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Machine-learning predictions of positron binding to molecules

Paulo H. R. Amaral and José R. Mohallem *

Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais,
P. O. Box 702, 30123-970 Belo Horizonte, MG, Brazil

(Received 13 April 2020; accepted 29 October 2020; published 11 November 2020)

Machine-learning techniques are used to check the theoretical and experimental predictions of positron
binding to general molecules. The bound or unbound character of previous calculations for polar molecules
are mostly confirmed. Binding for so far unexplored polar molecules is predicted. For apolar molecules, a
formula for the binding energy in terms of isotropic polarizability and ionization potential is obtained, leading
to unprecedented agreement with experiments as well as prediction of previously unidentified bound systems.
The role of the ionization potential is suggested as a consequence of enhanced formation of virtual positronium
at short distances.
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I. INTRODUCTION

The interaction of a slow positron (e+) with atoms and
molecules is important to many fields of science [1] and has
been the subject of intensive experimental and theoretical
study in recent decades [2]. Particularly interesting is the
possibility of a positron forming bound states with such tar-
gets, which is fundamental to the understanding of enhanced
annihilation rates observed in low-energy positron scatter-
ing experiments with gases [2]. In this process, a positron
transfers part of its energy to molecular vibrations and is
captured to form a bonded complex. The consequent resonant
annihilation appears to be the only experimental confirmation
of the existence of such bound states. Theoretical explana-
tions of these phenomena assume empirically the existence
of these states [2,3], despite the appearance of alternative
explanations [4,5]. Other predictions come from calculations
for atoms or polar molecular targets.

There is evident interest in understanding the ability of
a molecule to bind a positron from its electronic properties.
Molecular dipole moment (μ) and polarizability (α) are two
obvious related properties, although insufficient as will be
seen below. These quantities are also not independent, which
makes this understanding even more difficult. In the present
work, a method that addresses these difficulties is presented.

It was predicted long ago that a rigid dipole with μ

larger than 1.625 D (Debye) would bind a unit charge [6].
Polar molecules are not rigid dipoles, however. In fact,
the electronic effects of the interaction with an e+ [7]
on molecular dipole moments cannot be neglected. It was
also shown that critical dipole moments are increased by
rotations [8].

Binding to polar molecules is also influenced by the
molecular polarizability. The existence of an almost critical
dipole moment for positron binding, namely μ � 1.85 D,
appears to be a consequence of the dependence of these two
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quantities. In fact, increasing dipole moments of small
molecules is normally followed by decreasing polarizabil-
ity. Ab initio calculations for molecules with larger μ are
convincing in the prediction of binding, in spite of the still
large differences from experimental binding energy (εb) val-
ues [9–22]. Despite the physics being rather complex, it
appears that the localization of e+ close to the negative pole of
the target favors a description in which it occupies a localized
orbital, hence helping calculations to yield reliable results. A
model-potential approach for molecular targets was recently
applied to e+-HCN, with the predicted value of εb yet to be
checked [23].

Due to the complexity of the electronic properties of larger
atoms as well as to the larger binding energies involved, ab
initio [24] or model potential [25] calculations for e+-atom
complexes present further obstacles. A recent survey shows
that different calculations can disagree by as much as tenths of
eVs [24]. Positron interactions with atoms can be considered
a research field by itself, with particular experimental and
theoretical approaches.

Apolar molecules are also difficult targets for calculations,
which disagree among themselves as well as with exper-
iments, mainly due to the positron delocalization. This is
still an open problem so that attempts have been made to
analyze these complexes using improved charge-polarizable
target model potentials [26,27]. For these apolar systems (or
those having small μ), the interaction is surely dominated by
the molecular polarizability. A recent work proposed that an
additive (over atoms) polarizability should be used instead
of the isotropic one for alkanes, in order to achieve good
agreement with experiment [27]. However, being a medium-
to-large-distance interaction, polarization is not enough to
fully explain binding. This is because, at short positron-target
distances, electron-positron correlation plays an important
role, yielding a tendency to form a positronium atom Ps
(e+e− pair). If the positron energy is larger than (Ei −
6.8) eV, where Ei is the ionization potential of the tar-
get and 6.8 eV is the Ps ground-state energy, a Ps can be
formed.
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Meanwhile, previous works suggest that assuming the con-
tribution of a virtual Ps (formed by tunneling of an electron
from the atom to the positron) is relevant for describing scat-
tering [28], binding [29], and annihilation rates [30] of e+
with atoms. Connected ideas involving a Ps component of
the wave function of e+-atom bound states are found in a
review [31]. Previous studies recognize an independent role
for Ei in positron binding to atoms [25,32]. It becomes ar-
guable that the formation of the virtual Ps, the main effect of
electron-positron correlation at short e+-molecule distances,
is connected to Ei, which should then play a role in e+
binding, though not fully independent of α, even at low
energy.

In Ref. [27], the inclusion a cutoff function in the
potential is assumed to partially account to virtual Ps ef-
fects. An empirical approach like this, is hardly extendible
to all kinds of apolar molecules, however. Furthermore,
empirically cutting off the potential contributes little to un-
derstanding the phenomena involved since it has the role
of regularizing the polarization potential, otherwise non-
Hermitian [26] due to the well-known ill behavior at the
origin of its 1/r4 dependence. A general approach based
on physical properties of the target, which already accounts
for short-range repulsive effects, should not depend on this
artifact.

Fortunately, the availability of experimental values of
εb with an accuracy of 10 meV for some families of
molecules [33–35], allows the use of artificial intelligence
techniques, such as machine learning (ML) [36], to accu-
rately deal with known and previously unidentified complexes
as well as to yield a deeper understanding of the problem,
with no resort to ad hoc repulsive potentials. Instead, input
data should be measurable properties of isolated molecules.
Thus, inspired by approximate linear dependencies of εb

on α and μ, suggested in Ref. [33], the inclusion of Ei

together with α and μ is performed in the present work
via a ML approach, as a property related to virtual Ps
formation.

II. MACHINE-LEARNING METHOD

The sure independence screening and sparsifying opera-
tor (SISSO) ML routine [37,38] seems appropriate for the
present purposes. In abstract, SISSO searches for dimension-
ality reduction of input data basis (the training set), e.g.,
physical properties of the systems under study (features in
Refs. [37,38]) by testing huge numbers of analytical ex-
pressions (descriptors) involving these data. Then, SISSO
searches for the simplest relations between the descriptors
that yield a classification of the systems characterized by
the input data. These techniques are capable of identifying
quantities irrelevant to the problem, further optimizing the
input data space. Among the input data, those belonging to a
particular class (e.g., εb in our case) can be treated as a subject
(target in Refs. [37,38]). SISSO yields as many descriptors
as necessary for both classification or regression, the latter
meaning to obtain an analytical expression for the subject in
terms of the other input data, through a least-squares fitting
of a linear combination of the descriptors. Here, classification
is used to separate the complexes into bound and unbound

FIG. 1. Bound-unbound separation of molecular positron com-
plexes. Blue triangles represent molecules of the training set. Green
and yellow triangles are checking cases (see text). The molecules
labeled with × have their bound character predicted here. The in-
set shows εb versus the distance d of each point to the separation
line. Molecular properties data are taken from the experimental
sources [33–35], except the predictions for which data are taken from
NIST [39]. Data for the descriptors are in a.u.

categories, to check theoretical predictions, and to predict
previously unidentified bound systems. Regression allows for
checking the accuracy of previous calculations and to make
predictions of εb for so far unknown cases. The remarkable
advance allowed by the ML technique here is that the best de-
scriptors are sought by the algorithm itself, among thousands
of possibilities, not by a common method of adjusting points
to known functions.

III. RESULTS

A. Classification

For bound-unbound classification, the bound systems in-
cluded in the training set are 37 polar and apolar molecules
among the experimental data in Refs. [33,35]. Exceptions are
isotopologues; complexes with εb lower than the experimental
error of 10 meV; C4H8O2, for which no reliable value of Ei

was found; and CS2, left out for checking. The unbound set is
formed by 14 systems having predicted negative values of εb

in Table 2 of Ref. [33] (the doubtful CHF3 is excluded). The
input properties are α (isotropic), Ei, and μ, when the latter
applies. As discussed in Ref. [37], in the space of descriptors
the domain of each category (bound or unbound) is approx-
imated as a region in two-dimensional (2D) space within
the convex hulls of the input data separated by a dividing
line. The classification of the complexes of the training set
is performed as SISSO is informed of their character “bound”
or “unbound” and asked to assign them to one of these two
categories in an optimal manner. SISSO finds 2D descrip-
tors yielding the maximum separation between these convex
regions.

As shown in Fig. 1, the bound and unbound cases are
fully separated by the descriptors X = 2α+Ei

α+μ+μ1/3 and Y =

052808-2



MACHINE-LEARNING PREDICTIONS OF POSITRON … PHYSICAL REVIEW A 102, 052808 (2020)

Ei
α

+ √
Ei + eEi√

Ei
. In general, descriptors X and Y are simple

combinations of the input molecular properties. The par-
ticular analytical formulas are not relevant however, since
they can change if other systems are added. Red points,
representing unbound cases, are randomly scattered as ex-
pected, while blue points representing bound cases are mostly
grouped in a particular region. On the other hand, test sim-
ulations not involving Ei as input property fail to separate
bound and unbound systems. The equation for the divid-
ing line is Y = −1.333X + 5.726, which allows checking
the bound character for additional systems having properties
in the range of the training set, being thus useful to ex-
perimentalists and theoreticians. The inset of Fig. 1 shows
an approximate proportionality between εb and the “dis-
tance” d from each point to the dividing line, with few
exceptions.

Some doubtful cases (green triangles) assigned with εb � 0
in Ref. [33] are checked: C2H2, C2H6, and CH3F. The first
two are confirmed as bound in the diagram but the last is
not. Also, CH3OH, assigned with the very small εb = 2 meV,
lies at the bound side but very close to the dividing line. Fi-
nally, the CS2 molecule, observed to bind e+ in Ref. [34] and
used here for checking, lies properly in the bound region in
Fig. 1.

The observation of εb being a near linear function of just
α for alkanes in Ref. [33], namely (εb = 12.4α − 5.6) meV,
seems to be a consequence of Ei having almost the same value
for these compounds. In fact, their general linear relation for
polar and apolar molecules has a worse performance than for
alkanes. The present results for general molecules seems thus
to confirm the relevance of Ei, present in both descriptors, for
positron binding.

All further theoretical results for polar molecules [9–22]
have then been tested, with their predictions being confirmed,
except for the amino acids studied in Ref. [20], due to the
difficulty of obtaining reliable data for the different structures
considered there.

Six additional polar molecules are tested and marked in
Fig. 1. While CH5N (methilamine, μ = 1.31 D) lies close to
the separation line, C3H7Cl (1-chloropropane, μ = 1.95 D),
C4H10O (1-butanol, μ = 1.66 D), C3H6S (thietane, μ = 1.85
D), C3H8O (1-propanol, μ = 1.55 D), and C2H4O2 (acetic
acid, μ = 1.60 D), are clearly suggested to bind a positron,
which is anticipated here. Note that only for C3H7Cl would
binding be granted by only the dipole moment, if so.

This last point is nicely illustrated by the unbound water
molecule, the only black triangle in Fig. 1. Its dipole moment
of 1.85 D is larger than the critical rigid dipole of 1.65 D,
while its polarizability is very small, 1.5 Å3. The present result
is the third time the complex H2O-e+ has been predicted as
unbound, the other two being from Refs. [9] (ab initio quan-
tum Monte Carlo calculation) and [33] (fitting of experimental
results). The water molecule has a large ionization potential,
12.6 eV. This particular case illustrates two features simulta-
neously: First, the inverse proportionality between μ and α

contributing to increase the value of a possibly real (nonrigid)
critical dipole moment (or perhaps a narrow range for it)
and, second, the importance of including Ei as a determining
parameter for binding.

TABLE I. Binding energies (meV) for apolar molecules. Ei

in meV and α in Å3. Expt stands for experimental results from
Refs. [33–35]; DYS refers to fitting to Eq. (5) in Ref. [33]; SG refers
to Ref. [27]; TW means “this work.” Molecular properties data taken
from the experimental sources [33–35].

Molecules Formula Ei α Expt DYS SG TW

Training set
Butane C4H10 10.6 8.1 35 31 26 39
Pentane C5H12 10.4 10.0 60 54 56 54
Hexane C6H14 10.2 11.8 80 77 87 75
Heptane C7H16 9.9 13.7 105 100 117 105
Octane C8H18 10.0 15.5 115 123 144 119
Nonane C9H20 10.0 17.4 145 146 168 144
Dodecane C12H26 9.9 22.9 220 214 222 223
Hexadecane C16H34 9.9 30.3 310 306 264 308
Ethylene C2H4 10.5 4.2 20 −17 20
Cyclopropane C3H6 9.9 5.7 10 1 10
Cyclohexane C6H12 9.9 11.1 80 68 83
Benzene C6H6 9.3 10.4 150 149 148
Naphthalene C10H8 8.2 16.6 300 296 301
2,3-butanedione C4H6O2 9.3 8.2 77 92 79

Other molecules and predictions
Carbon disulfide CS2 10.1 8.7 75 98 71
Hexafluorobenzene C6F6 9.9 9.8 141 84
Phosphorus chloride Cl3P 9.9 12.8 89 98
Cyclodecane C10H20 10.0 18.5 160 159
Bicyclodecane C10H18 9.4 17.7 151 215
1,3,5-hexatriene C6H8 8.3 11.2 69 71
Carbon tetrabrom CBr4 10.3 15.3 120 123

B. Regression

Present attempts to evaluate εb with least-square ML re-
gression for general molecules yielded a rms deviation about
three times larger than the experimental accuracy, which is
attributed to the presence of polar targets (see discussion
below). Hence, applications are limited to apolar molecules
and the training set is limited to the 14 undoubtedly bounding
apolar molecules for which all properties are available [33].
Again, CS2 [34] is left for checking. Three-dimensional re-
gression (three descriptors) was sufficient to yield an accurate
formula for εb,

εb(α, Ei ) = C1abs
(

Ei ln Ei − Eiα

Ei − α

)

+C2abs

(
Ei√
α

− 1

Ei(α − Ei )

)

+C3abs

(
Eiα

α − Ei
− eEi

α1/3

)
+ C4, (1)

where C1 = 0.07706, C2 = −0.96591, C3 = 0.15305, and
C4 = 0.004247, in a.u., and “abs” means the modulus of the
expressions inside the brackets.

Equation (1) is a linear combination of additional descrip-
tors. Its second and third terms are larger but competitive so
that all terms are equally important. Again, increasing the
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training set would change its form, probably improving the
results. Table I first shows results (last column, TW) for the
training set, whose experimental (Expt) binding energies are
self-consistently reproduced, with a maximum deviation of
6 meV for C5H12, within the experimental error (10 meV).
For alkanes (up to hexadecane), the present results either
agree within experimental error or are mostly more accurate
than those (SG) recently calculated in Ref. [27]. For the
other molecules of the training set, the present results are un-
precedented computationally and, together with the checking
system C2S, show an impressive accordance with experimen-
tal values.

Concerning the remaining molecules in Table I, the last six
predictions with formula (1) lack experimental data and are
presented here as original results.

Table I also includes the results (DYS) of a linear fitting
of εb in terms of α, μ (zero in this case) and Nπ , namely
(εb = 12.4α + 1.6μ + 2.4Nπ − 5.6) meV, in which Nπ is the
number of π bonds in an aromatic molecule [33]. This fit-
ting fails for general apolar molecules, which confirms the
importance of including Ei in calculations, while Nπ seems
probably already accounted for by combination of α and Ei

effects.
Recall, however, that predictions of the present work are

limited to the ranges of Ei, α and εb included in the training
set. A numerical solution of Eq. (1) for εb = 0 leads to a
surprisingly counterintuitive accurately linear relation of the
minimum value of the polarizability which allows binding for
a given Ei, namely,

αmin = −2.24Ei + 27.70. (2)

This relation, which can be also used as a bound-unbound
separator within the same present ranges of properties, shows
once again that binding results from a complex relation of
Ei and α. In fact, the same procedure for positive εb values
gives curves with hills and slopes. As a last remark, the rms
deviation of our results from the experimental ones (when
it applies) is, surprisingly, 3.1 meV, against the 10 meV
assumed deviation for the experimental values, while the
rms deviation of the DYS fitting is 13 meV. This point is
suggestive that the experimental error could be even smaller.

IV. DISCUSSION AND CONCLUSIONS

The present ML-SISSO application allows useful
discussion of the state of knowledge on the subject. Present
methods of ab initio calculations for larger molecules [19,20]
can treat all particles on a common footing, ascribing them
orbitals and performing configuration mixing through virtual
excitations. The positron then plays a singular role, occupying
a more localized orbital and, concomitantly, performing as
a light nucleus. This feature has a consequence on the
molecular structure turning to local the polarization and
electron-positron correlation effects. Ab initio calculations
are then widely facilitated, as confirmed by the fact that
they yield reliable results only for polar molecules. On the
other hand, these complexes become unfriendly for modeling
the interaction in terms of simple properties of isolated
molecules, even for more skilled ML techniques, as noted
here. Particularly, the polarization effects become more local

and cannot be emulated by molecular isotropic polarizability,
requiring a more sophisticated approach. Anyway, ML
techniques seem appropriate to make progress along this
line.

Contrarily, for apolar molecules, the positron does not
localize in a particular region, visiting the whole molecule.
At short distances, electron-positron correlations start being
significant. These features impose huge obstacles to ab initio
calculations, as known. But, in consequence, the isotropic
α turns out to be an appropriate average measure of the
attraction at medium to large distances. However, the in-
ability to fully describe the interaction with α alone clearly
demonstrates the lack of a further property for this de-
scription, connected to short-range effects, which has been
shown here to be the ionization potential Ei. Furthermore,
if these two quantities were fully contained to each other,
SISSO would eliminate one of them. On the contrary,
SISSO fails completely in cases where it is fed only the
values of α. This pair of properties is necessary to em-
ulate the physics of the interaction of e+ with an apolar
molecule.

These claims do not mean that the positron “sees” a
molecule as a spherically symmetric polarizable and ionizable
target. What is concluded here is that, for apolar molecules,
SISSO is capable of mixing the effects of α and Ei to ac-
cess the physics of the interaction, including the complicated
electron-positron correlation effect, so as to yield very accu-
rate εb values.

Equation (1) makes explicit the importance of the ion-
ization potential Ei, which accounts here for the important
short distance effects, in the evaluation of εb. This is the most
important insight that comes out from the present calcula-
tions. ML-SISSO works directly with physical properties of
the target, which already contains the effects of short-range
repulsion and prevents the use of an unwanted free-parameter
empirical cutoff potential. The physics behind the further
improvements obtained here are then proposed as being a
consequence of virtual Ps formation, intrinsically connected
to Ei and having increasing significance as e+ approaches the
target, which defines the short-range form of the interaction.

Further investigation and applications to atoms or to
enlarge the property ranges, deserve more studies. But, partic-
ularly for bound-unbound classification, ML-SISSO is shown
to be already a very powerful technique. A ML-SISSO regres-
sion that includes polar molecules does not show an equivalent
performance. It appears that further information concerning
e+ localization is needed, perhaps from the molecular elec-
tronic density.

Finally, beyond the present application, ML proves to be an
invaluable technique not only to produce extremely accurate
data but also to provide feedback for the discussion of the
physics involved in the studied phenomena.
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