(6) −7.2854601072730(5) −7.2842698285171(9)

6Lia −7.28712701359 −7.28546005205 −7.28426970499

aResults from Ref. [27].

where

B3z = Zα2

2

3∑
i=1

1

r3
i

ri × pi · si, (14)

B3e = α2

2

3∑
i �= j

1

r3
i j

r ji × pi · (si + 2s j ), (15)

B5 = α2
3∑

i> j

[
1

r3
i j

(si · s j ) − 3

r5
i j

(ri j · si )(ri j · s j )

]
, (16)

�̃3z = Zα2
3∑

i=1

1

r3
i

ri × p · si, (17)

B(1)
3e = α2

2

3∑
i �= j

1

r3
i j

r ji × pi · (si − s j ), (18)

and

γ ≈ α

2π
+ (−0.32847)

(
α

π

)2

. (19)

In Eq. (13) the terms proportional to γ are the spin-dependent
part of the electron anomalous magnetic moment corrections,
and the last term is the relativistic recoil correction due to
the finite nuclear mass. For a spin doublet state, the expec-
tation value of the spin-spin term B5 vanishes. Some singular

integrals encountered in the calculations of B3e and B(1)
3e can

be handled by the special methods developed by Yan and
Drake [36].

The next higher-order relativistic correction, not included
in Eq. (13), is at the order of α4. The theory of the α4

correction has been established by Puchalski and Pachucki
using nonrelativistic QED (NRQED) approach, and it has
been applied to the fine-structure calculations of the 2P states
of lithium and lithium-like beryllium ion [12,37]. Since a
rigorous evaluation of this correction is very complicated,
for a higher-n state, we use the following Dirac formula (in
natural units) to make an estimation:

En j = m

{
1 + (Zα)2[√

( j+1/2)2−(Zα)2+n−( j + 1/2)
]2

}−1/2

= m

{
1 − (Zα)2

2n2
− (Zα)4

2n3

(
1

j + 1/2
− 3

4n

)

− (Zα)6

8n3

[
1

( j + 1/2)3
+ 3

n( j + 1/2)2

− 6

n2( j + 1/2)
+ 5

2n3

]
+ · · ·

}
, (20)

where the terms proportional to m(Zα)6 (or Z6α4 in a.u.) will
give an approximate value of the α4 order correction to the
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TABLE II. Contributions to the fine-structure splittings of the 1s2np 2PJ (4 � n � 10) states of lithium, in MHz.

Term 4P 5P 6P 7P

α2 1194.9943(3) 606.9620(3) 349.4284(4) 219.2390(2)
(μ/M )α2 −0.3721(2) −0.1945(2) −0.11315(5) −0.07164(3)
α3 4.4342336(2) 2.266078(1) 1.3087766(3) 0.822722(2)
(μ/M )α3 −0.000350(1) −0.0001917(3) −0.0001149(3) −0.0000743(1)
Subtotal 1199.0560(5) 609.0333(5) 350.62391(25) 219.99000(23)
α4 0.045(45) 0.023(12) 0.013(3) 0.0077(19)
Total theory, 7Li 1199.101(45) 609.056(12) 350.6369(35) 219.9977(22)
Total theory, 6Li 1199.039(45) 609.023(12) 350.6180(35) 219.9857(22)
Experiment, 7Li 1199.65(11)a

Term 8P 9P 10P

α2 146.4731(2) 102.6568(2) 74.71172(2)
(μ/M )α2 −0.04835(5) −0.03411(5) −0.02479(2)
α3 0.5503279(2) 0.3860191(2) 0.2811026(2)
(μ/M )α3 −0.0000507(1) −0.0000365(3) −0.0000266(1)
Subtotal 146.97503(25) 103.00867(25) 74.96800(4)
α4 0.0051(13) 0.0035(9) 0.0025(6)
Total theory, 7Li 146.9810(15) 103.0121(11) 74.97050(66)
Total theory, 6Li 146.9721(20) 103.0064(12) 74.96637(66)
Experiment, 7Li 74.97(74)b

aFrom Ref. [16].
bFrom Ref. [22].

fine-structure splitting. For a Rydberg state of lithium atom,
the valence electron can be seen as an independent electron
moving in an approximate Coulomb field generated by the
nucleus and the two inner electrons; so we expect that the
Dirac formula can give a good approximation to the α4 order
contribution.

In Table II we list the various contributions to the fine-
structure splittings of the nP (4 � n � 10) states of 7Li and
the total contribution to 6Li. Since the α4 order contribution
is estimated according to Eq. (20), we take the whole value
of this contribution as its uncertainty for the 4P state, 50%
of the value as its uncertainty for the 5P state, and 25%
of the value as the uncertainty for any other state. One can
see that, for all the states in Table II, the theoretical un-
certainty mainly comes from the α4 order contribution. At
present, there are only two experimental measurements re-
ported in the literature, which are 1199.65(11) MHz for the
4P state of 7Li measured by Isler and co-workers in 1969
[16], and 74.97(74) MHz for the 10P state of 7Li measured
by Oxley and Collins in 2010 [22]. Our theoretical value
1199.101(45) MHz for the 4P state of 7Li disagrees with the
experimental value of Ref. [16] by 3.5σ standard deviations.
For the 10P state, our theoretical value 74.97050(66) MHz
is in agreement with the experimental value of Ref. [22] but
is more accurate than the measured value by three orders of
magnitude.

V. SUMMARY

We have solved the Schrödinger equation variationally
for the nP (4 � n � 10) states of lithium in Hylleraas coor-
dinates. The zero-order wave function was included in the
variational wave function, which has proven to be effective
in maintaining numerical stability and accuracy of the energy
eigenvalues as the principal quantum number increases. All
the energy eigenvalues have been calculated to an accuracy of
10−13 to 10−14, which represents the most accurate results so
far. It is expected that our approach of including the zero-order
wave function in the variational wave function will be even
more powerful for other higher-lying Rydberg states, such as
nD and nF states. The fine-structure splittings of the nP (4 �
n � 10) states have also been calculated for both 6Li and 7Li
and compared with only a few available measured values. We
hope to see that our work can stimulate more theoretical and
experimental activities in this field, especially for high-(n, L)
states [38], to understand more quantum behaviors of atomic
Rydberg states, such as the Casimir-Polder effect [17,18].
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