
PHYSICAL REVIEW A 102, 052810 (2020)

Singly differential cross sections for direct scattering, electron capture, and ionization in
proton-hydrogen collisions
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We use the two-center wave-packet convergent close-coupling approach to calculate singly differential cross
sections for direct scattering, electron capture, and ionization in proton-hydrogen collisions at intermediate ener-
gies. The distinct feature of the approach is that it gives a complete differential picture of all the interconnected
processes at once, subject to the unitary principle. Results obtained for the angular differential cross sections
of elastic scattering, excitation, and electron capture, as well as the ionization cross sections differential in
the ejected-electron angle, and in the ejected-electron energy agree well with available experimental data. It
is concluded that the two-center wave-packet convergent close-coupling approach is capable of providing a
realistic differential picture of all collision processes taking place in proton-hydrogen collisions.
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I. INTRODUCTION

Ion-atom collisions play a key role in laboratory and
astrophysical plasmas. For example, such collisions find
use in plasma diagnostics [1] and modeling [2], and spec-
troscopic analysis of distant supernovae [3]. In addition,
better understanding of the physics of such collisions is
paramount for hadron therapy [4]. As such, accurate mod-
eling of the ion-atom collision system is very important.
Many approaches have been developed to model ion-atom
collisions [5]. Recent state-of-the-art reviews on energetic
ion-atom and ion-molecule collisions can be found in Ref. [6].

As a particular example of an ion-atom scattering prob-
lem, the proton-hydrogen collision system has fundamental
significance in scattering theory since it represents a genuine
three-body problem where the interactions between all of the
particles and the two-body bound-state wave functions in the
reaction channels are analytically known. Therefore, proton
scattering on hydrogen serves as a test bed for the develop-
ment of various models.

In this work we focus on the intermediate energy region
where projectile velocity is either comparable with, or some-
what larger than, the electron’s orbital velocity. There are
a number of methods applicable in the intermediate energy
region. These are classical-trajectory Monte Carlo meth-
ods [7–9], a time-dependent density-functional theory [10],
and approaches based on the close-coupling formalism like
a basis-generator method [11], atomic-orbital close-coupling
approaches [12–18], and lattice-based methods for direct so-
lution of the time-dependent Schrödinger equation [19–21].
Most of these theoretical methods are capable of describing
all collision processes taking place in the scattering system,
namely, the elastic scattering, excitation, and ionization of the
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target, and the electron capture by the projectile on a wide
range of incident energies, including the entire keV region.

At sufficiently high projectile energies, the collisional
times are short on the atomic timescale. For this reason,
a perturbative treatment for the proton-hydrogen system
becomes applicable. The process can be described using
Born-type approximations where the proton is considered a
small perturbation for the electronic wave function. Perturba-
tive methods, such as the second-order Born approximation
with corrected boundary conditions [22] and the three-body
boundary-corrected continuum-intermediate-state (BCIS-3B)
method [56], as well as continuum distorted-wave (CDW)
approaches [23,24] have been developed.

The close-coupling approaches are not ideal for differential
studies of high-energy collisions since the interaction matrix
elements become highly oscillatory making numerical evalua-
tion extremely difficult. Additionally, difficulties in modeling
the continuum have historically restricted close-coupling
approaches from finding applications in charge exchange pro-
cesses, especially when the probability of electron capture into
the continuum of the projectile cannot be ignored. Recently,
three different implementations of the convergent close-
coupling approach have been developed to circumvent these
difficulties: the fully quantum-mechanical [25,26], standard
semiclassical [27], and wave-packet semiclassical [28,29].
These approaches are based on two different types of pseu-
dostates for discretization of the continuum of the target atom
and the atom formed by the projectile after capturing the
electron. The first two methods used a basis of Laguerre pseu-
dostates, while the third used a basis obtained from combining
eigenstates and continuum wave packets. Implementation of
Laguerre- and wave-packet-pseudostate bases yielded excel-
lent results for cross sections of various processes taking place
in ion collisions with atomic hydrogen [25,27–30]. These
approaches were mostly used to calculate integrated cross
sections of various processes.
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Thus, as described above, a great number of theoretical
methods have been developed to treat ion-atom collisions.
Most of these methods were successful in describing the less-
detailed integrated cross sections. However, only a few of
them were applied to study the problem on a more-detailed
differential level. When applied, they may lead to incorrect re-
sults on the differential level despite giving very good results
for the integrated cross sections. For instance, as mentioned
by Kerby et al. [31], while very good agreement is found
between CDW-EIS and the experimental data on the total
ionization cross section in a wide range of impact energies,
the CDW-EIS does not reproduce the measured singly and
doubly differential cross sections well and, therefore, the
agreement with the total ionization cross section must be
considered to be fortuitous. Moreover, each of those meth-
ods applied to calculate differential cross sections tackled
only one particular aspect of the problem. For example, the
second-order Born approximation with corrected boundary
conditions [22] was very successful in describing differential
electron capture, however, it cannot be applied to differential
ionization. The aforementioned atomic-orbital close-coupling
and lattice-based approaches have not been applied to cal-
culate differential cross sections of various processes taking
place in ion-atom collisions.

Here, the main goal is to use the wave-packet convergent
close-coupling (WP-CCC) approach to calculate singly dif-
ferential cross sections (SDCS) for direct scattering, electron
capture and ionization in proton-hydrogen collisions in the
intermediate energy region in a unified fashion. The distinct
feature of the approach is that it gives a complete differential
picture of all the interconnected processes at once, subject
to the unitary principle. Previously, the wave-packet imple-
mentation of the convergent close-coupling approach has been
used to calculate various integrated cross sections for proton
collisions with hydrogen in the ground [32] and excited [33]
states. The approach has also been applied to calculate the
doubly differential ionization cross sections [29]. Here we
report angular differential cross sections for elastic scattering,
excitation into n = 2 states (here, n is the principal quantum
number of the atom in the final state) and electron capture.
Ionization cross sections differential in ejected electron angle
and energy are also calculated.

Unless specified otherwise, atomic units are used through-
out this manuscript.

II. TWO-CENTER WAVE-PACKET CONVERGENT
CLOSE-COUPLING METHOD

Various aspects of the two-center wave-packet convergent
close-coupling method for ion-atom collisions are described
in detail in our earlier works [29,32,33]. The approach has
been extended to multicharged projectiles in Refs. [34,35] and
to two-electron targets in Ref. [36]. A brief description of the
method is given here with emphasis on the parts relevant to
the present calculations.

A. Close-coupling formalism

We consider scattering of a proton on the hydrogen atom.
This three-body Coulomb scattering problem is governed by

the full three-body Schrödinger equation for the total scatter-
ing wave function

(H − E )�+
i = 0, (1)

with the outgoing-wave boundary conditions, where E is the
total energy and H is the full three-body Hamiltonian of the
collision system. Index i denotes the initial channel, from
which the total scattering wave develops. In the present work
it is taken to be the projectile of energy Ei incident on H
in the ground state. Equation (1) is solved by expanding the
total scattering wave function in terms of the target (ψα) and
projectile (ψβ) centered pseudostates as

�+
i ≈

N∑
α=1

Fα (t, b)ψα (rt )e
iqα ·ρ +

M∑
β=1

Gβ (t, b)ψβ (rp)eiqβ ·σ,

(2)

where Fα and Gβ are time-dependent coefficients, and N and
M are the numbers of basis functions on the target and pro-
jectile centers. The expansion given in Eq. (2) is written in the
Jacobi coordinates, where index α denotes a quantum state
in a channel where a projectile of relative momentum qα is
incident on a bound state of the target atom. Index β denotes
a quantum state in the rearrangement channel where the atom
formed by the projectile after electron capture has momentum
qβ relative to the stripped target nucleus. The position of the
projectile with respect to the center of mass of the target
nucleus-electron pair is denoted by ρ, while σ is the position
of the projectile-electron pair with respect to the target nu-
cleus. R represents the position vector of the projectile relative
to the target nucleus. In this work we assume that the target
nucleus is located at a fixed origin and the projectile is moving
along a straight-line classical trajectory R = b + vt , where b
is the impact parameter and v is the projectile velocity. The
impact parameter is defined so that b · v = 0 and the z axis is
chosen parallel to v. The position of the electron relative to the
target proton is rt , while rp is the electron position relative to
the projectile. The full Hamiltonian is given by the sum of the
free three-particle Hamiltonian and the interaction potential
between each of the particles,

H = H0 + V, (3)

where H0 is expressed in the target and projectile centers,
respectively, as

H0 = 1

2μ
∇2

ρ − 1

2
∇2

rt
= − 1

2μ
∇2

σ − 1

2
∇2

rp
, (4)

where μ is the reduced mass of the proton-hydrogen system.
The interaction potential is given by the sum of the electron-
target, electron-projectile, and nucleus-nucleus interactions,

V = 1

R
− 1

rt
− 1

rp
. (5)

The set of projectile (and target) centered pseudostates is
constructed from negative-energy eigenstates of the hydrogen
atom and positive-energy wavepacket pseudostates gener-
ated by discretizing the continuum into Nc nonoverlapping
subintervals up to momentum, κmax. The radial part of the
nth pseudostate wave function is given by integrating the
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Coulomb wave over the corresponding momentum bin,

φnl (r) = 1√
κn − κn−1

∫ κn

κn−1

dκ Ul (κ, r). (6)

Together, the negative-energy eigenstates and positive-energy
pseudostates of the target are orthogonal to one another and
diagonalise the atomic hydrogen Hamiltonian,

〈ψα′ |ψα〉 = δα′α, 〈ψα′ |Hα|ψα〉 = δα′αεα. (7)

Here εα is the energy of the target state, which is the eigen-
value for negative-energy states and

εn = κ2
n + κnκn−1 + κ2

n−1

6
(8)

for wavepacket pseudostates. Similarly, the projectile pseu-
dostates satisfy

〈ψβ ′ |ψβ〉 = δβ ′β, 〈ψβ ′ |Hβ |ψβ〉 = δβ ′βεβ. (9)

However, the target-centered pseudostates are not orthogonal
to the projectile-centered pseudostates.

Substituting the expansion in Eq. (2) into the Schrödinger
equation and applying the Hamiltonian operator we obtain the
following set of first-order differential equations for the time-
dependent coefficients,

iḞα′ + i
M∑

β=1

ĠβK̃α′β = ∑N
α=1 FαDα′α + ∑M

β=1 GβQ̃α′β,

i
N∑

α=1

ḞαKβ ′α + iĠβ ′ = ∑N
α=1 FαQβ ′α + ∑M

β=1 GβD̃β ′β,

α′ = 1, 2, . . . , N, β ′ = 1, 2, . . . , M,

(10)

where dots over Fα and Gβ denote time derivatives. Here we
have used the semiclassical approximation [5] to simplify the
expansion resulting from operating H on �+

i (see Ref. [29]
for details). The overlap integrals in Eq. (10) are given as

Kβ ′α (R) = 〈ψβ ′ | exp [−iv · rt]|ψα〉
× exp [iv2t/2 + i(εβ ′ − εα )t], (11)

K̃α′β (R) = 〈ψα′ | exp [iv · rt]|ψβ〉
× exp [−iv2t/2 + i(εα′ − εβ )t]. (12)

Direct-scattering matrix elements are given as

Dα′α (R) =〈ψα′ |V α|ψα〉 exp [i(εα′ − εα )t], (13)

D̃β ′β (R) =〈ψβ ′ |V β |ψβ〉 exp [i(εβ ′ − εβ )t], (14)

where V α = ZtZp/R − Zp/rp and V β = ZtZp/R − Zt/rt .
Electron-transfer matrix elements are given as

Qβ ′α (R) = 〈ψβ ′ | exp [−iv · rt](Hα + V α − εα )|ψα〉
× exp [iv2t/2 + i(εβ ′ − εα )t], (15)

Q̃α′β (R) = 〈ψα′ | exp [iv · rt](Hβ + V β − εβ )|ψβ〉
× exp [−iv2t/2 + i(εα′ − εβ )t], (16)

where Hα and Hβ are the target and projectile atom Hamilto-
nians. Thus, starting from the exact Schrödinger equation and
using a different ansatz for the total scattering wave function,
we arrived at the same set of equations for the expansion co-
efficients as that obtained in the conventional close-coupling
approach [5].

The expansion coefficients Fα (t, b) and Gβ (t, b) as t →
+∞ represent the probability amplitudes (in the impact-
parameter representation) of transitions into the target and
projectile pseudostates and as t → −∞ satisfy the initial
boundary condition

Fα (−∞, b) = δα1, α = 1, 2, . . . , N,

Gβ (−∞, b) = 0, β = 1, 2, . . . , M. (17)

The direct-scattering matrix elements are calculated in
the spherical coordinates, while the overlap integrals and
the electron-transfer matrix elements are evaluated using the
spheroidal coordinates as described in Ref. [25]. The existing
computational code, which solves Eq. (10), has been mod-
ified to run on GPU based supercomputers which reduced
the computational time by orders of magnitude. Offloading
computation of the direct, overlap and electron-transfer matrix
elements to GPUs is achieved through utilization of the Ope-
nACC directives recently introduced to Fortran [37], while the
CUDA library, cuSolverDn [38], is used to solve the system
of linear equations emerging at each time step of the Runge-
Kutta propagation.

Once the expansion coefficients Fα (t, b) and Gβ (t, b) have
been found in the asymptotic state (as t → +∞) the inte-
grated cross sections for all included electronic transitions
can be calculated using the technique described in Ref. [29].
However, for the differential cross sections we first need to
obtain the scattering amplitudes in terms of the expansion
coefficients.

B. Scattering amplitudes

In addition to the integrated cross sections, the present
WP-CCC approach also allows us to calculate all types of
differential ionization cross sections including the fully dif-
ferential one. This can be realized due to the feature of the
wave-packet bin states describing the continuum.

According to Refs. [39,40], the momentum-space scatter-
ing amplitude of any process taking place in proton collisions
with atomic hydrogen is written in terms of the total scattering
wave function �+

i as

Tf i(q f , qi ) = 〈
−
f |←−H − E |�+

i 〉, (18)

where 
−
f is the asymptotic state corresponding to the final

channel and qi and q f are the relative momentum in the
initial and final channel, respectively. The arrow over the total
three-body Hamiltonian operator H indicates the direction of
its action. Eq. (18) is general and applicable for all processes
including direct scattering, electron transfer and ionization.
To be able to calculate various integrated and differential
cross sections, we have to determine the scattering amplitude
Tf i(q f , qi ) defined in Eq. (18) in terms of the scattering am-
plitudes in the impact-parameter representation introduced in
Sec. II A.
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If the result of the scattering is excitation of the target,
then 
−

f is given as a product of a plane wave describing the
scattered projectile and a bound state wave function of the
target in the final state. The latter is written as eiqα ·ραψα (rα )
with α = f . Then, Eq. (18) gives the direct scattering (DS)
amplitude

T DS
f i (q f , qi ) =〈q f ψ f |←−H − E |�+

i 〉. (19)

Only when the final state is a negative-energy eigenstate of
the target atom does Eq. (19) reduce to the well-known form
of T DS

f i (q f , qi ) = 〈q f ψ f |V α|�+
i 〉.

For electron capture into the bound states of the projectile,

−

f is a product of the plane wave corresponding to the rela-
tive motion of the target nucleus with the bound states of the
atom formed by the projectile in the final state. It is written
as eiqβ ·ρβ ψβ (rβ ) with β = f . Then Eq. (18) gives the electron
capture (EC) amplitude

T EC
f i (q f , qi ) =〈q f ψ f |←−H − E |�+

i 〉. (20)

When the final state is a negative-energy eigenstate of
the projectile atom, Eq. (20) reduces to T EC

f i (q f , qi ) =
〈q f ψ f |V β |�+

i 〉.
Treatment of scattering processes where the electron

remains bound to either the target or the projectile is compu-
tationally simpler than the process leading to three unbound
particles. When the final state corresponds to breakup, 
−

f is
the three-body Coulomb asymptotic state described by incom-
ing waves representing the three unbound particles in the final
state [41,42]. However, since our approach is based on the
expansion of �+

i in terms of square-integrable target and pro-
jectile pseudostates, we do not need the three-body Coulomb
asymptotic state. In order to derive the breakup amplitude we
use the idea developed in Ref. [43].

According to this idea, the ionization amplitude can be
found by projecting the Coulomb wave describing the final
ionized state of the electron onto the two-center scattering
wave function. Since the wave-packet bin states themselves
are constructed from the Coulomb wave function, this pro-
cedure becomes much simpler. Full details of the WP-CCC
approach to differential ionization is given in Ref. [29]. Here,
we only give the final result. The amplitude for direct ioniza-
tion (DI) of the target atom is written as

T DI
f i (κ, q f , qi ) =〈ϕκ|ψ f 〉T DS

f i (q f , qi ), (21)

where ϕκ is the true Coulomb wave representing the contin-
uum state of the ejected electron with momentum κ relative to
the target nucleus. Thus we see that the DI amplitude is given
in terms of the amplitude for excitation of the corresponding
positive-energy pseudostate.

The amplitude for electron capture into continuum (ECC)
of the atom formed by the projectile can be written as

T ECC
f i (κ, q f , qi ) =〈ϕκ|ψ f 〉T EC

f i (q f , qi ), (22)

where κ is the momentum of the ejected electron relative to
the projectile nucleus. Thus we get that the ECC amplitude is
given in terms of the amplitude for electron capture into the
corresponding positive-energy pseudostate.

The direct scattering amplitudes T DS
f i (q f , qi ) (for elas-

tic scattering, and excitation to either negative-energy

eigenstates or positive-energy pseudostates) are calculated
from the impact-parameter space transition probability ampli-
tudes as follows:

T DS
f i (q f , qi ) = 1

2π

∫
dbeiq⊥·bT DS

f i (b)

= iv
∫

dbeiq⊥·b[Ff (+∞, b) − δ f i]

= 2π iveimφ f

∫ ∞

0
dbb[F̃f (+∞, b)− δ f i]Jm(q⊥b),

(23)

where q⊥ is the perpendicular component of the momen-
tum transfer q = qi − q f , T DS

f i (b) is the direct scattering
amplitude in the impact-parameter representation, F̃f (t, b) =
eimφbFf (t, b), m is the magnetic quantum number of the bound
state in the final channel, φ f is the azimuthal angle of q f , and
Jm is the Bessel function of the mth order.

The electron capture amplitudes T EC
f i (q f , qi ) (for electron

transfer into either negative-energy eigenstates or positive-
energy pseudostates of the projectile atom) are related to the
impact-parameter space transition probability amplitudes as
follows:

T EC
f i (q f , qi ) = 1

2π

∫
dbeiq⊥·bT EC

f i (b)

= iv
∫

dbeiq⊥·bG f (+∞, b)

= 2π iveimφ f

∫ ∞

0
dbbG̃ f (+∞, b)Jm(q⊥b),

(24)

where T DS
f i (b) is the electron-capture amplitude in the impact-

parameter representation and G̃ f (t, b) = eimφbG f (t, b). The
integrals entering Eqs. (23) and (24) are accurately calculated
using the Gauss-Legendre quadrature method. Specifically, 64
points were used from bmin = 0 to bmax = 14 au for angular
differential cross sections (Sec. III A) and 128 points from
bmin = 0 to bmax = 48 au for angular and energy differential
cross sections for ionization (Sec. III B).

We note that Eq. (22) is written in the frame of coordinates
associated with the projectile. In order to combine the DI
and ECC amplitudes, we need to bring the two into a com-
mon frame of reference. A laboratory frame of coordinates
used in the experiment will be adopted as a common frame
of reference. The electron momentum κ and the momen-
tum transfer q in the projectile frame correspond to κ − v

and q − κ in the laboratory frame, respectively. The trans-
formation of the amplitudes representing the electron-capture
process is performed in the following way. First, the electron-
capture amplitudes are calculated using Eq. (24) with q⊥
being substituted with (q − v)⊥. This gives us amplitudes for
electron capture into the projectile continuum with momen-
tum κ, which can only take certain values predefined by the
employed basis of wavepacket pseudostates. This corresponds
to certain values and directions of κ. All other required values
and directions are obtained using interpolation.
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C. Cross sections

Once the time-dependent coefficients in Eq. (10) are found,
the differential cross section for the transition from the initial
state i to the final state f is calculated as

dσ
DS(EC)
f i

d� f
= μ2

(2π )2

q f

qi
|T DS(EC)

f i (q f , qi )|2, (25)

where μ is the reduced mass of the collision system and � f is
the solid angle of q f (relative to qi).

In addition to the angular differential cross sections for
direct scattering and electron capture, in this paper we also
present the singly differential cross sections for ionization. In
particular, we focus on the ionization cross sections differen-
tial in the energy of the ejected electron and in the angle of
the ejected electron, measured in the experiment [31]. These
cross sections can be calculated from the fully differential
cross section as

dσion

dEe
=

∫
d3σion

dEed�ed� f
d� f d�e, (26)

and

dσion

d�e
=

∫
d3σion

dEed�ed� f
d� f dEe, (27)

where �e is the solid angle of κ, the electron momentum, into
which the electron is ejected and Ee is the ejected electron
energy. In the current two-center approach the fully differ-
ential cross section for ionization consists of the incoherent
combination of the direct ionization and electron-capture into
continuum components [44]. In the laboratory frame it is
written as

d3σion

dEed�ed� f
= μ2

(2π )2

q f κ

qi

(∣∣T DI
f i (κ, q f , qi )

∣∣2

+ ∣∣T ECC
f i (κ − v, q f , qi )

∣∣2)
. (28)

The ionization amplitudes T DI
f i (κ, q f , qi ) and T ECC

f i (κ −
v, q f , qi ) are expressed in terms of the time-dependent coef-
ficients Ff (t, b) and G f (t, b) in the asymptotic region, t →
+∞, respectively, as described in Sec. II B. A cross section
differential in a particular variable is obtained by integrating
the fully differential cross section over all other variables.

III. CALCULATIONS OF SINGLY DIFFERENTIAL
CROSS SECTIONS

The set of Eqs. (10) for the expansion coefficients, rep-
resenting the transition amplitudes, was solved using the
Runge-Kutta method by incrementing the position of the pro-
jectile along the z = v0t axis in the scattering plane from
zmin = −300 au to zmax = 300 au for all impact parameters.
The z grid was discretized using 1200 points. The impact
parameters ranged from 0 up to 48 au, which was sufficient
to allow for the probability of all processes being investigated
to fall off several orders of magnitude. Additional impact
parameters made no significant contribution to the results.
For discretization of the continuum, the maximum momentum
κmax was increased systematically until no further change

in the results was observed. More specific energy-dependent
values are given below.

A. Angular differential cross sections for elastic scattering,
n = 2 excitation, and electron capture

Angular differential cross sections for elastic scattering,
excitation into the n = 2 states, where n is the principal
quantum number of the atom in the final state, and electron
capture (summed over all included projectile bound states)
were calculated from the transition amplitudes for the cor-
responding states for each of these processes. It was found
that a basis containing 10 − � bound states and 20 bin states
(for each orbital angular momentum �), on both centers, with
the maximum orbital angular momentum �max = 3 was suffi-
cient to obtain convergence in the differential cross sections
at all three energies considered. The maximum ionization
state energy was set by momenta κmax of 5.5 au which was
verified to be sufficient for all the angular differential cross
sections considered in this work to converge at intermediate
energies. In calculating the angular SDCS over the range
from θmin = 0 mrad to θmax = 3.5 mrad, it was found that
including additional impact parameters beyond bmax = 14 au
made no appreciable difference to the SDCS. While 64 impact
parameter points in a Gaussian-Legendre distribution were
sufficient for most results, 128 points were required to remove
unphysical oscillations in the differential cross section for
n = 2 excitation at 125 keV. Surprisingly, to obtain agreement
between the total cross section calculated the standard way
(see Ref. [29]) and the value resulting from integrating the
corresponding SDCS for the three processes considered, it
was necessary to include a wide range of scattering angles.
Specifically, scattering angles as large as 20 mrad were needed
to obtain agreement within 1%.

The results obtained using the WP-CCC approach are pre-
sented in Fig. 1 in comparison with experimental data [45–47]
and other calculations [22,48–56]. Following the experimental
work, the cross sections are given in the center-of-mass frame
(where the center of mass of the proton-hydrogen system is at
rest). The WP-CCC results agree well with experiment for all
three processes.

The present elastic-scattering calculations agree well with
most of the literature while agreeing best with results
from the multichannel optical-potential approach of Potvliege
et al. [52]. However, there is disagreement with the results
of the impact-parameter Faddeev approach by Alt et al. [48]
at 60 keV and a partial-wave-expansion approach by Wong
et al. [54] at 25 and 60 keV. The Faddeev approach deviates
from other calculations at scattering angles below 0.5 mrad
possibly due to insufficient number of channels included
in Ref. [48]. The elastic-scattering cross section by Wong
et al. [54], obtained in a partial-wave expansion approach
using only the ground state of H, substantially overestimates
the experimental data above 1 mrad at 25 keV and below 1
mrad at 60 keV.

Henne et al. [50] used a doorway approximation within
the optical-potential method to calculate differential excitation
into the n = 2 states. Their results are available at 25 and 60
keV and tend to underestimate the experiment [46] near the
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FIG. 1. Angular differential cross sections (in the center-of-mass frame) for elastic scattering, n = 2 excitation, and electron capture in
proton-hydrogen collisions at 25, 60, and 125 keV. Electron capture results are summed over all negative-energy pseudostates in the projectile
basis (i.e., 10 s, 9 p, 8 d, and 7 f states). Experimental data are by Rille et al. [45], Park et al. [46], and Martin et al. [47] for elastic scattering,
excitation, and electron capture, respectively. The theoretical results are: the present WP-CCC approach; impact-parameter Faddeev approach
of Alt et al. [48]; second-order boundary-corrected Born approximation of Belkić [22]; Glauber approximation by Dewangan and Eichler [49];
doorway approximation to optical potential by Henne et al. [50]; a three-dimensional integral equation approach by Kadyrov et al. [51];
multichannel optical potential approach by Potvliege et al. [52]; eikonal-Glauber approximation by Rodriguez [53]; partial-wave approach by
Wong et al. [54]; Dodd-Greider approach by Lazur et al. [55]; three-body boundary-corrected continuum-intermediate-state method Milojević
et al. [56].

forward direction. This should lead to significant underesti-
mation of the corresponding integrated cross section.

Angular differential cross sections for electron capture
generally agree well with experiment. However, the WP-CCC

differential cross section is noticeably smaller at projectile
energies of 25 and 125 keV for scattering angles from 1.5
to 2 mrad. The electron capture results agree best with
those calculated using a three-dimensional integral equation
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approach [51] at 25 and 60 keV. A recently developed ap-
proach based on the first iteration of the Dodd-Greider
equations by Lazur et al. [55] appears to perform well for
electron capture at 125 keV; however, results at 25 and 60
keV are not available. Also, it is unclear if the approach can
provide the cross sections for direct scattering and ionization.
A recent extension of the BCIS-3B method to include capture
into many bound states by Milojević et al. [56] agrees well
with our results below 1 mrad at both 60 and 125 keV. How-
ever, between 1 and 1.5 mrad it is smaller and beyond 2 mrad
it is larger than the other theoretical results for 60 keV projec-
tiles. At 125 keV the BCIS-3B results are closer to experiment
from 1 to 2 mrad than the WP-CCC results but towards larger
angles they converge. Note that all the theoretical calculations
mentioned above, except the present WP-CCC ones and the
recent BCIS-3B calculations, are for electron capture into the
ground state of hydrogen. These are scaled up by a factor of
1.202 to effectively compensate for the missing excited states.
Note that in our calculations the ground-state of the projec-
tile atom contributes 71% of the total electron capture cross
section, indicating the inclusion of additional negative-energy
exchange channels has a significant effect on the results.

Our trial calculations at projectile energies in the MeV
region have reproduced the Thomas peak [57] in the an-
gular differential cross section for electron capture and
described the experiment [58] reasonably well. This suggests
our approach is capable of modeling the multiple-scattering
mechanism responsible for the Thomas mechanism. Similar
close-coupling calculations were performed by Toshima and
Eichler using s states on both centers [59] and s states on
one center and s, p and d states on the other center [60].
Despite using a Gaussian basis (which allows one to obtain
all transition matrix elements in an analytical form), these
authors were not able to obtain convergent results. We have
reproduced these results with similar bases as those used by
Toshima and Eichler. However, at this stage we were not able
to achieve the same level of convergence as in the other cross
sections reported here for lower energies, when a large two-
center basis is used and the angular momentum of the included
states is increased. This was due to the electron-transfer ma-
trix elements becoming highly oscillatory at high energies
making numerical evaluations extremely difficult. For this
reason, the results are not shown. Further work on optimizing
the calculations of the electron-transfer matrix elements are
required to achieve convergence in the high-energy regime.

B. Angular and energy differential cross sections for ionization

For ionization calculations, the maximum momentum,
κmax, of the included pseudostates was 5.0 au for projectile
energies of 20, 48, and 67 keV. For projectile energies of 95
and 114 keV, κmax was set to 6.6 and 7.6 au, respectively.
Additionally, impact parameters up to 48 au were found to be
necessary to obtain convergence in both angular and energy
differential cross sections and also 99% agreement between
the integrated SDCSs and the total cross section for ioniza-
tion. This is a significantly wider range than for nonbreakup
scattering where accurate SDCS could be obtained consider-
ing angles up to 3.5 mrad and a maximum impact parameter
of 14 au. A basis of 5 − � bound states and 30 continuum

pseudostates for each orbital angular momentum quantum
number �, on both centers, with �max = 4 was found to be
sufficient to obtain convergent differential cross sections at 25
keV. For higher projectile energies, a basis of 10 − � bound
states and 20 continuum pseudostates with �max = 3 was suf-
ficient.

The present calculations for the singly differential ioniza-
tion cross sections in the ejected electron angle and energy
are shown in Fig. 2 in comparison with the experiment by
Kerby et al. [31] and other calculations [31,61–63] for several
collision energies indicated in the legends. The results are
shown in the laboratory frame where the target is at rest.
The cross sections differential in the ejected electron angle
are displayed in the left panels. There is significant variation
between the different theoretical calculations. The present
results agree very well with the experimental data at all the
available projectile energies. The classical trajectory Monte
Carlo (CTMC) and CDW-EIS results of Kerby et al. [31] are
denoted as I and II, respectively. Generally, our results agree
better with the CDW-EIS calculations. Theoretical results of
Reading et al. [61] available only at the projectile energy of
20 keV are also shown. These authors used a finite Hilbert
basis-set (FHBS) approach to obtain converged results with
pseudostates up to �max = 5. Their cross section agrees well
with the experiment and our results for the ejection angles
from 20 to 90 deg. However, beyond 90 deg the FHBS results
rise too quickly suggesting they converged to an incorrect
result.

The right panels in Fig. 2 show results for ionization cross
section differential in the ejected electron energy. Generally,
there is again very good agreement between the present results
and the experiment except for somewhat odd-looking points at
67 and 95 keV incident energies when energetic electrons are
ejected. One can see a a small bump in the WP-CCC results at
the 20 and 48 keV incident energies and small ejection ener-
gies. This occurs when the contribution from direct ionization
drops sharply as the ejection energy rises while the contribu-
tion from electron capture into the continuum increases (see
Fig. 3). This feature washes out as collision energy goes up
and is barely noticeable already at 67 keV.

The FHBS calculations for the energy-differential ion-
ization cross section by Fu [62] (denoted as Fu I) and Fu
et al. [63] (denoted as Fu II) are only available for small
ejected electron energies where they agree well with the ex-
perimental results. However, they start deviating from the
experiment rising too quickly above 20 eV at the collision
energy of 20 keV and falling too sharply above 30 eV at 114
keV, further supporting our claim that the FHBS calculations
of the Texas A&M group converged to a wrong result. As
for the other results, the CTMC and CDW-EIS calculations of
Kerby et al. [31] are denoted as I and II, respectively. Again,
our results agree better with the CDW-EIS calculations. Note
that at 67 keV both CTMC and CDW-EIS approaches of
Kerby et al. [31] agree with our results suggesting that the
experimental point for the largest ejection energy (possibly
also at 95 keV incident energy, where no CDW-EIS results
are available) may be inaccurate.

Figure 2 does not show experimental uncertainties as it
is difficult to gauge them from Ref. [31]. However, the ex-
perimental data on the singly differential cross sections were
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FIG. 2. Singly differential ionization cross sections (in the laboratory frame) as functions of electron ejection angle and energy. The
experimental data: Kerby et al. [31]. The theoretical results: the present WP-CCC approach; the CTMC (I) and CDW-EIS (II) approaches by
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FIG. 3. Direct ionization and electron capture into continuum components of the singly differential ionization cross sections (in the
laboratory frame) as functions of electron ejection angle and energy.
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obtained by numerically integrating the experimental doubly
differential cross section over angle or electron energy [31].
As mentioned in the associated work [64] the uncertain-
ties in the corresponding doubly differential cross sections
were 22% above 10 eV, increasing to 26% at 1.5 eV and
to 50% or more at the very highest energies. Consequently,
the uncertainties in the SDCS data are expected to be even
larger.

Figure 3 shows the individual components of the SDCS
representing direct ionization and electron capture into the
continuum [see Eqs. (21) and (22) for the corresponding
amplitudes] along with their sum. In the angular SDCS (left
panels), ECC gives a dominant contribution when the electron
is ejected in the forward direction indicating the electron
travels with the projectile. As the ejection angle grows DI
becomes dominant. Furthermore, the significance of ECC
drops as the collision energy goes up. This indicates that at
higher projectile energies the likelihood of charge exchange
processes decreases. The SDCS in ejected electron energy
shown in the right panels is dominated by the DI component
when the electron is slow indicating the electron remains close
to the target nucleus. However, when the ejected electron is
more energetic, the SDCS is dominated by ECC suggesting
that the electron travels closer to the scattered projectile.

IV. CONCLUSION

The two-center wave-packet convergent close-coupling
approach was applied to calculate singly differential cross

sections for electron capture, direct scattering, and ionization
in proton-hydrogen collisions at intermediate projectile ener-
gies. Convergent results obtained for the angular differential
cross sections of elastic scattering, excitation and electron
capture agree well with experiment. Fully convergent singly
differential ionization cross sections in the ejected electron
angle and in the ejected electron energy also agree well
with available experiment. It is concluded that the two-center
wave-packet convergent close-coupling approach is capable
of providing a fairly accurate and complete differential picture
of all processes taking place in proton-hydrogen collisions
simultaneously. The distinct feature of the approach is that it
gives a complete differential picture of all the interconnected
processes at once, subject to the unitary principle.

Application of the method to other projectiles and multi-
electron targets is underway. In particular, application of the
method to proton-helium collisions may shed more light on
the mechanism for electron capture discussed in Ref. [65].
According to this mechanism the electron capture takes place
due to the emission of the second electron mainly in the
backward direction.
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