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In many of the approximate functionals in one-body reduced-density-matrix (1RDM) functional theory, the
approximate two-body reduced density matrix (2RDM) in the natural orbital representation only depends on the
natural occupation numbers. In Phys. Rev. A 92, 012520 (2015), Wang and Knowles initialized a discussion
of to what extent this simplification is valid by introducing two different H4 geometries with identical natural
occupation numbers but different 2RDMs. Gritsenko has argued that this feature is due symmetry [Phys. Rev. A
97, 026501 (2018)]. This work aims to contribute to the discussion on the following points: (1) one should rather
speak of symmetry-restricted variants of the universal functional than saying that the universal functional is
symmetry dependent; (2) the unitary invariance of degenerate NOs can lead to large deviations in the 2RDM
elements, especially the phase of the NOs; (3) symmetry-restricted functionals are constructed for the H4

geometries considered by Wang and Knowles, whose structure could serve as guide in the construction of
approximate 1RDM functionals.

DOI: 10.1103/PhysRevA.102.052814

I. INTRODUCTION

In Ref. [1] Wang and Knowles have given an example
in which two one-body reduced density matrices (1RDMs)
with identical natural occupation spectra correspond to two
different ground-state two-body reduced density matrices
(2RDMs). This is a feature that most common approximate
1RDM functionals cannot handle, since they generate an ap-
proximate 2RDM via an explicit algebraic expression only
depending on the occupation numbers. Wang and Knowles
argued that a functional dependence on the natural orbitals
(eigenfunctions of the 1RDM) also needs to be included in
the approximations if approximate 1RDM functionals aim to
handle these isospectral cases correctly. This feature has been
discussed in the context of the symmetry of these systems
[2,3], but symmetry is more a facilitator than the essential
factor [4], as will also be stressed in this work.

Though a symmetry-restricted functional is only exact
for systems with the prescribed symmetry and generally in-
troduces discontinuities in the potential surface when the
symmetry is broken, the idea of imposing symmetry restric-
tions on the universal functional can still be useful. One
advantage is that the lowest excited-state energies in each
irreducible representation (irrep) can be calculated [2,3,5,6].
The more important advantage for the current discussion is
that the variational freedom in the constrained-search for-
mulation is significantly reduced. This allows one to build
explicit parametrizations of these functionals for simple sys-
tems which can serve as a guide for the construction of
approximate functionals. In this article I will construct two
different symmetry-restricted functionals valid for the square
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H4 system and H2 + 2H in a minimal basis, the systems used
in the demonstration by Wang and Knowles [1]. Both func-
tionals are symmetry restrictions of the exact functional but
are still flexible enough to deal with both H4 systems.

The article is organized as follows. In Sec. II, different
formulations of the exact universal functional are discussed
and the difference between my definition of “exact” and its
use in Refs. [2,3] is highlighted. Further, I will show how
the results by Wang and Knowles [1] can directly be ratio-
nalized from the constrained-search formulation. In Sec. III,
symmetry restrictions of the universal 1RDM functional are
discussed, and it is argued that the true universal functional
cannot be considered to be symmetry dependent. In Sec. IV,
the two relevant components (irreducible representations) of
the symmetry-restricted D2h functional are constructed for the
H4 systems in a minimal basis. In Sec. V, I investigate how the
symmetry-restricted D2h functional operates on the rhombic
H4 systems considered in [3] and discuss the implications
of unitary invariance of degenerate natural orbitals (NOs). In
Sec. VI, I finalize with conclusions.

II. EXACT UNIVERSAL FUNCTIONALS

There are two different exact interaction energy universal
functionals which are useful to consider. Both are exact in
the sense that both yield the exact, i.e., full configuration
interaction, ground-state interaction energy within the given
(possibly finite) basis we have chosen to work with, and both
are universal in the sense that they are valid for any nonlocal
one-body potential in that basis. It is important to realize that
a narrower definition of “exact” might be used in which only
the functional for the Coulomb interaction in the complete
basis is deemed exact as in Refs. [2,3] seems to be intended,
although such a view does not appreciate the generality of the
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framework of 1RDM functional theory. In particular, it ne-
glects the fact that 1RDM functional theory can be well
defined in any finite basis where “exact” corresponds to
the full CI solution, as opposed to density-functional theory
(DFT) [7].

The difference between these functionals lies in their math-
ematical properties. Most notable are their different domains
and convexity properties. The first exact universal 1RDM
functional useful for our purposes was proposed by Levy [8]

WL[γ] := min
�→γ

〈�|Ŵ |�〉, (1)

where Ŵ denotes the interaction operator. The constrained
search only runs over pure states, which has the disadvantage
that its domain is difficult to characterize, i.e., the so-called
pure-state N-representable 1RDMs [9–11]. To this end, Val-
one proposed to extend the search over mixed states [12],

WV[γ] := min
ρ̂→γ

Tr{ρ̂ Ŵ }, (2)

where ρ̂ denotes the (full) density-matrix operator and the
trace runs over the full Hilbert or Fock space. The advantage
is that the domain is now the enlarged and more convenient
set of ensemble N-representable 1RDMs [13]. An additional
advantage is that this functional is convex by construction
[7,14–16], which guarantees that any minimum found during
minimization over γ will be global.

Irrespective of which functional we use, we can express
these universal functionals via the 2RDM as

W [γ] = 1

2
min
�→γ

∑
i jkl

�i j,kl〈i j|kl〉, (3)

where we use the same notation as Wang and Knowles [1],
i.e., 〈i j|kl〉 are the two-electron integrals in physicist notation
and the 2RDM is defined as �i j,kl = 〈�|â†

i â†
j âl âk|�〉 for pure

states and �i j,kl = tr{ρ̂ â†
i â†

j âl âk} for the more general mixed
states. Note that the one-particle basis to which the indices of
the 2RDM refer is implied by the two-electron integrals on
which the functional implicitly depends. The dependence of
the functional on the two-electron integrals has been studied
in more detail recently [17,18]. The minimization should only
search over pure (Levy) or ensemble (Valone) N-representable
2RDMs to ensure that a corresponding pure or mixed state
exists which yields this 2RDM and hence that the variational
principle applies.

Any one-particle basis can be used in this form of the
universal functional. We can use this freedom to simplify the
constraint on the 2RDM by working in the natural orbital
(NO) basis of the requested 1RDM [19–22], so the NOs now
implicitly enter via the two-electron integrals. As the 1RDM
is diagonal by definition, the constraint on the 2RDM reduces
to ∑

j

�i j,k j = (N − 1)niδik, (4)

where ni are the natural occupation numbers, i.e., eigenvalues
of the 1RDM.

This means that if we transform the two-electron integrals
to the NO basis, the constraint � → γ now only needs to

consider the occupation numbers

W [γ] = 1

2
min
�→n

∑
i jkl

�i j,kl〈i j|kl〉NO. (5)

Since the mapping � �→ n in (4) is many to one, there
will be remaining degrees of freedom in (5) over which
the minimization should be performed. It is convenient to
make these remaining degrees of freedom explicit by using a
parametrization ξ for the set of N-representable 2RDMs yield-
ing the requested occupation number spectrum �i j,kl [ξ, n].
The constrained search in (5) can now be expressed as an
unconstrained minimization over the remaining degrees of
freedom ξ [23]:

W [γ] = 1

2
min

ξ

∑
i jkl

�i j,kl [ξ, n] 〈i j|kl〉NO. (6)

Note that the parametrization �i j,kl [ξ, n] only needs to be
concerned about the occupation numbers and not the NOs,
since N representability does not depend on the orbital basis
[13]. It should be obvious that such a parametrization in terms
of ξ is definitely not unique. There are only convenient and
less convenient parametrizations, depending on the situation.

In principle, the route towards construction of such an
explicit functional is straightforward: Given the 1RDM γ ,
(1) write down a parametrization of the wave function or the
density-matrix operator in the NO basis, (2) eliminate param-
eters that are determined by the 1RDM constraint, (3) contract
the wave-function/density-matrix operator to the 2RDM, and
(4) obtain the functional value by optimization of the remain-
ing parameters. Unfortunately, the 1RDM constraint enters in
a nonlinear way, which makes the elimination of parameters
a nontrivial task in practice. Specifically, the positivity con-
straint on the density-matrix operator is difficult to conciliate
with the 1RDM constraint. A parametrization for the Valone
functional (2) has therefore only been explicitly constructed
for the two-site Hubbard model [16] and Anderson model
[24].

Working with a constrained search over only pure states
(1) is more convenient for an explicit construction. Such an
explicit construction is readily possible for the two-electron
case, thanks to the Schmidt decomposition [25] (sometimes
referred to as the Carlson-Keller expansion [26]), which
makes the constraint � → γ trivial. The antisymmetry ad-
ditionally requires the NOs φk (x) to be pairwise degenerate
[13], which we express by using positive and negative indices
such that nk = n−k . The wave function can now be expressed
as [14,19,27]

�(x1, x2) =
M∑

k=1

√
nkeiξk |φk (x1)φ−k (x2)|, (7)

where x = rσ is a combined space-spin coordinate, and 2M
is the number of spin orbitals in the basis [28]. The 2RDM is
readily found to be

�
2el
i j,kl [ξ, n] = √

ninkei(ξk−ξi )δi,− jδk,−l , (8)

with ξ−k = ξk + π . The free parameters ξ in the exact two-
electron functional are the phases in the two-electron wave
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function (7), which are the only degrees of freedom not fixed
by the 1RDM.

Wang and Knowles actually seem to dismiss such a form
of the exact functional, which internally houses an additional
variable set ξ: “One may take the phase as additional variables
[29], then this will go beyond Gilbert’s original variable set:
the natural orbitals and their occupation numbers.” One has to
keep in mind, however, that all density-functional-like theo-
ries are actually reformulations of the Schrödinger equation.
This means that the full flexibility of the complete many-body
state cannot magically disappear and needs to be accounted
for somewhere in the theory. Levy’s constrained-search for-
mulation makes this very explicit by minimizing over all pure
states (1). The extension by Valone even extends the search
to mixed states (2). This additional variational freedom be-
yond degrees of freedom of the 1RDM persists, of course,
when we reformulate the exact functional as a search over N-
representable 2RDMs (3) and is made explicit as the variable
set ξ in (6).

The many-to-one relation in the mapping � → n is ac-
tually the crucial property to explain the results presented
by Wang and Knowles in Ref. [1]. Though the occupation
numbers can be made identical in both systems (square H4

and H2 + 2H), the NOs are different and hence lead to a dif-
ferent set of two-electron integrals in (6). As the two-electron
integrals have different values, the minimization over the vari-
ables ξ will lead to a different minimum and thus a different
2RDM.

It might be that Wang and Knowles have a different func-
tional form of the 2RDM in mind. Since every observable can
be regarded as a functional of the 1RDM in 1RDM functional
theory [30], also the ground-state 2RDM is a functional of the
1RDM, or equivalently, a functional of the NOs and occupa-
tion numbers �NO[{φ}, n]. This is the functional aimed for by
many approximate functional developers, since in that case
the interaction energy is directly given as

W [{φ}, n] = 1

2

∑
i jkl

�NO[{φ}, n]i j,kl〈i j|kl〉NO, (9)

which does not contain an internal optimization. The disad-
vantage is that the functional dependence of �NO[{φ}, n] is
more complicated than �[ξ, n]: even for simple systems, no
explicit form of �NO[{φ}, n] is known [31]. Both functionals
are related as

�NO[{φ}, n] = arg min
�→n

∑
i jkl

�i j,kl〈i j|kl〉NO

= �[ξopt, n], (10)

where ξopt are the optimal parameters in (6). So the NO depen-
dent variant can be obtained by performing the minimization
over the parameters ξ in (6) [or the constrained search in (5)]
and then the 2RDM elements can be extracted. This implicit
dependence of �NO[{φ}, n] on the NOs makes it inconvenient
to build approximations which try to capture this NO depen-
dence directly. The construction of approximate �i j,kl [ξ, n] is
more feasible and therefore provides a better starting point
for approximate 1RDM functionals that aim to go beyond a
simple dependence on the natural occupation numbers.

It is worth pointing out that relation (10) implies that the
functional dependence on the NOs of the 2RDM only van-
ishes, if �i j,kl also does not depend on auxiliary parameters.
In this case, these functionals are even equal:

�NO
i j,kl [n] = �i j,kl [n]. (11)

However, such a simple form can never occur for the exact
functional, except in very limited settings, e.g., two electrons
in two orbitals. In Ref. [3] it was asserted that also the exact
constructions for two-electron systems [32] and translation-
ally invariant one-band lattice models [33] are of this simple
form �i j,kl [n], but that is incorrect. For the two-electron sys-
tem, we have an internal optimization over phase factors (8),
and for translationally invariant one-band lattice models the
internal minimization is actually clearly mentioned just after
Eq. (9) in Ref. [33]. Only with additional assumptions can
the parameters ξ be eliminated. An exact functional for the
rhombus H4 system in Ref. [3] is given in Sec. IV but will
clearly not be of the simple form �i j,kl [n]. We will see later
in Sec. V that variations in the phase of the NOs can lead to
significant deviations in the 2RDM elements.

III. SYMMETRY RESTRICTIONS

The pure-state expression for the 2RDM of two-electron
systems (8) is completely general, valid for any spin-
dependent potential and spin-dependent two-electron inter-
action. However, often we work with the spin-independent
Coulomb interaction and spin-independent potentials (no
magnetic fields). This means that the Hamiltonian commutes
with the spin operators and the eigenstates can be classified
according to their spin state. The constrained search can there-
fore be restricted to either singlet or triplet states, as originally
done by Löwdin and Shull [32]. They additionally used that
the Hamiltonian is now also real, so the eigenstates can be
chosen to be real and hence the phase factors eiξk = ±1.

Let us put this in a more general setting. In case we are only
interested in external potentials or Hamiltonians with a certain
symmetry, we know that the ground state will belong to one
of the irreducible representations (irreps) of the symmetry
group. The constrained search can therefore be broken down
into separate constrained searches over each irrep I of the
symmetry group G [34]

W G[γ] := min
I

W G
I [γ], (12a)

where

W G
I [γ] := inf

�G,I →γ
〈�G,I |Ŵ |�G,I〉

= 1

2
inf
ξ

∑
i jkl

�
G
i j,kl [I, ξ, n] 〈i j|kl〉NO. (12b)

In the definition of W G
I [γ] we have used an infimum,

since it is well possible that no �G,I → γ can be found, in
which case we set W G

I [γ � �I ] = +∞. Since we retained
the minimum in (12a), we assume that we only allow for
1RDMs which can be generated by a wave function of one
of the irreps of the group G. One could call these pure-state
N, G-representable 1RDMs:

PN,G = {γ : ∃�N,G → γ }. (13)
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By restricting ourselves to all potentials which have the sym-
metry G, W G[γ] is an exact functional in the sense that for
all 1RDMs which come from a ground-state wave function
of that symmetry group it will yield the exact ground-state
interaction energy, the vG-representable 1RDMs:

VN,G = {
γ : ∃vG → �N,G

g.s. → γ
}
. (14)

So this can be regarded as a restriction in the universality of
the theory, with a corresponding adaptation of the domains.

This is basically the idea that has been put forward by
Gritsenko [2,3] to explain that different ground-state 2RDMs
could correspond to identical occupation number spectra, in
which he refers to symmetry dependence of the exact func-
tional. However, from the preceding discussion it follows that
for clarity one should rather not talk about a single functional
but about a set of functionals, each of them valid for a par-
ticular symmetry group G. Since each of these functionals
is only exact for potentials exhibiting that particular sym-
metry (and corresponding vG-representable 1RDMs), I rather
like to stress that we have restricted the universality of the
“parent” functional (1) than saying that the exact functional
is symmetry dependent. In other words, for each symmetry
group we can construct a separate 1RDM functional theory for
that group, each with its own (simplified) symmetry-restricted
functional (12a).

An obvious relation between these symmetry-restricted
1RDM functional theories is that the 1RDM functional theory
of a group G is effectively contained in the 1RDM functional
theory of a subgroup G′ of G, because potentials of sym-
metry G also belong to the subgroup G′ by definition. So
ultimately, the “no-symmetry” group contains all symmetry-
restricted versions and coincides with the original universal
1RDM functional we started with (Sec. II). Hence a func-
tional for any subgroup Gk of a group G can be used as an
exact functional for 1RDM functional theory of the group
G. Obviously, the converse does not hold, since W G[γ] �
W Gk [γ] for vGk -representable 1RDMs and for all γ /∈ VN,G a
strict inequality is expected: W G[γ] > W Gk [γ]. It is therefore
impossible to derive general properties of the original univer-
sal functional (1) from these symmetry-restricted functionals.
Also, an attempt to combine the symmetry-restricted function-
als by minimizing over all of them [2] is of no avail, since any
system belongs to the “no-symmetry” group, which is simply
the Levy-constrained-search functional (1):

min
G

W G[γ] = W no sym[γ] = WL[γ]. (15)

From these considerations it should be clear that it is hard to
make any exact statements on the usual exact Levy functional
(1) based on symmetry.

But there is no need to invoke any symmetry argument
to explain that different ground-state 2RDMs can correspond
to identical occupation number spectra. We can resort to the
simple argument presented in Sec. II, which is completely
sufficient and does not make any reference to symmetry. The
only difference in the symmetry-restricted setting is that it
becomes natural to choose the irrep as one of the parameters
in the constrained search, which is what has effectively been
done in (12a).

So far the discussion is only about exact statements, but
practical 1RDM functional theory aims to deliver an approxi-
mation which is good enough but does not need to be exact. In
general it should not be exact, otherwise it would be compu-
tationally too costly to be of any practical use. This is where
the symmetry-restricted variant could play an important role
in the development of practical 1RDM functional theory. Even
if a system does not exactly belong to a symmetry group G,
the functional W G is still expected to provide a very accu-
rate approximation to the exact value and the corresponding
2RDM matrix elements (in the NO basis). In Ref. [3] such
an approximation to the exact functional is referred to as a
practical functional.

To assess some of these ideas, we will examine the systems
studied in [3] in more detail. Of particular interest is the
sequence of rhombi with a varying apex from 90◦ to 120◦
and adjusted sides such that the natural occupation numbers
remain identical. It has been shown that the eigenvalues of
the 2RDM do not vary significantly, which hints that the
remaining variational freedom within a single irrep is not very
significant. However, in the development of 1RDM function-
als we do not work with the eigenvalues of the 2RDM, but
its matrix elements in NO basis. So it is better to investigate
the dependence of the 2RDM matrix elements directly. We
will find for this sequence that, indeed, the magnitude of these
elements does not vary much, but the sign of these elements
poses a difficulty.

In this more detailed investigation, we will also use the
symmetry-restricted functionals to simplify the parametriza-
tion ξ which needs to be established. Yet, let us first consider
the explicit construction of a pure-state functional (with
or without symmetry restriction) in more detail. Assuming
that the wave function is expanded in NOs, the constrained
search (1) imposes two types of conditions: (1) diagonality
conditions, i.e., that the 1RDM is diagonal, and (2) occupa-
tion number conditions. The conditions from the occupation
numbers do not contain any cross terms between the configu-
rations, so these conditions lead to a set of linear constraints
on the square modulus of the CI coefficients:∑

I

AkI |cI |2 = nk, (16)

where I runs over the configurations and one-particle coupling
coefficients [35]. AkI tells how much each configuration I
contributes to the natural occupation nk . This linear set of
equations can easily be solved to determine the constraints
on the CI coefficients, though the large dimension of the CI
space can be problematic in practice. The null space of A
yields the remaining variational freedom. Provided that there
are no additional constraints, the null space yields exactly the
parameters ξ in (6), apart from the phase of the CI coefficients.
This is exactly how the exact functional for the translationally
invariant one-band lattice model was constructed [33].

On the other hand, the diagonality conditions do mix dif-
ferent configurations, so these conditions contain products of
different CI coefficients. Hence the presence of these condi-
tions leads to coupled quadratic equations, which are difficult
to solve in general, although for simple cases like the ex-
amples put forward by Wang and Knowles, they still can be
solved (see Sec. IV and Appendix D) since there are only
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FIG. 1. The orientation of the H4 system organized as a rhombus
with respect to the Cartesian system. The apex is defined as the angle
φ, and all sides have equal length R.

a few diagonality constraints to deal with when symmetry
restrictions are imposed.

IV. THE D2h SYMMETRY-RESTRICTED FUNCTIONAL
FOR THE H4 SYSTEMS IN MINIMAL BASIS

The different perspective on the “exact” functional(s) leads
to a somewhat different role of the H4 system in a mini-
mal basis. In the narrower definition, the H4 model serves
only as an approximation to the complete basis limit, so the
constrained-search functionals (1) and (2) would be consid-
ered approximate [3]. In this work the H4 system is considered
as a valid setting in its own right, because one can perfectly
define the exact 1RDM functional as the full CI result.

The most general Levy-type functional for these systems
would need to deal with four electrons in eight spin orbitals,
i.e., a configuration interaction (CI) expansion of

(8
4

) = 70
terms. However, when using full spin symmetry, we only need
to deal with 20, 15, and 1 configuration state functions for the
singlet, triplet, and quintet irreps, respectively.

Gritsenko considered the H2 + 2H system to be arranged
in a trapezoid [2], with the shorter of the two parallel sides
being the H2 bond and the longer side tending to infinity.
The square H4 system can be regarded as a trapezoid with
parallel legs. This allows us to use the C2v symmetry group
as a common symmetry group for both systems. In this case
both systems have their ground state in the 1A1 irrep, which
has 12 terms in its expansion. One can actually construct a
parametrization for this wave function, because there are only
two conditions to make the corresponding 1RDM diagonal.
The construction of this parametrization is quite involved and
not used in the analysis, and so has been deferred to Appendix
D. In this section we will use a higher symmetry group, which
makes the construction less complicated and more instructive
in order to get the general idea.

As observed in Ref. [3], the highest common symmetry
group is actually D2h, if we we arrange the H2 + 2H system
in a rhombus (see Fig. 1) instead of a trapezoid. The H2 bond
is then placed along the short diagonal and the long diagonal
of the rhombus tends to infinity. The square H4 is a rhombus in
which the diagonals have equal length. In this case the ground
state of the H2 + 2H system belongs to the 1Ag irrep, whereas
the ground state of the square H4 system belongs to the 1B1g

irrep. We therefore need to construct the symmetry-restricted
functional in two irreps, although these are two easier tasks,
since the wave functions in these irreps only contain eight and

c1

c1

c2

c2

c3 c3

- 1.0 - 0.5 0.5 1.0
1

- 1.0

- 0.5

0.5

1.0
ci

FIG. 2. The expansion coefficients of the 1B1g wave function (17)
as a function of the variable ξ1 for n1ag − n2ag = 0.2 as given by (19):
c1 (blue), c2 (orange), and c3 (green).

four terms, respectively. But more importantly, we only need
to handle one diagonality constraint.

Let us consider first the simpler 1B1g irrep in detail. A
general wave function in this irrep can be written as [36]

�
1B1g = c1

∣∣1a2
gb2ub3u[αβ − βα]

∣∣
+ c2

∣∣2a2
gb2ub3u[αβ − βα]

∣∣
+ c3|1ag2agb2ub3u[αβαβ + αββα

+βααβ + βαβα − 2(ααββ + ββαα)]|
+ c4|1ag2agb2ub3u[αβαβ − αββα

−βααβ + βαβα]|. (17)

This wave function can only yield spin-integrated 1RDMs
with nb2u = nb3u = 1 and n1ag + n2ag = 2, so only for those
1RDMs W D2h

1B1g
< ∞.

To construct a parametrization, we first observe that the
1RDM has two orbitals in the ag block, one orbital in the b2u

block, and one orbital in the b3u block, so we only need to
make the 1RDM diagonal in the ag block. The off-diagonal
element of the 1RDM from �

1B1g vanishes if c4(c1 + c2) = 0.
Since c1 + c2 = 0 is only possible if n1ag = n2ag , which is
unlikely due to the higher kinetic energy of n2ag , we only
parametrize for c4 = 0, which is in agreement with the higher
D4h symmetry of the square H4 [1,3]. The remaining degrees
of freedom can be parametrized with one parameter ξ1 =
c1 + c2. From the intermediate quantity

ζ2 = c1 − c2 = n1ag − n2ag

4ξ1
, (18)

the CSF coefficients can now be readily calculated as

c1 = (ξ1 + ζ2)/2, (19a)

c2 = (ξ1 − ζ2)/2, (19b)

c3 = 1
2
√

3

[
1 − ξ 2

1 − ζ 2
2

]1/2
. (19c)

As an illustration, the behavior of the CI coefficients as a
function of ξ1 is shown in Fig. 2 for n1ag − n2ag = 0.2.
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Since we have the CI coefficients now as a function of ξ1,
we also have the 2RDM elements �

D2h

i j,kl [
1B1g, ξ1, n], which

are in principle those given in Ref. [3], except that there is
a typo in the opposite spin block of the 2RDM for square H4,
Eq. (22). The columns and rows of 22̄ and 33̄ should be empty,
since these terms never occur in the wave function. The cor-
rect symmetry-blocked 2RDM has been deferred to Appendix
A, as it is rather unwieldy and not useful for discussion at this
point.

The ground state of the H2 + 2H system belongs to the 1Ag

irrep for which the expansion becomes

�
1Ag = cab

11

∣∣1a2
gb2

2u

∣∣ + caa
12

∣∣1a2
g2a2

g

∣∣ + cab
12

∣∣1a2
gb2

3u

∣∣
+ cab

21

∣∣2a2
gb2

2u

∣∣ + cbb
12

∣∣b2
2ub2

3u

∣∣ + cab
22

∣∣2a2
gb2

3u

∣∣
+ cb

1

∣∣b2
2u1ag2ag[αβ − βα]

∣∣
+ cb

2

∣∣b2
3u1ag2ag[αβ − βα]

∣∣. (20)

Because there are more terms, constructing a parametrization
becomes more tedious. Since there are eight terms in the wave
function and the 1RDM yields five nontrivial conditions (four
occupation numbers and one nontrivial off-diagonal element
in the ag block), we expect that we need at least three param-
eters.

In order for this wave function to yield a diagonal 1RDM,
we need to satisfy the following condition:

cb
1

(
cab

11 + cab
21

) + cb
2

(
cab

12 + cab
22

) = 0, (21)

which can be rewritten as

0 = (
cb

1 + cb
2

)(
cab

11 + cab
22 + cab

21 + cab
12

)
+ (

cb
1 − cb

2

)(
cab

11 − cab
22 + cab

21 − cab
12

)
. (22)

The advantage of this form is that we can now eliminate cab
11 −

cab
22 and cab

21 − cab
12 in favor of the other terms by exploiting the

following two conditions put by the occupation numbers on
the coefficients:

�+ = ∣∣cab
11

∣∣2 − ∣∣cab
22

∣∣2 + ∣∣cb
1

∣∣2 − ∣∣cb
2

∣∣2
, (23a)

�− = ∣∣cab
12

∣∣2 − ∣∣cab
21

∣∣2 + ∣∣cb
2

∣∣2 − ∣∣cb
1

∣∣2
, (23b)

where

�± = (
n1ag − n2ag ± nb2u ∓ nb3u

)/
4. (24)

Introducing the following parametrization for the coefficients,

ξ1 = cab
11 + cab

22, ξ2 = cab
12 + cab

21, ξ3 = cb
1 − cb

2, (25)

the diagonality condition (22) yields an explicit equation for
cb

1 + cb
2:

ζ4 = cb
1 + cb

2 = ξ3

ξ1 + ξ2

ξ1�− − ξ2�+
ξ1ξ2 − ξ 2

3

. (26a)

From the conditions (23) themselves we can extract

ζ5 = cab
11 − cab

22 = (�+ − ξ3ζ4)/ξ1, (26b)

ζ6 = cab
12 − cab

21 = (�− + ξ3ζ4)/ξ2. (26c)

TABLE I. The unique matrix elements of the spin-summed
2RDM for the determination of the relative sign of the 1B1g wave-
function coefficients.

i j k l �i j,kl

1ag 1ag 2ag 2ag 4c1c2

1ag b2u b2u 2ag −6c3(c2 − c1)
1ag b3u b3u 2ag 6c3(c2 − c1)

The normalization condition of the wave function, or equiva-
lently, the trace of the 1RDM, yields

ζ7 = ∣∣caa
12

∣∣2 + ∣∣cbb
12

∣∣2

= 1 − ξ 2
3 − ζ 2

4 − 1
2

(
ξ 2

1 + ξ 2
2 + ξ 2

5 + ξ 2
6

)
, (26d)

and there is one additional independent linear combination of
occupation numbers, which yields the relation

ζ8 = ∣∣caa
12

∣∣2 − ∣∣cbb
12

∣∣2 = �0, (26e)

where

�0 = (
n1ag + n2ag − nb2u − nb3u

)/
4. (27)

The CI coefficients are obtained as

cab
11 = (ξ1 + ζ5)/2, cab

22 = (ξ1 − ζ5)/2, (28a)

cab
12 = (ξ2 + ζ6)/2, cab

21 = (ξ2 − ζ6)/2, (28b)

cb
1 = (ξ3 + ζ4)/2, cb

2 = (ξ3 − ζ4)/2, (28c)

caa
12 =

√
ζ7 + ζ8, cbb

12 = ξ4

√
ζ7 − ζ8, (28d)

where we needed to introduce one additional parameter ξ4 =
±1 to handle the unknown relative phase factor. Since the
exact form of the 2RDM is not particularly enlightening it
is not presented here, but it is reported in Appendix B for
completeness.

V. OPTIMIZATION OF THE FREE PARAMETERS

Since the exact symmetry-restricted functionals derived in
Sec. IV (and the more general C2 functional in Appendix D)
still contain at least one parameter, they are not explicit 1RDM
functionals. Though the precise values of the 2RDM matrix el-
ements will vary for different systems, we can still make some
general statements, especially for the 1B1g component of the
D2h functional (Sec. IV), which only contains one parameter
ξ1. The dependence of the wave-function coefficients is shown
in Fig. 2 for n1ag − n2ag = 0.2. One can see that the variable ξ1

is able to generate all possible sign combinations of c1 and c2,
so the first task will be to pinpoint the correct sign pattern. In
Table I the relevant spin-summed 2RDM matrix elements are
reported. The first 2RDM element in Table I corresponds to a
positive two-electron integral, so c1c2 < 0 would be beneficial
to reduce the repulsion. For the other two reported 2RDM
elements in Table I, it is important to realize that their cor-
responding integrals have opposite signs, depending on the
actual phase of the 2ag NO: if the 2ag NO is positive along
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1ag b2u b3u 2ag

FIG. 3. Sketch of the NOs of the rhombic H4 system which has
D2h symmetry.

the b2u orbital (y direction), as sketched in Fig. 3, the integral
〈1agb2u|b2u2ag〉 > 0 and 〈1agb3u|b3u2ag〉 < 0 and vice versa.
For either phase choice, this means that the signs of c1 and
c2 should be opposite for both terms to have a maximally
stabilizing effect, which agrees with a stabilizing first element
in Table I. For the phase choice of the 2ag NO depicted in
Fig. 3, this means c2 > 0 and c1 < 0, so

ξ1 ∈
[
−1

2

√
�±,−1

2

√
2 − 2

√
1 − �2±

]
, (29)

where �± = n1ag − n2ag , because nb2u = nb3u = 1 is necessar-
ily in this sector, cf. Sec. IV. For the opposite phase choice, the
relevant interval for ξ1 would need to be reflected with respect
to the origin.

This immediately signals a problem when trying to develop
an explicit proper approximate 1RDM functional in terms
of the NOs. If we would completely fix the sign of the ex-
pansion coefficients, e.g., c1 > 0 and c2 < 0, i.e., ξ1 > 0, the
functional would become phase dependent and not be a pure
1RDM functional anymore.

Let us investigate the size of the error by considering
two rhombic H4 systems from Ref. [3] with an apex of 90◦
(R = 2.0 Å), i.e., a square, and with an apex of 120◦ (R =
1.972 665 297 958 2 Å) [37]. The calculations have been per-

formed with the help of the full CI module of PYSCF [38,39],
again in the STO-3G basis [40]. We see from the 2RDM
elements in their respective NO representations reported in
Table II that an incorrect sign leads to large deviations in the
2RDM elements. If the correct sign is used, the maximum
deviation in the 2RDM elements is in the order of 10−4. Using
the 2RDM elements of the 90◦ rhombus for the calculation of
the total energy of the 120◦ rhombus and vice versa leads to
an energy difference in the order of micro Hartrees: 1.280 μH
and 1.322 μH, respectively. However, using the 2RDM
elements with the incorrect sign leads to errors of almost 1
Hartree: 0.735 H and 0.761 H, respectively.

One could hope that there would be some kind of univer-
sal choice for the NOs phase, e.g., choosing the sign of the
largest coefficient in the NO to be positive. However, such an
approach appears not to provide a solution. In Table III the
coefficients of the 2ag NO of a rhombic H4 system with an
apex of 60◦ and with an apex of 120◦ are reported. Though
these systems are completely equivalent and so basically have
identical 2RDM matrix elements in their NO representation,
the convention of choosing the coefficient with the largest
amplitude to be positive causes the 2ag NO to have an opposite
sign in both systems. Hence we obtain large differences in the
2RDM elements and corresponding total energies. which are
of the same order as in the previous example. The proposed
sign convention is even more problematic in the case of square
H4 (90◦): none of the coefficients is larger in magnitude than
the others, so the convention is indecisive.

The problem is aggravated if the more general C2 func-
tional is used (see Appendix D for a full parametrization).
Using this lower symmetry, the b2u and b3u orbitals are not
separated by symmetry anymore and are allowed to form
any unitary combination, because they have the same natural
occupation number (nb2u = nb3u = 1). Because the shape of
these mixtures can vary arbitrarily between different systems,
their correspondence is lost and can lead to deviations in the

TABLE II. Comparison of all differences larger than 10−4 2RDM matrix elements in their respective NO basis, where k = 2, 3. The
reported difference is for the most optimal phase choice of the ag NOs (upper sign).

Largest differences in the like-spin 2RDM elements �σσ
i j,kl

i j k l 90◦ 120◦ difference

1ag b2u b2u 2ag ∓0.106392 −0.106260 −0.000132
1ag b3u b3u 2ag ±0.106392 0.106260 0.000132
1ag 2ag 1ag 2ag 0.065563 0.065317 0.000247
b2u b3u b2u b3u 0.065563 0.065317 0.000247
1ag bku 1ag bku 0.356722 0.356845 −0.000123
2ag bku 2ag bku 0.077715 0.077838 −0.000123

Largest differences in the opposite-spin 2RDM elements �
αβ

i j,kl

i j k l 90◦ 120◦ difference

1ag b̄2u b2u 2āg ∓0.212784 −0.212520 −0.000265
1ag b̄3u b3u 2āg ±0.212784 0.212520 0.000265
1ag 1 āg 2ag 2āg −0.288932 −0.289447 0.000514
1ag 1 āg 1ag 1āg 0.680662 0.681032 −0.000370
2ag 2 āg 2ag 2āg 0.122648 0.123018 −0.000370
b2u b̄3u b2u b̄3u 0.434437 0.434683 −0.000247
1ag 2āg 1ag 2āg 0.032782 0.032658 0.000123
1ag b̄ku 1ag b̄ku 0.422285 0.422162 0.000123
2ag b̄ku 2ag b̄ku 0.143278 0.143155 0.000123
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TABLE III. The 2ag NO represented in the AO basis (STO-3G)
for different apices of H4 in a rhombic arrangement with bond
lengths adjusted such that the occupation numbers are identical (see
text).

60◦ 90◦ 120◦

H1 0.576 ∓0.563 −0.532
H2 0.576 ∓0.563 −0.532
H3 −0.532 ∓0.563 0.576
H4 −0.532 ∓0.563 0.576

2RDM matrix elements of similar magnitude, as in the case of
the undetermined phase of the 2ag NO.

Therefore a proper approximate 1RDM functional cannot
be an explicit functional in general in NO representation, if
it is supposed to be invariant under unitary transformations
of degenerate NOs [41]. However, one can take different
viewpoints of this situation. The essence of 1RDM functional
theory is to split the minimization of the energy in terms
of the many-body wave function in terms of the 1RDM and
the remaining degrees of freedom. Using a 1RDM functional
which does not respect unitary invariance of degenerate NOs
(and phase invariance) in this scheme simply means that some
of the remaining degrees of freedom will be combined with
the 1RDM optimization. Taking this view already at the the-
oretical level means that one should rather speak of an NO
functional theory, which seems to be in line with the view
of Piris [42], and also the idea of phase including NOs pro-
posed in the time-dependent setting [29,43–46]. So indeed,
this would mean the extension of 1RDM functional theory
that Wang and Knowles were referring to in Ref. [1]. The
downside of this view at a theoretical level is that a one-to-one
relation with the nonlocal potential would definitely be out
of the question on dimensional grounds and also at elevated
temperatures [7].

Another option is to impose this viewpoint at the imple-
mentation level. One still accepts that one needs to deal with
an implicit 1RDM functional but that the optimization of
the parameters related to the unitary invariance of degenerate
NOs is shifted to the optimization of NOs to obtain a more
practical implementation of the implicit functional. For the
minimization of the total energy, all parameters should be op-
timized, and it is irrelevant for the end result how we group the
variables together. However, for the calculation of response
properties one should carefully scrutinize how the invariance
of the functional should be taken into account.

To finalize this section, let us also briefly discuss the 1Ag

component of the D2h functional. It might seem to be a
contradiction that we still have four free parameters for the
H2 + 2H system, since Gritsenko et al. in Ref. [3] did not
find additional parameters. The difference is that we only
used symmetry to build the restricted functional. However, if
we also use the special property of the H2 + 2H system that
the Coulomb integrals between the fragments are zero in this
limit, the minimization in (12b) can be executed explicitly (see
Appendix C) and we recover the result by Gritsenko et al.
[3]: a one-to-one relation between the 2RDM elements and
the occupation numbers.

Such additional assumptions are often made to develop
practical approximations geared towards the physical situation

one is interested in. We actually made such an assumption
(c4 = 0) for �

D2h

i j,kl [
1B1g, ξ1, n] to simplify the final expression.

A similar assumption is well known for the singlet two-
electron case, where the phase eiξk is taken to be positive for
the highest occupied NO and negative for all other NOs [47].
However, this additional assumption reduces the validity of
the two-electron functional, as it is not exact anymore for all
singlet two-electron cases [48]. Though the covalent bonding
is still correctly described, the van der Waals interactions are
missing [49–52].

VI. CONCLUSION

It has been stressed that the many-to-one relation of the
map � �→ n in (4) is responsible for the possibility that iden-
tical occupation numbers can correspond to different 2RDMs.
The constrained-search functional (5), or equivalently, (6),
determines these remaining degrees of freedom by minimiz-
ing over the contraction of the 2RDM with the two-electron
integrals in the NO basis. Thus different NOs lead to different
two-electron integrals, which lead to a different minimum
within the constrained-search functional (5) and hence, to
different 2RDMs. No symmetry is needed to explain this
property.

An explicit construction of a constrained-search functional
can be achieved by identifying the remaining degrees of free-
dom in the wave function (1) or even density-matrix operator
(2). This is most easily achieved for the pure-state case,
and the general procedure has been outlined at the end of
Sec. III. This procedure has been exemplified by an explicit
parametrization of the 2RDM matrix elements for the two-
electron functional (8) and the construction of several irreps
of symmetry-restricted functionals for four electrons in four s
orbitals (Sec. IV and Appendix D). The main reason to impose
symmetry restrictions on the (validity of) the functional is that
the constrained search can be broken down over the irreps
of the symmetry group (12a) and the variational freedom
within each irrep of the group is significantly reduced. This
reduced variational freedom allows one to more easily find
an explicit parametrization and makes the parametrization
also more transparent than a parametrization of the original
functional without symmetry restrictions. The disadvantage
is, of course, that the symmetry-restricted functional is only
valid for systems exhibiting the presumed symmetry. How-
ever, such exact parametrizations could serve as a guide in the
construction of more general approximate 1RDM functionals
by revealing the necessary structures to incorporate additional
flexibility.

One can wonder whether we should invest in building ap-
proximate symmetry-restricted 1RDM functionals, especially
in light of the fact that explicit symmetry dependence reduces
the validity of the functional to only a symmetry class of
potentials. Moreover, since 1RDM functional theory actually
aims to be practical for medium-sized systems that often
do not display any symmetry, a 1RDM functional relying
on symmetry would be of limited use. An exception for fi-
nite systems are the spin states, since usually our molecular
Hamiltonian is spin independent. Approximations towards
this direction can be found in Refs. [53,54] but have recently
been criticized for violating important constraints [18]. Being
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able to access the different spin states is very useful in the
study of transition-metal compounds. For infinite models of
the bulk of crystals, translational symmetry can be exploited
[33].

It is worthwhile to search also for other possibilities to
reduce the validity of the functional, because, inherited from
the many-body wave-function or density-matrix operator, the
exact functional contains an exponentially growing number of
parameters ξ. This makes an explicit construction of the func-
tional infeasible and even undesirable for practical purposes.
By reducing the number of potentials for which the func-
tional needs to be valid, the flexibility of the wave-function or
density-matrix operator in the constrained-search functional
can be reduced, so fewer parameters ξ need to be included
in the functional. Another option to reduce the validity of the
functional is to exploit that we are typically only interested
in a very limited class of external potentials, e.g., Coulomb
potentials.

The explicitly parametrized irrep components of the D2h

symmetry-restricted functional for four electrons in four s
orbitals in Sec. IV are relevant for the square H4 and H2 + 2H
systems considered by Wang and Knowles [1]. They use these
H4 systems to give an explicit example of two systems with
identical occupation numbers but different 2RDM elements.
This parametrization is general enough to be also valid for the
sequence of rhombi studied later in joint work with Gritsenko
[3]. In that work the authors showed that the differences in the
2RDM eigenvalues for two H4 geometries tend to be small
if the underlying wave functions have the same symmetry, so
out of scope in the construction of approximate functionals,
which they refer to as a practical functional. Only when the
underlying states belong to a different irrep were appreciable
differences in the 2RDM eigenvalues found. This situation
sounds like a state crossing, but around an apex of 125◦, no
length R could be found anymore to retain identical occu-
pation numbers, so the crossing point cannot be reached for
the rhombi. This finding is, of course, due to the completely
different character of the underlying wave functions which
could not be differentiated by the occupation numbers. This is
the essential aspect which pertains to the exact universal func-
tional (1) or (2) which is symmetry independent, of course.
One therefore expects that this situation could also occur for
states with identical symmetry but still different character
(avoided crossings). Although that the occupation numbers
are identical is a quite stringent condition. So it seems an
unlikely situation in practice, especially when a more realistic
number of orbitals is taken into account. However, perhaps
for a model system like H4 or He2H2+

2 , in a minimal basis two
geometries can be found with identical occupation numbers
and electronic states not differentiable by symmetry but with
sizable differences in the 2RDM elements.

In this paper I have also shown that the chosen phase of
the NOs can be important for the sign of the 2RDM matrix
elements and so actually prohibits proper 1RDM functionals
in which the 2RDM matrix elements depend explicitly on only
the occupation numbers, �i j,kl (n). Of course, the Hartree and
exchange 2RDM elements, �i j,i j and �i j, ji, respectively, are
invariant with respect to the NO phase, but is has become
clear that other 2RDM elements are important if we want to
construct more reliable functionals [18,50,55–57]. A proper

1RDM functional needs to be invariant with respect to the
phase of the NOs, since the phase is undetermined, as the NOs
are eigenfunctions of a Hermitian operator. So if one aims
to build a proper approximate 1RDM functional beyond the
Hartree and exchange (JK functional), one cannot do without
an additional set of parameters ξ to make the functional invari-
ant with respect to the phase of the NOs. This is quite easy
to achieve by placing ei(ξk+ξl −ξi−ξ j ) in front of each 2RDM
matrix element, cf. the exact two-electron functional (8). Of
course, in a practical implementation in which the occupation
numbers and NOs are optimized directly, one can leave this
additional degree of freedom out of the functional and let the
NO phase take care of this part of the functional. Alternatively,
one could already at the theoretical level say that we are work-
ing instead with an NO functional theory, so the functionals
are allowed to depend on the (relative) phases of the NOs.
This line of thought is followed by Piris [42,56,58] and is also
in the “phase including natural orbital” approach to resolve
the many pathological issues encountered while formulating
an adiabatic approximate in time-dependent 1RDM functional
theory [14,29,43–46].
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APPENDIX A: 2RDM OF THE 1B1g STATE

We now discuss the 2RDM of the 1B1g state under the
assumption n1ag 
= n2ag . Due to the symmetry, the 2RDM be-
comes symmetry blocked. Abbreviating the orbitals as 1a =
1ag, 2a = 2ag, 1b = b2u, and 2b = b3u, the like-spin blocks
become

A↑↑
g

1a2a

1a2a

(4c2
3 )
, (A1)

B↑↑
1g

1b2b

1b2b

(4c2
3 )
, (A2)

(B↑↑
2u 1a1b 2a1b

1a1b c2
1 + c2

3 h
2a1b h c2

2 + c2
3

)
, (A3)

(B↑↑
3u 1a2b 2a2b

1a2b c2
1 + c2

3 −h
2a2b −h c2

2 + c2
3

)
, (A4)

and the opposite-spin blocks become

⎛
⎜⎜⎜⎜⎜⎝

A↑↓
g 1a 1̄a 1a 2̄a 2a 1̄a 2a 2̄a 1b1̄b 2b2̄b

1a 1̄a 2c2
1 0 0 2c1c2 0 0

1a 2̄a 0 2e −2e 0 0 0
2a 1̄a 0 −2e 2e 0 0 0
2a 2̄a 2c1c2 0 0 2c2

2 0 0
1b1̄b 0 0 0 0 0 0
2b2̄b 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

(A5)
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(B↑↓
1g 1b2̄b 2b1̄b

1b2̄b d + 2e d − 2e
2b1̄b d − 2e d + 2e

)
, (A6)

⎛
⎜⎝

B↑↓
2u 1a 1̄b 2a 1̄b 1b1̄a 1b2̄a

1a 1̄b a −h 4e −2h
2a 1̄b −h b −2h 4e
1b1̄a 4e −2h a −h
1b2̄a −2h 4e −h b

⎞
⎟⎠, (A7)

⎛
⎜⎝

B↑↓
3u 1a 2̄b 2a 2̄b 2b1̄a 2b2̄a

1a 2̄b a h 4e 2h
2a 2̄b h b 2h 4e
2b1̄a 4e 2h a h
2b2̄a 2h 4e h b

⎞
⎟⎠, (A8)

where a = c2
1 + 5c2

3, b = c2
2 + 5c2

3, d = c2
1 + c2

2, e = c2
3, and

h = c3(c2 − c1).

APPENDIX B: 2RDM OF THE 1Ag STATE

Abbreviating the orbitals as 1a = 1ag, 2a = 2ag, 1b = b2u,
and 2b = b3u, the like-spin blocks of the 2RDM of the 1Ag

state become,

(
A↑↑

g 1a2a

1a2a |caa
12|2 ), (B1)

(
B↑↑

1g 1b2b

1b2b |cbb
12|2 ), (B2)

(B↑↑
2u 1a1b 2a1b

1a1b s11 t1
2a1b t1 s21

)
, (B3)

(B↑↑
3u 1a2b 2a2b

1a2b s12 t2
2a2b t2 s22

)
, (B4)

where

si j = ∣∣cab
i j

∣∣2 + ∣∣cb
j

∣∣2
, (B5a)

t j = cb
j

(
cab

1 j + cab
2 j

)
. (B5b)

The opposite-spin blocks become

⎛
⎜⎜⎜⎜⎜⎝

A↑↓
g 1a 1̄a 1a 2̄a 2a 1̄a 2a 2̄a 1b1̄b 2b2̄b

1a 1̄a da
1 p1 p1 m l11 l12

1a 2̄a p1 da
m n p2 k1 k2

2a 1̄a p1 n da
m p2 k1 k2

2a 2̄a m p2 p2 da
2 l21 l22

1b1̄b l11 k1 k1 l21 db
1 q

2b2̄b l12 k2 k2 l22 q db
2

⎞
⎟⎟⎟⎟⎟⎠, (B6)

where

da
i = ∣∣caa

12

∣∣2 + ∣∣cab
i1

∣∣2 + ∣∣cab
i2

∣∣2
, (B7a)

da
m = ∣∣caa

12

∣∣2 + ∣∣cb
1

∣∣2 + ∣∣cb
2

∣∣2
, (B7b)

db
i = ∣∣cbb

12

∣∣2 + ∣∣cab
1i

∣∣2 + ∣∣cab
2i

∣∣2 + 2
∣∣cb

i

∣∣2
, (B7c)

pi = cab
i1 cb

1 + cab
i2 cb

2, (B7d)

ki = cbb
12cb

3−i − caa
12cb

i , (B7e)

li j = cab
(3−i) jc

aa
12 + cab

i(3− j)c
bb
12, (B7f)

m = cab
11cab

21 + cab
12cab

22, (B7g)

n = ∣∣cb
1

∣∣2 + ∣∣cb
2

∣∣2
, (B7h)

q = cab
12cab

11 + cab
21cab

22 + cb
1cb

2. (B7i)

The other blocks are

(B↑↓
1g 1b2̄b 2b1̄b

1b2̄b |cbb
12|2 0

2b1̄b 0 |cbb
12|2

)
, (B8)

⎛
⎜⎝

B↑↓
2u 1a 1̄b 2a 1̄b 1b1̄a 1b2̄a

1a 1̄b s11 t1 0 0
2a 1̄b t1 s21 0 0
1b1̄a 0 0 s11 t1
1b2̄a 0 0 t1 s21

⎞
⎟⎠, (B9)

⎛
⎜⎝

B↑↓
3u 1a 2̄b 2a 2̄b 2b1̄a 2b2̄a

1a 2̄b s12 t2 0 0
2a 2̄b t2 s22 0 0
2b1̄a 0 0 s12 t2
2b2̄a 0 0 t2 s22

⎞
⎟⎠, (B10)

where si j and ti were defined in (B5).

APPENDIX C: EXPLICIT MINIMIZATION FOR THE
H2 + 2H SYSTEM

The advantage of this system is that most two-electron
integrals are zero due to the distances. The only nonvanishing
two-electron integrals are

〈1a1a|1a1a〉, 〈1a1b|1a1b〉,
〈1a1b|1b1a〉, 〈1b1b|1b1b〉,
〈2a2a|2a2a〉 = 〈2a2b|2a2b〉 = wH ,

〈2a2b|2b2a〉 = 〈2b2b|2b2b〉 = wH .

(C1)

This means that all blocks with 1x2y pairs (x, y ∈ {a, b}) do
not contribute and the interaction energy expression becomes

W = s11(3〈1a1b|1a1b〉 − 〈1a1b|1b1a〉)

+ da
1 〈1a1a|1a1a〉 + 1

2 n1b〈1b1b|1b1b〉 + 2l11〈1a1b|1b1a〉
+ (

da
2 + 2l22 + 1

2 n2b + 2s22
)
wH . (C2)

All terms only contain squares of the coefficients and so are
always positive, except the lii terms which read

l11 = cab
21caa

12 + cab
12cbb

12, l22 = cab
12caa

12 + cab
21cbb

12. (C3)

So if we choose

caa
12 > 0 ⇒ cab

12 < 0, cab
21 < 0, cbb

12 > 0, (C4)

we minimize the interaction energy. Now it is useful to write
out the positively contributing terms explicitly:

W = (∣∣cab
11

∣∣2 + ∣∣cb
1

∣∣2)
(3〈1a1b|1a1b〉 − 〈1a1b|1b1a〉)

+ (∣∣caa
12

∣∣2 + ∣∣cab
11

∣∣2 + ∣∣cab
12

∣∣2)〈1a1a|1a1a〉
+ 1

2 n1b〈1b1b|1b1b〉 + 2l11〈1a1b|1b1a〉
+ (∣∣caa

12

∣∣2 + ∣∣cab
21

∣∣2 + 3
∣∣cab

22

∣∣2

+ 2
∣∣cb

2

∣∣2 + 2l22 + 1
2 n2b

)
wH . (C5)
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We can minimize this expression if we can minimize |cab
11|2,

|cab
22|2, |cb

1|2, and |cb
2|2, since they dominate over |caa

12|2, |cab
12|2,

|cab
21|2, and |cbb

12|2 terms because the latter also make negative
contributions. The difference |cab

11|2 − |cab
22|2 is fixed by the

occupation numbers (26e), so the best we can do is

caa
12 =

√
max(0,�0), (C6a)

cbb
12 =

√
max(0,−�0), (C6b)

where �0 was defined in (27). Note that the phase of these
coefficients does not matter, since they do not appear in any
cross term in the interaction energy expression.

Now the parametrization becomes very useful, since now
we can vary over ξ1, ξ2, and ξ3 without worrying about the
constraints. Setting ξ3 = 0 implies that ζ4 = 0 (26a), so we
can even achieve |cb

1|2 = |cb
2|2 = 0. The expression for the

interaction then reduces to

W = ∣∣cab
11

∣∣2
(3〈1a1b|1a1b〉 − 〈1a1b|1b1a〉)

+ 1
2 n1a〈1a1a|1a1a〉 + 1

2 n1b〈1b1b|1b1b〉

+ (
2
∣∣cab

22

∣∣2 + 1
2 (n2a + n2b)

)
wH

+ 2l11〈1a1b|1b1a〉 + 2l22wH . (C7)

All terms on the first three lines are now fixed and only the
last line needs to be minimized. The last line can be rewritten
as

W̃ (ξ1, ξ2) = ξ1ξ2w+ + �+
ξ1

�−
ξ2

w−, (C8)

where w± = wH ± 〈1a1b|1b1a〉 and 2wH � w+ � w− � 0.
The remaining variables are constrained by the normalization
(26d) as

1

2

(
ξ 2

1 + �2
+

ξ 2
1

+ ξ 2
2 + �2

−
ξ 2

2

)
= 1 − |�0|. (C9)

We can solve this equation to get an expression for ξ1 in terms
of ξ2. Due to the phase convention (C4), we should choose
the positive root, and since w+ > w−, we should choose the
highest root for ξ1, i.e.,

ξ1 = −1√
2ξ2

[
2(1 − |�0|)ξ 2

2 − ξ 4
2 − �2

− +
√(

2(1 − |�0|)ξ 2
2 − ξ 4

2 − �2−
)2 − 4�2+ξ 4

2

]1/2
. (C10)

Now we insert this expression for ξ1 back into (C8) and find its stationary points,

0 = dW̃

dξ2
= dW̃

d[·]1/2

d[·]1/2

dξ 2
2

dξ 2
2

dξ2
, (C11)

where [·] is the part in square brackets in (C10). Since the solution ξ2 = 0 is not suitable, one of the other derivatives needs to
vanish. Let us first consider vanishing of the first derivative on the r.h.s.:

0 = dW̃

d[·]1/2
= −1√

2

[
w+ − 2�+�−w−

[·]
]
. (C12)

This equation is effectively a quadratic equation in ξ 2
2 and so can be solved to yield

ξ 2
2 =

(
�+
�−

w+
w−

+ 1

)−1[
1 − |�0| ±

√
(1 − |�0|)2 − (

�+
w+
w−

+ �−
)(

�+
w−
w+

+ �−
)]

, (C13)

where we should choose the largest root, since the first term in (C8) is dominant.
The other option is that the middle derivative on the right-hand side of (C10) vanishes, d[·]1/2/dξ 2

2 = 0, which yields

0 = d[·]1/2

dξ 2
2

= 1

[·]1/2

(
1 − |�0| − ξ 2

2 +
[
2(1 − |�0|)ξ 2

2 − ξ 4
2 − �2

−
](

1 − |�0| − ξ 2
2

) − 2�2
+ξ 2

2√[
2(1 − |�0|)ξ 2

2 − ξ 4
2 − �2−

]2 − 4�2+ξ 4
2

)
. (C14)

This is again effectively a quadratic equation in ξ 2
2 , which can be solved to yield

ξ 2
2 = 1

2(1 − |�0|) [(1 − |�0|)2 + �2
− − �2

+ ±
√

[(1 − |�0|)2 + �2− − �2+]2 − 4(1 − |�0|)2�2−]. (C15)

We should again choose the largest root, which in this case is the one with the + sign, because 1 − |�0| � 0.
The question is now which solution yields the global minimum. In the case of the H2 + 2H, we know that the ground state

1RDM has n2a = n2b = 1, so �+ = 0 and −1/2 � �0 = �− � 1/2. This greatly simplifies the problem, since ξ is now directly
related by the constraint (C9) to ξ2 as

ξ1 = −1

ξ2

√
2(1 − |�0|)ξ 2

2 − ξ 4
2 − �2

0, (C16)

and the last line of the interaction energy (C8) reduces to

W̃ = ξ1ξ2w+ = −w+
√

2(1 − |�0|)ξ 2
2 − ξ 4

2 − �2
0. (C17)
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Minimization over ξ2 is now straightforward and yields

ξ2 = −
√

1 − |�0|. (C18)

The only stationary point which converges to this point is
(C15) with the plus sign, so we can hope that this point always
yields the minimum. This suspicion has been confirmed by a
numerical check with MATHEMATICA where the parameters are
constrained as

0 � w−
w+

� 1, (C19a)

−1 � �± � 1, (C19b)

0 � |�0| � 1, (C19c)

|�0| + |�−| + |�+| � 1, (C19d)

where the latter condition is a result of working out

�0 + �+ + �− = n1a − 1, (C20a)

�0 + �+ − �− = 1 − n2b, (C20b)

�0 − �+ + �− = 1 − n1b, (C20c)

�0 − �+ − �− = n2a − 1. (C20d)

By putting the most extreme occupation numbers (0 or 2)
we find that all left-hand sides ∈ [−1, 1], so (C19d) follows.

APPENDIX D: THE C2 SYMMETRY-RESTRICTED
FUNCTIONAL FOR THE H4 SYSTEMS IN A MINIMAL

BASIS

Though the trapezoid configuration has C2v as its highest
point group symmetry, only one nontrivial symmetry element
is relevant, since only the 1s orbitals are considered in the
planar configuration. Here we choose to retain the rotation
around an axis by 180◦ as the nontrivial symmetry operation,
so we construct a C2 symmetry-restricted functional. Note
that the groups Cs and Ci are isomorphic to C2, so we ef-
fectively also obtain the symmetry-restricted functional for
those groups (only the irrelevant relabelling {a, b} → {a′, a′′}
or {ag, au} might be considered). To limit the discussion, we
only demonstrate the construction for the 1A irrep, since the
construction for the 1B will be analogous.

For brevity, we label symmetry-adapted and orthonormal-
ized spatial orbitals as

{1a, 2a, 1b, 2b}. (D1)

We can use these symmetry-adapted orbitals to construct the
following full CI expansion for a general 1A state:

�
1A = cab

11

∣∣12
a12

b

∣∣ + caa
12

∣∣12
a22

a

∣∣ + cab
12

∣∣12
a22

b

∣∣ + cab
21

∣∣22
a12

b

∣∣ + cab
22

∣∣22
a22

b

∣∣ + cbb
12

∣∣12
b22

b

∣∣ + ca
1

∣∣12
a1b2b[αβ − βα]

∣∣
+ ca

2

∣∣22
a1b2b[αβ − βα]

∣∣ + cb
1

∣∣12
b1a2a[αβ − βα]

∣∣ + cb
2

∣∣22
b1a2a[αβ − βα]

∣∣
+ cm

1 |1a2a1b2b[αβαβ + αββα + βααβ + βαβα − 2(ααββ + ββαα)]|
+ cm

2 |1a2a1b2b[αβαβ − αββα − βααβ + βαβα]|. (D2)

Since there are twelve coefficients and six constraints, we expect to need six parameters, except for additional possible phase
factors.

The conditions from the (spin-integrated) occupation numbers are

na
1 = 2

(∣∣cab
11

∣∣2 + ∣∣caa
12

∣∣2 + ∣∣cab
12

∣∣2 + 2
∣∣ca

1

∣∣2 + ∣∣cb
1

∣∣2 + ∣∣cb
2

∣∣2 + 6
∣∣cm

1

∣∣2 + 2
∣∣cm

2

∣∣2)
, (D3a)

na
2 = 2

(∣∣caa
12

∣∣2 + ∣∣cab
21

∣∣2 + ∣∣cab
22

∣∣2 + 2
∣∣ca

2

∣∣2∣∣cb
1

∣∣2 + ∣∣cb
2

∣∣2 + 6
∣∣cm

1

∣∣2 + 2
∣∣cm

2

∣∣2)
, (D3b)

nb
1 = 2

(∣∣cab
11

∣∣2 + ∣∣cab
21

∣∣2 + ∣∣cbb
12

∣∣2 + 2
∣∣cb

1

∣∣2 + ∣∣ca
1

∣∣2 + ∣∣ca
2

∣∣2 + 6
∣∣cm

1

∣∣2 + 2
∣∣cm

2

∣∣2)
, (D3c)

nb
2 = 2

(∣∣cab
12

∣∣2 + ∣∣cbb
12

∣∣2 + ∣∣cab
22

∣∣2 + 2
∣∣cb

2

∣∣2 + ∣∣ca
1

∣∣2 + ∣∣ca
2

∣∣2 + 6
∣∣cm

1

∣∣2 + 2
∣∣cm

2

∣∣2)
. (D3d)

Taking the difference between the occupation numbers in each irrep yields

na
1 − na

2 = 2
(∣∣cab

11

∣∣2 + ∣∣cab
12

∣∣2 − ∣∣cab
21

∣∣2 − ∣∣cab
22

∣∣2 + 2
(∣∣ca

1

∣∣2 − ∣∣ca
2

∣∣2))
, (D4a)

nb
1 − nb

2 = 2
(∣∣cab

11

∣∣2 − ∣∣cab
12

∣∣2 + ∣∣cab
21

∣∣2 − ∣∣cab
22

∣∣2 + 2
(∣∣cb

1

∣∣2 − ∣∣cb
2

∣∣2))
. (D4b)

Assuming cab
11, cab

12, cab
21, and cab

22 to be given, |ca
1|

2 − |ca
2|

2
and |cb

1|
2 − |cb

2|
2

can be calculated.
There is one more nontrivial condition (i.e., apart from the trivial normalization constraint):

na
1 + na

2 − nb
1 − nb

2 = 4
(∣∣caa

12

∣∣2 − ∣∣cbb
12

∣∣2)
. (D4c)

Given caa
12 + cbb

12, we can obtain caa
12 − cbb

12 or vice versa.
Now let us consider the two diagonality conditions (from the a1 and b1 irrep, respectively):

0 = cb
1

(
cab

11 + cab
21

) + cb
2

(
cab

12 + cab
22

) + 2
(
ca

1 + ca
2

)
cm

2 , (D5a)

0 = ca
1

(
cab

11 + cab
12

) + ca
2

(
cab

21 + cab
22

) + 2
(
cb

1 + cb
2

)
cm

2 . (D5b)
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Multiplying these equations by cb
1 + cb

2 and ca
1 + ca

2, respectively, and subtracting them to eliminate cm
2 yields

cb
1

(
cb

1 + cb
2

)(
cab

11 + cab
21

) + cb
2

(
cb

1 + cb
2

)(
cab

12 + cab
22

) = ca
1

(
ca

1 + ca
2

)(
cab

11 + cab
12

) + ca
2

(
ca

1 + ca
2

)(
cab

21 + cab
22

)
. (D6)

Now writing everything in terms of cb
1 ± cb

2 and ca
1 ± ca

2, we obtain(
cb

1 + cb
2

)[(
cb

1 + cb
2

)(
cab

11 + cab
12 + cab

21 + cab
22

) + (
cb

1 − cb
2

)(
cab

11 − cab
12 + cab

21 − cab
22

)]
= (

ca
1 + ca

2

)[(
ca

1 + ca
2

)(
cab

11 + cab
12 + cab

21 + cab
22

) + (
ca

1 − ca
2

)(
cab

11 + cab
12 − cab

21 − cab
22

)]
, (D7)

which can be rearranged as(
cab

11 + cab
12 + cab

21 + cab
22

)[(
ca

1 + ca
2

)2 − (
cb

1 + cb
2

)2]
= (∣∣cb

1

∣∣2 − ∣∣cb
2

∣∣2)(
cab

11 − cab
12 + cab

21 − cab
22

) − (∣∣ca
1

∣∣2 − ∣∣ca
2

∣∣2)(
cab

11 + cab
12 − cab

21 − cab
22

)
. (D8)

Since |ca
1|2 − |ca

2|2 and |cb
1|2 − |cb

2|2 are known from (D4a) and (D4b), respectively, we have an equation for (ca
1 + ca

2 )2 − (cb
1 +

cb
2)2.

We have now all the ingredients for a parametrization. As parameters we choose the following quantities:

ξ1 = cab
11, (D9a)

ξ2 = cab
12, (D9b)

ξ3 = cab
21, (D9c)

ξ4 = cab
22, (D9d)

ξ5 = caa
12 + cbb

12, (D9e)

ξ6 = ca
1 + ca

2 + cb
1 + cb

2. (D9f)

In a first step we can calculate the following intermediates:

ζ3 = ∣∣ca
1

∣∣2 − ∣∣ca
2

∣∣2 = 1
2

(
na

1 − na
2

) − ∣∣cab
11

∣∣2 − ∣∣cab
12

∣∣2 + ∣∣cab
21

∣∣2 + ∣∣cab
22

∣∣2
, (D10a)

ζ4 = ∣∣cb
1

∣∣2 − ∣∣cb
2

∣∣2 = 1
2

(
nb

1 − nb
2

) − ∣∣cab
11

∣∣2 + ∣∣cab
12

∣∣2 − ∣∣cab
21

∣∣2 + ∣∣cab
22

∣∣2
, (D10b)

ζ5 = caa
12 − cbb

12 =
∣∣caa

12

∣∣2 − ∣∣cbb
12

∣∣2

4ξ5
. (D10c)

Then we evaluate

ζ6 = ca
1 + ca

2 − cb
1 − cb

2 = ζ4
(
cab

11 − cab
12 + cab

21 − cab
22

) − ζ3
(
cab

11 + cab
12 − cab

21 − cab
22

)
ξ6

(
cab

11 + cab
12 + cab

21 + cab
22

) (D10d)

and subsequently

ζ7 = ca
1 + ca

2 = (ξ6 + ζ6)/2, (D10e)

ζ8 = cb
1 + cb

2 = (ξ6 − ζ6)/2, (D10f)

ζ9 = ca
1 − ca

2 = ζ3/ζ7, (D10g)

ζ10 = cb
1 − cb

2 = ζ4/ζ8. (D10h)

The wave-function coefficients are now obtained as

cab
11 = ξ1, (D11a)

cab
12 = ξ2, (D11b)

cab
21 = ξ3, (D11c)

cab
22 = ξ4, (D11d)

caa
12 = (ξ5 + ζ5)/2, (D11e)

cbb
12 = (ξ5 − ζ5)/2, (D11f)

ca
1 = (ζ7 + ζ9)/2, (D11g)

ca
2 = (ζ7 − ζ9)/2, (D11h)

cb
1 = (ζ8 + ζ10)/2, (D11i)

cb
2 = (ζ8 − ζ10)/2, (D11j)

cm
2 = cb

1

(
cab

11 + cab
21

) + cb
2

(
cab

12 + cab
22

)
2ζ7

, (D11k)

cm
1 = 1

12

(
1 − ξ 2

1 − ξ 2
2 − ξ 2

3 − ξ 2
4 − ∣∣caa

12

∣∣2 − ∣∣cbb
12

∣∣2

− ζ 2
7 − ζ 2

8 − ζ 2
9 − ζ 2

10 − 4
∣∣cm

2

∣∣2)1/2
. (D11l)
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