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Two-photon decay rates in heliumlike ions: Finite-nuclear-mass effects
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The spontaneous two-photon decay rates from the 1s2s 1S0 level to the ground state 1s2 1S0 in helium and its
isoelectronic ions through neon (Z = 10) are calculated, including the effects of finite nuclear mass. In all cases
the length and velocity results agree to eight or more figures, demonstrating that the theoretical formulation
correctly takes into account the effects of mass scaling, mass polarization, and motion of the nucleus in the
center-of-mass frame. Algebraic relationships are derived and tested relating the expansion coefficients in powers
of μ/M for mass polarization, where μ is the electron reduced mass and M is the nuclear mass. Muonic, pionic,
and antiprotonic helium are included as extreme test cases where mass polarization is large. The results are
compared with experiment and previous calculations.
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I. INTRODUCTION

Two-photon processes have played an important role in
many branches of physics ever since their first theoretical dis-
cussion by Goeppert-Mayer [1] as a second-order interaction
between atoms and the electromagnetic field. The hallmark
of two-photon transitions is that the two frequencies ω1 and
ω2 form a broad continuum such that the energy conserving
condition

h̄ω1 + h̄ω2 = Ei − Ef (1)

is satisfied, where Ei and Ef are the energies of the initial
and final states. In emission, two-photon decay determines
the radiative lifetimes of metastable states such as 2 2S1/2

of hydrogen and 2 1S0 of helium since the usual single-
photon electric dipole (E1) transition to the ground state is
forbidden by angular momentum and parity selection rules.
Their long radiative lifetimes, together with collision rates,
determine their population balance in astrophysical sources
such as planetary nebulae [2]. They also largely determine
the rate of radiation loss in the early universe to form the
cosmological microwave background (CMB) since there is
no resonant reabsorption of radiation [3,4]. In absorption,
two-photon transitions can be driven by strong laser fields,
giving rise to a wide variety of phenomena and a vast range of
technological applications.

Following the initial theoretical analysis by Goeppert-
Mayer, Breit and Teller [5] performed the first quantitative
calculations for hydrogen 2 2S1/2-1 2S1/2 and gave qualitative
estimates for helium 2 1S0 -1 1S0. More quantitative estimates
were obtained by Dalgarno [6] from oscillator strength sum
rules, and the first accurate calculations were performed by
Drake et al. [7] for helium and the heliumlike ions up to
Ne8+. These calculations demonstrated the approximate Z6

scaling of the decay rates from 51.3 s−1 for He to 1.00 ×
107 s−1 for Ne8+. The accuracy was further improved by

Drake [8], including an estimate of relativistic corrections
derived from the one-electron case [9], and extended to all
ions up to U90+. The first fully relativistic calculations were
performed by Derevianko and Johnson [10], using a rela-
tivistic configuration-interaction method, and found to be in
good agreement with Ref. [8]. They also confirmed previous
investigations [7,11] that the triplet-to-singlet decay rates are
negligible at low atomic number, with the ratio increasing
from 6.2 × 10−11 at Z = 2 to 2.6 × 10−6 at Z = 16.

On the experimental side, measurements of the total decay
rate have been made for He [12], and the six He-like ions with
Z = 3, 18, 28, 35, 36, and 41 [13–18], as reviewed by Mokler
and Dunford [19]. Recent work has focused on the photon
spectral distribution functions for heavy-heliumlike ions up
to Z = 92 using relativistic Green’s function methods [20]
in comparison with experiment [21]. For the corresponding
hydrogenic case, the angular and polarization dependence of
the photons in the relativistic region has been studied by Safari
et al. [22], including the hyperfine structure.

Although the general theory of two-photon processes is
well established within the framework of quantum electro-
dynamics (QED) [23], past calculations have been carried
out almost exclusively within the approximation of infinite
nuclear mass. The main focus of the present work is to investi-
gate in detail the effects of finite nuclear mass on two-photon
processes, taking high-precision calculations for the 1 1S0 and
2 1S0 states of helium and the heliumlike ions up to Ne8+ as
an illustrative example. As will be shown, the effects of mass
scaling and mass polarization must be taken into account,
along with radiation due to the motion of the nucleus in the
center-of-mass frame, in order to obtain agreement between
the well-known “length” (L) and “velocity” (V ) forms of
the interaction. As a consequence, there are interesting alge-
braic relationships among the various contributions, as will be
derived and verified numerically in the present work. They
provide a more sensitive way of testing the equivalence of
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the length and velocity formulations than a direct comparison
of the total two-photon decay rates themselves. They also
facilitate the calculation of two-photon decay rates for other
isotopes, or for an adjusted value of the atomic mass.

In related work, Barton and Calogeracos [24] considered
the general question of transition rates in atoms constrained
to move with relativistic velocities. For the case of uniform
nuclear motion, they showed that the only correction is the
normally expected one from relativistic time dilation, in con-
tradiction to an earlier suggestion in Ref. [25] that there may
be an additional scalar photon interaction due to finite-mass
corrections.

In the balance of this paper, we first review in Sec. II the
case of finite-mass corrections for single-photon transitions,
as derived from Fermi’s golden rule, and then generalize to the
case of two-photon transitions by a direct extension of Fermi’s
golden rule. In Sec. III we briefly review the doubled Hyller-
aas wave functions used in the calculations, and then derive
algebraic expressions relating the expansion coefficients for
the L and V forms of the two-photon decay rates in powers
of μ/M, where μ is the electron reduced mass and M is the
nuclear mass. The results in Sec. IV demonstrate that the V
form of the two-photon decay rate has converged to 5 parts
in 109, and the L form to 2 parts in 108 for helium. The
results also verify our derived algebraic relationships relating
the expansion coefficients in powers of μ/M. As test cases
where μ/M is not small, we present results for heavy-helium
atoms where both electrons are replaced by muons (μ2-He),
pions (π2-He), and antiprotons (p̄2-He). The results verify that
the theoretical formulation for the finite-mass corrections is
correct, including mass scaling, mass polarization, and motion
of the nucleus in the center-of-mass (c.m.) frame. Section V
provides a brief discussion of astrophysical applications, and
Sec. VI some further discussion and conclusions.

II. THEORY

For helium and the lighter heliumlike ions, the appropriate
starting point for a discussion of finite-nuclear-mass effects
is the Schrödinger equation in an inertial coordinate system.
For an atom with atomic number Z and nuclear mass M
located at RN and N electrons of mass me located at Ri, the
nonrelativistic Hamiltonian is

Hinert = P2
N

2M
+

N∑
i=1

(
P2

i

2me
− Ze2/4πε0

|Ri − RN | +
N∑
j>i

Ze2/4πε0

|R j − Ri|

)
(2)

in SI units [26], where P = −ih̄∇R. The Schrödinger equation

Hinert|u〉 = Eu|u〉 (3)

then determines the energy levels Eu and eigenvectors |u〉. To
simplify the solution, the usual procedure is to transform to
center-of-mass (c.m.) plus relative coordinates defined by

Rc.m. = MRN + me
∑

Ri

M + Nme
, (4)

ri = Ri − RN. (5)

Transforming (2) to coordinates ri = Ri − RN and Rc.m. = 0
so that

(M + Nme )RN + me

N∑
i=1

ri = 0 (6)

and taking the conserved total momentum to be zero in the
absence of external forces resulting in

N∑
i=1

Pi =
N∑

i=1

pi and PN +
N∑

i=1

pi = 0 (7)

gives

Hc.m. = 1

2μ

N∑
i=1

p2
i + 1

M

N∑
i=1

N∑
j>i

pi · p j + 1

2(M + Nme )
P2

c.m.

−
N∑

i=1

(
Ze2/4πε0

|ri| +
N∑

j>i

Ze2/4πε0

|r j − ri|

)
. (8)

Here, μ is the reduced electron mass μ = meM/(me + M ),
the term

∑
j>i pi · p j/M is the mass-polarization operator, and

the term involving Pc.m. = −ih̄∇Rc.m.
accounts for the motion

of the center of mass relative to the inertial frame represented
by the coordinates RN and Ri.

We next include the interaction with the radiation field,
specified by its vector potential

A(R, t ) = A0(ω)ε̂ eik·R−iωt + c.c., (9)

where

A0(ω) = c

(
h̄

2εoωV

)1/2

(10)

for a photon of frequency ω, wave vector k (|k| = ω/c), and
polarization ε̂ ⊥ k. The factor A0(ω) normalizes the vector
potential to unit photon energy h̄ω in volume V . In a semiclas-
sical picture, the interaction Hamiltonian with the radiation
field is obtained by making the minimal coupling replace-
ments

PN → PN − ZeA(RN), (11)

Pi → Pi + eA(Ri ), (12)

for the canonical momenta in the inertial Hamiltonian Hinert in
(2). The linear coupling terms then yield

Hint = − Ze

Mc
PN·A(RN) + e

mec

N∑
i=1

Pi·A(Ri ). (13)

A. Single-photon transitions

As a point of reference, we first briefly review the well-
known case of single-photon transitions for a finite nuclear
mass, as first discussed by Fried and Martin [27], and ex-
tended by Yan and Drake [28] and Drake and Morton [29].
From Fermi’s golden rule, the decay rate for spontaneous
emission from state i to f is

wi,fd� = 2π

h̄
|〈i|Hint|f〉|2ρ(ω)d�, (14)
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where

ρ(ω) = Vω2

(2πc)3h̄
(15)

is the number of photon states with polarization ε̂ per unit
energy in the normalization volume V . In the long-wavelength
and electric dipole approximations, the factor eik·R in Eq. (9)
is replaced by unity. After integrating over angles d� and
summing over polarizations ε̂, the decay rate reduces to the
familiar expression [30] (see Appendix)

wi,f = 4
3αωi,f |〈i|QP|f〉|2, (16)

where ωi,f is the transition frequency and, as follows from
Eq. (13), QP is the dimensionless velocity form of the tran-
sition operator

QP = − Z

Mc
PN + 1

mec

N∑
i=1

Pi (17)

for the general case of N electrons. From the commutator

[Hinert, QR/h̄ωi,f ] = QP, (18)

where Hinert is the field-free Hamiltonian in Eq. (2), the equiv-
alent length form is

QR = − i

c
ωi,f

(
ZRN −

N∑
i=1

Ri

)
, (19)

all expressed in the inertial frame.
Transforming now to c.m. plus relative coordinates, the

dipole transition operators become

Qp = Zp

mec

N∑
i=1

pi, Qr = iωi,f

c
Zr

N∑
i=1

ri, (20)

with

Zp = Zme + M

M
, Zr = Zme + M

Nme + M
,

and Hc.m. now contains the mass-polarization term. These
definitions are consistent with the commutation relation

[Hc.m., Qr] = h̄ωQp. (21)

If Eq. (3) is solved exactly for the states |i〉 and |f〉, then the
identity

〈i|Qp|f〉 = 〈i|Qr |f〉 (22)

is satisfied to all orders in me/M. For a neutral atom, N = Z
and Zr = 1. If, following Ref. [29], the oscillator strength is

defined by

fi,f = 2mec2

3h̄ωi,f
〈i|Qp · ε̂|f〉〈f|Qr · ε̂|i〉, (23)

then the Thomas-Reiche-Kuhn sum rule
∑

f fi,f = N is mod-
ified to read [29] ∑

f

fi,f = N + Z2me/M (24)

with emission counted as negative and absorption as positive.
In this way, the sum is 2 for positronium (Ps), but 3 for Ps−, as
expected for two or three radiating particles of the same mass.
The above formulas provide a smooth interpolation between
the two extremes. An advantage of this definition is that the
decay rate, summed over final states and averaged over initial
states, has the conventional form

w̄i,f = −2αh̄ω2
i,f

mec2
f̄i,f , (25)

where f̄i,f = −(gf/gi ) f̄f,i is the (negative) oscillator strength
for photon emission from state |i〉, and gi, gf are the statistical
weights of the states.

B. Two-photon transitions

The triply differential rate for the simultaneous emission
of two photons of frequencies ω1 and ω2 can similarly be
expressed via Fermi’s golden rule in the form

dw(2γ )d�1 d�2 = 2π

h̄

∣∣U (2)
i,f

∣∣2
ρ(ω1)ρ(ω2)d�1 d�2 dE1,

(26)

where, in a nonrelativistic approximation, U (2)
i,f is a second-

order interaction energy with the electromagnetic field
given by

U (2)
i,f = −

∑
n

[ 〈f|Hint (ω1)|n〉〈n|Hint (ω2)|i〉
En − Ei + h̄ω2

+ 〈f|Hint (ω2)|n〉〈n|Hint (ω1)|i〉
En − Ei + h̄ω1

]
(27)

summed over positive energy states, and by conservation of
energy

Ei − Ef = h̄ω1 + h̄ω2. (28)

This leads to a broad distribution of photon energies such
that their sum is equal to the atomic energy difference. Us-
ing Eqs. (15) and (10) for ρ(ω) and A0, and approximating
A = A0ε̂, the two-photon decay rate becomes

dw(2γ )d�1 d�2 = α2h̄ω1ω2

(2π )3

∣∣∣∣∣∑
n

[ 〈f|Qp·ε̂1|n〉〈n|Qp·ε̂2|i〉
En − Ei + h̄ω2

+ 〈f|Qp·ε̂2|n〉〈n|Qp·ε̂1|i〉
En − Ei + h̄ω1

]∣∣∣∣∣
2

d�1 d�2 dE1. (29)

This must still be summed over two linearly independent sets of polarization vectors ε̂1 and ε̂2, and integrated over angles. For
S-S transitions via intermediate P states, the matrix elements squared are proportional to |ε̂1·ε̂2|2, and the sum over polarization
vectors yields an angular correlation factor of 1 + cos2 θ12 (see Appendix). The remaining angular integral is∫

4π

d�1

∫
4π

d�2(1 + cos2 θ12) = 64π2

3
. (30)
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The final result for singly differential decay rate for the case of the helium 2 1S state is thus

dw(2γ )

dω1
= 8α2

3π
|Q(2γ )(ω1, ω2)|2, (31)

where the dimensionless quantity Q(2γ ) can be expressed in either the velocity form (p),

Q(2γ )
p (ω1, ω2) = −(ω1ω2)1/2

∑
n

〈1 1S |Qp,z|n 1P〉〈n 1P|Qp,z|2 1S〉
(

1

ωn − ωi + ω2
+ 1

ωn − ωi + ω1

)
, (32)

or, with the use of Eq. (22) together with sum rules [31], the length (r) form as

Q(2γ )
r (ω1, ω2) = −(ω1ω2)1/2

∑
n

〈1 1S |Q′
r,z|n 1P〉〈n 1P|Q′

r,z|2 1S〉
(

1

ωn − ωi + ω2
+ 1

ωn − ωi + ω1

)
, (33)

where ωi = Ei/h̄ and Qp,z and Q′
r,z are the z components of

the vectors Qp and Q′
r , and, in parallel with Eq. (20), are

defined by

Qp = 1

mec
Zp

N∑
i=1

pi (34)

and

Q′
r = i(ω1ω2)1/2

c
Zr

N∑
i=1

ri. (35)

Note that the definition of Q′
r is slightly different from the

corresponding Qr in the single-photon case, but Qp is the
same. The equivalence of the velocity and length forms can
also be regarded as a gauge transformation, as discussed in
general by Goldman and Drake [9]. A numerical comparison
of the two provides a check on the accuracy of the calculations
since it is valid only if the wave functions are exact, and the
sum over intermediate states is complete, as discussed in the
following section. Finally, the integrated two-photon decay
rate is

w(2γ ) = 1

2

∫ 


0

dw(2γ )

dω1
dω1

= 4α2


3π

∫ 1

0
|Q(2γ )(y)|2dy, (36)

where y = ω1/
, 
 = (Ei − Ef )/h̄, and the factor of 1/2 is
included because each pair of photons should be counted only
once.

III. CALCULATIONS

A. Wave functions

For purposes of calculations, it is convenient to transform
to reduced-mass atomic units of distance, time, momentum,
and energy, respectively defined by

ρ = μ

me

a0

h̄
, τ = μ

me

a0

αc
t,

i∇ = −me

μ

a0

h̄
p, ε =

(
me

μ

)
E

α2mec2
, (37)

so that the Schrödinger equation assumes the dimensionless
form for two electrons (or other particles with mass mx in

place of me)[
−1

2

(∇2
ρ1

+ ∇2
ρ2

) − μ

M
∇ρ1 · ∇ρ2 + V (ρ1, ρ2)

]
Ψ = εΨ ,

(38)

where

V (ρ1, ρ2) = − Z

ρ1
− Z

ρ2
+ 1

|ρ1 − ρ2| .

The two-electron wave functions for the initial and final S
states, and the intermediate P states are all calculated varia-
tionally in terms of correlated two-electron double basis sets
of the form [32]


 = c0
0 +
i+ j+k��∑

i jk

⎡
⎢⎣c(A)

i jk ϕi jk (αA, βA)︸ ︷︷ ︸
A sector

+ c(B)
i jk ϕi jk (αB, βB)︸ ︷︷ ︸

B sector

⎤
⎥⎦,

(39)

where 
0 is the screened hydrogenic term and the basis func-
tions ϕi jk (α, β ) are defined by

ϕi jk (α, β ) = ri
1 r j

2 rk
12 e−αr1−βr2 YM

l1,l2,L(r̂1, r̂2) ± exchange
(40)

in Hylleraas coordinates. In general, the quantity
YM

l1,l2,L
(r̂1, r̂2) represents a vector-coupled product of spherical

harmonics of angular momenta l1 and l2 to form a state with
total angular momentum L and component M. The parameter
� = (i + j + k)max controls the size of the basis set. The
nominal number of terms in each sector is

N = 1
6 (� + 1)(� + 2)(� + 3). (41)

The basis set is “doubled” in the sense that different nonlinear
parameters αA, βA and αB, βB are used for the asymptotic
(A) and short-range (B) sectors, respectively. The nonlinear
parameters are determined by calculating analytically the four
derivatives ∂E/∂αX and ∂E/∂βX , and finding the zeros by
Newton’s method [33,34]. An advantage of these doubled
basis sets is their compactness and numerical stability such
that standard quadruple precision (approximately 32 decimal
digits) in FORTRAN is sufficient, even for the largest basis sets
with up to 1566 terms.

The sum over intermediate states, including an integration
over the continuum, is performed by summing instead over
the set of N discrete variational pseudostates obtained by
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diagonalizing the Hamiltonian in the same basis set as for the
optimized 21P state such that

〈
n|H |
m〉 = εnδn,m, 〈
n|
m〉 = δn,m. (42)

The pseudostates represent a two-electron generalization of a
Coulomb Sturmian basis set for hydrogen.

B. Finite nuclear mass

The effects of a finite nuclear mass come from three
sources. The first is due to the radiation emitted by the nucleus
as it moves in the c.m. frame. This is taken into account
by factors of Z4

p and Z4
r in the velocity and length forms,

respectively. The second, analogous to the normal isotope
shift, is due to the mass scaling of the energies, transition
frequencies, and matrix elements as calculated from wave
functions expressed in reduced-mass atomic units according
to Eq. (37). Since the Q′ terms in Eqs. (34) and (35) occur with
the fourth power in the integral (36) along with the frequency
factor 
, the factors to transform the reduced atomic units to
physical ones are (μ/me )5 for w

(2γ )
p and (μ/me ) for w

(2γ )
r .

The third correction comes from the direct effect of the
mass-polarization term − μ

M ∇ρ1 · ∇ρ2 in Eq. (38) on the wave
functions, energies, and matrix elements, analogous to the
specific isotope shift. The result can be expressed as a correc-
tion factor F (μ/M ) to the two-photon decay rate for infinite
nuclear mass w

(2γ )
∞ . For small μ/M, it is useful to expand

F (μ/M ) in the form

F x(μ/M ) = 1 + (μ/M )Cx + (μ/M )2Dx + · · · , (43)

where Cx and Dx correspond to first- and second-order mass-
polarization corrections, and x = p or r since the coefficients
are different for the V and L cases. For helium and the
heliumlike ions, μ/M ∼ 10−4, and so terms beyond Dx are
negligible. The coefficients Cx and Dx could be calculated by
perturbation theory, but we have adopted the simple expedient
of calculating Fx(μ/M ) for an arbitrary pair of values of μ/M
and solving for Cx and Dx. The residual error of order (μ/M )3

is negligible. The final result for the two-photon decay rate
from all three sources is

w(2γ )
p = Z4

p

( μ

me

)5
Fp(μ/M )w(2γ )

p,∞, (44)

w(2γ )
r = Z4

r

( μ

me

)
Fr (μ/M )w(2γ )

r,∞ , (45)

where w
(2γ )
x,∞ is the corresponding two-photon decay rate for

the case of infinite nuclear mass.
Since we must have w

(2γ )
p /w

(2γ )
p,∞ = w

(2γ )
r /w

(2γ )
r,∞ if the wave

functions contributing to each of the four rates are exact and
the pseudostate expansions are complete, the coefficients must
be equal term by term in the series expansion (43) in powers of
μ/M. If we expand Zp/Zr in powers of me/M and approximate
that ratio as me/M 
 μ/M + (μ/M )2, we find from the first
and second powers of μ/M that the coefficients Cx and Dx for
a two-electron atom or ion must satisfy

Cp − Cr = −4 (46)

and

4Cp + Dp − Dr = −6. (47)

A similar analysis of mass effects for single-photon emis-
sion with

w(1γ )
p = Z2

p

( μ

me

)3
Fp(μ/M )w(1γ )

p,∞, (48)

w(1γ )
r = Z2

r

( μ

me

)
Fr (μ/M )w(1γ )

r,∞ . (49)

gives velocity and length coefficients [35]

Cp − Cr = −2

and

2Cp + Dp − Dr = −1. (50)

IV. NUMERICAL RESULTS

We have investigated 14 heliumlike systems. specifically
4He and its isotope 3He, 7Li and its isotope 6Li, and the most
abundant forms for the rest of the isoelectronic sequence to
10Ne. For all of these, μ/M is sufficiently small that a power-
series expansion in powers of μ/M is useful, and so they
provide an opportunity to check the algebraic relationships
(46) and (47) relating the coefficients. In addition, we studied
three heavy-helium species p̄2- 4He, π2- 4He, and μ2- 4He in
which the two electrons are replaced by antiprotons, pions,
and muons, respectively. Although these would be difficult
to observe experimentally, the values of μ/M are so large
(0.2011 . . . for p̄2) that many terms contribute to the expansion
in powers of μ/M, and so the comparison of the length and
velocity forms provides a check that the mass dependence is
correct to all orders in μ/M.

Table I shows as a typical example the convergence of the
velocity and length rates with increasing � for 4He. (The
basis sets for 1 1S are a little larger than those for 2 1S.)
The rates are tabulated in atomic units and divided by α6 so
that the accuracies are not limited by the uncertainty in the
fine-structure constant α. The velocity rates increase while
the length rates decrease in larger steps to the same final
value within 2 parts in 108 for � = 16 and 1 part in 108

for the extrapolated values. This is typical for all the systems
studied with slightly poorer convergence for larger μ/M and
better for the more higher-Z ions reaching 6 parts in 109 for
20Ne8+ with � = 16, and 6 parts in 1010 for the extrapolated
values, altogether providing confidence in the reliability of our
wave functions. Consequently, we have quoted extrapolated
velocity values in Tables II and III and used extrapolations for
both velocity and length to obtain Table IV.

Table II compares the length and velocity forms for all 14
systems. It is clear that the length and velocity forms agree to
within the convergence uncertainty of about one part in 108

or better over the entire range of μ/M, including the three
heavy-helium species. The results verify that the combined
mass dependence from all three sources—mass scaling, mass
polarization, and nuclear motion—have been correctly calcu-
lated, and all three must be included to bring the L and V
forms into agreement.

Next, to investigate the algebraic relations (46) and (47)
for the mass-polarization coefficients, we estimated the coeffi-
cients by a method of finite differencing in which we extended
the calculations to a third data set (in addition to w

(2γ )
∞ ) with
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TABLE I. Convergence with respect to basis set size (N) of the 4He(2 1S0) two-photon decay rates w(2γ )
r /α6 for a finite nuclear

mass μ/M = 1.370 745 62 × 10−4. The subscripts p and r denote the velocity (V ) and length (L) forms, respectively. Units are atomic
units. To convert to s−1, multiply by α6/τe = 6242.763 420(56) s−1 where α = 7.297 352 5693(11) × 10−3 is the fine-structure constant and
τe = 2.418 884 326 5857(47) × 10−17 s is the atomic unit of time.

� N (2 1S) N (2 1P) w(2γ )
p /α6 w(2γ )

r /α6

4 44 104 8.169 161 866 046 × 10−3 8.182 145 206 238 × 10−3

5 67 145 8.170 301 592 330 × 10−3 8.174 691 464 231 × 10−3

6 98 197 8.170 633 057 717 × 10−3 8.171 830 051 527 × 10−3

7 135 265 8.170 667 222 361 × 10−3 8.171 125 033 845 × 10−3

8 182 346 8.170 684 766 627 × 10−3 8.170 855 798 069 × 10−3

9 236 446 8.170 690 486 882 × 10−3 8.170 747 017 232 × 10−3

10 301 559 8.170 691 869 889 × 10−3 8.170 730 900 210 × 10−3

11 373 692 8.170 692 739 038 × 10−3 8.170 701 468 677 × 10−3

12 457 836 8.170 692 912 027 × 10−3 8.170 697 771 291 × 10−3

13 548 1000 8.170 692 965 787 × 10−3 8.170 695 029 079 × 10−3

14 652 1173 8.170 692 999 658 × 10−3 8.170 693 953 023 × 10−3

15 763 1366 8.170 693 014 043 × 10−3 8.170 693 367 924 × 10−3

16 888 1566 8.170 693 019 245 × 10−3 8.170 693 193 226 × 10−3

Extrap. 8.170 693 021 30(21) × 10−3 8.170 693 117(8) × 10−3

TABLE II. Extrapolated velocity (p) and length (r) two-photon decay rates w(2γ )/α6 for various atoms and ions, including the heavy-helium
cases with both electrons replaced by antiprotons (p̄), pions (π ), or muons (μ). Units are atomic units. To convert to s−1, multiply by α6/τx

where τe is given in Table I, τp̄ = 1.317 365 60 × 10−20 s, τπ = 8.85610 × 10−20 s, and τμ = 1.169 852 69 × 10−19 s for the antiprotonic,
pionic, and muonic cases, respectively. Numbers in parentheses are estimated uncertainties.

Ion Z μ/M w(2γ )
p /α6 w(2γ )

r /α6 w(2γ )
p /w(2γ )

r

p̄2- 4He 2 2.011 020 52 × 10−1 5.205 617 685 79(17)×10−3 5.205 617 713 1(13)×10−3 0.999 999 9948(25)
π 2- 4He 2 3.609 30 ×10−2 7.543 045 464 90(31)×10−3 7.543 045 560(8)×10−3 0.999 999 987(10)
μ2- 4He 2 2.756 517 98 × 10−2 7.686 982 264 6(4)×10−3 7.686 982 309 7(11)×10−3 0.999 999 994(14)
3He 2 1.819 212 06 × 10−4 8.169 874 733 147(22)×10−3 8.169 874 826(8)×10−3 0.999 999 990(1)
4He 2 1.370 745 62 ×10−4 8.170 693 021 30(21)×10−3 8.170 693 117(8)×10−3 0.999 999 988(9)
6Li+ 3 9.121 675 6 ×10−5 3.109 011 875 468(10)×10−1 3.109 011 8852(11)×10−1 0.999 999 997(4)
7Li+ 3 7.820 195 0 ×10−5 3.108 946 571 280(10)×10−1 3.108 946 5812(11)×10−1 0.999 999 997(4)
9Be++ 4 6.088 199 ×10−5 2.911 617 478 8637(14) 2.911 617 4840(7) 0.999 999 9982(25)
11B3+ 5 4.983 870 ×10−5 1.476 948 014 809 15(15)×101 1.476 948 017 98(15)×101 0.999 999 9978(10)
12C4+ 6 4.572 544 ×10−5 5.292 996 164 0483(35)×101 5.292 996 174 30(21)×101 0.999 999 9981(4)
14N5+ 7 3.918 481 ×10−5 1.515 442 208 159 97(13)×102 1.515 442 2110(6)×102 0.999 999 9981(4)
16O6+ 8 3.430 541 ×10−5 3.707 994 488 493 01(25)×102 3.707 994 492 78(16)×102 0.999 999 9988(4)
19F7+ 9 2.888 173 × 10−5 8.077 050 937 463 53(4)×102 8.077 050 9445(23)×102 0.999 999 999 12(29)
20Ne8+ 10 2.744 620 × 10−5 1.608 981 338 934 41(5)×103 1.608 981 339 8859(33)×103 0.999 999 999 408(21)

TABLE III. Mass-polarization parameters Cx and Dx from Eq. (43) are shown for He and He-like ions, along with the accompanying
algebraic relations, Eqs. (46) and (47).

Ion Cp Cr Cp − Cr Dp Dr 4Cp + Dp − Dr

4He −5.2333588(30) −1.23336(8) −4.0000(8) 16.4344(10) 1.607(26) −6.106(27)
7Li+ −5.385078(8) −1.385078(12) −4.000000(17) 17.124(27) 1.95(32) −6.37(35)
9Be++ −5.487355(9) −1.4871(5) −4.0002(5) 17.799(7) 1.74(35) −5.89(36)
11B3+ −5.557584(1) −1.5575(1) −4.00008(13) 18.3518(12) 2.09(12) −5.97(12)
12C4+ −5.6094000(16) −1.60943(13) −3.99996(13) 18.8227(18) 2.47(14) −6.08(14)
14N5+ −5.64973214(24) −1.649718(24) −4.000014(24) 19.24196(29) 2.661(28) −6.018(28)
16O6+ −5.68233816(7) −1.682327(12) −4.000010(12) 19.61265(9) 2.903(16) −6.020(16)
19F7+ −5.7094498(5) −1.70942(6) −4.000025(61) 19.9487(8) 3.099(99) −5.99(10)
20Ne8+ −5.73247255(30) −1.73249(3) −3.99998(3) 20.2487(10) 3.40(10) −6.08(10)

052807-6



TWO-PHOTON DECAY RATES IN HELIUMLIKE IONS: … PHYSICAL REVIEW A 102, 052807 (2020)

TABLE IV. Two-photon decay rates w(2γ )/α6 for various atoms and ions, including the heavy-helium cases for both finite and infinite
nuclear mass. Convert to s−1 by multiplying by α6/τx , with τ values as given in Tables I and II.

Ion Z w(2γ )/α6 w
(2γ )
∞ /α6 w(2γ )/w

(2γ )
∞

p̄2- 4He 2 5.205 617 685 79(17)×10−3 8.173 194 7151(20)×10−3 0.636 913 455 17(28)
π 2-4He+ 2 7.543 045 464 90(31)×10−3 8.173 194 7151(20)×10−3 0.922 900 497 0(4)
μ2- 4He 2 7.686 982 264 6(4)×10−3 8.173 194 7151(20)×10−3 0.940 511 334 0(5)
3He 2 8.169 874 733 147(22)×10−3 8.173 194 7151(20)×10−3 0.999 593 796 30(36)
4He 2 8.170 693 021 30(21)×10−3 8.173 194 7151(20)×10−3 0.999 693 914 82(35)
6Li+ 3 3.109 011 875 468(10)×10−1 3.108 554 078 983(7)×10−1 1.000 147 269 91(4)
7Li+ 3 3.108 946 571 280(10)×10−1 3.108 554 078 983(7)×10−1 1.000 126 262 01(4)
9Be++ 4 2.911 617 478 8637(14) 2.910 640 612 6215(16) 1.000 335 618 983(8)
11B3+ 5 1.476 948 014 809 15(15)×101 1.476 253 238 3922(19)×101 1.000 470 634 9825(16)
12C4+ 6 5.292 996 164 0483(35)×101 5.289 756 826 1109(23)×101 1.000 612 379 367(7)
14N5+ 7 1.515 442 208 159 97(13)×102 1.514 412 420 070 65(13)×102 1.000 679 991 8406(12)
16O6+ 8 3.707 994 488 493 01(25)×102 3.705 284 196 490 4(9)×102 1.000 731 466 6998(24)
19F7+ 9 8.077 050 937 463 53(4)×102 8.071 154 172 585 4(4)×102 1.000 730 597 4775(5)
20Ne8+ 10 1.608 981 338 934 41(5)×103 1.607 689 583 705 86(3)×103 1.000 803 485 4745(4)

μ/M artificially set to 20(μ/M )actual. This then provided two
equations in two unknowns to determine Cp and Dp from two
independent values of the ratios w

(2γ )
p /w

(2γ )
p,∞ for the velocity

form, and similarly Cr and Dr from w
(2γ )
r /w

(2γ )
r,∞ for the length

form. The results are as shown in Table III. Since the results
turned out to be less accurate for Ne8+, we calculated the C
and D coefficients by fitting the power series [Eq. (43)] to a
range of values of μ/M between 10 and 100 times the nominal
value for neon. Column 4 matches well the expected value of
−4 for Cp − Cr and column 7 confirms −6 for 4Cp + Dp − Dr,
thus verifying that Eqs. (46) and (47) are correct. They also
provide a sensitive test of the quality of the wave functions and
pseudostates used. Once the C and D coefficients are known,
they can be used to calculate the two-photon decay rate for
any other isotope or value of μ/M since the remaining mass
dependence in Eq. (43) can be trivially calculated.

In Table IV, successive columns list the name, atomic
number Z , the rate w(2γ ) for the system, the rate w

(2γ )
∞ for the

corresponding system with infinite nuclear mass, and the ratio

w(2γ )/w
(2γ )
∞ . The rates increase approximately as Z6 while the

ratio w(2γ )/w
(2γ )
0 increases gradually, being less than unity for

4He and a little larger than unity for the higher-Z nuclei. There
is clearly a crossover point between Z = 2 and Z = 3 where
the finite-nuclear-mass effects exactly cancel.

The spectral distribution as a function of energy is symmet-
ric about the midpoint at h̄ω = 1

2 (Ei − Ef ). In Table V we list
the peak emission rate in s−1, the energy difference in wave
numbers, and the wavelength of the peak in nm units. Table II
in Ref. [7] and Table V in Ref. [8] give the helium rates over
half the spectrum, but exclude the factor of 1/2 due to double
counting. Figure 1 shows the profile for 4He, together with
the difference curve between μ2- 4He and 4He(red), both nor-
malized to unit integration rate. The difference curve across
the middle shows that the effect of finite mass is to make the
distribution curve higher and narrower for μ2- 4He.

Table VI presents the final results for the two-photon
decay rates, including an estimate of the relativistic correc-
tion 
w

(2γ )
rel [8]. The relativistic contribution becomes more

TABLE V. Maximum two-photon decay rates, energy ranges, and the wavelengths of the maximum rates. Values have converged to the
figures quoted. Units are as stated in the table.

Ion wmax (s−1) 
 = ωi − ωf (cm−1) Peak λ (nm)

p̄2- 4He 8.919 855 00 × 104 2.984309 × 108 6.701 720 × 10−2

π 2- 4He 1.8469 × 104 4.5126 × 107 4.4320 × 10−1

μ2- 4He 1.421 736 × 104 3.421 138 × 107 5.846 008 × 10−1

3He 7.255 592 87 × 101 1.663 010 × 105 1.202 639 × 102

4He 7.256 232 28 × 101 1.663 025 × 105 1.202 628 × 102

6Li+ 2.694 285 13 × 103 4.914 063 × 105 4.069 952 × 101

7Li+ 2.694 212 72 × 103 4.914 072 × 105 4.069 944 × 101

9Be++ 2.490 892 44 × 104 9.811 005 × 105 2.038 527 × 101

11B3+ 1.252 656 20 × 105 1.635 617 × 106 1.222 780 × 101

12C4+ 4.461 029 08 × 105 2.454 648 × 106 8.147 807
14N5+ 1.271 097 75 × 106 3.438 289 × 106 5.816 846
16O6+ 3.098 265 41 × 106 4.586 539 × 106 4.360 586
19F7+ 6.727 920 98 × 106 5.899 395 × 106 3.390 178
20Ne8+ 1.336 772 61 × 107 7.376 858 × 106 2.711 181
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TABLE VI. Final values for the two-photon decay rates, including finite nuclear mass (
w
(2γ )
μ/M ) and relativistic corrections (
w

(2γ )
rel ) from

Ref. [8]. The total w
(2γ )
total is compared with the relativistic CI calculations of Derevianko and Johnson [10]. Units are s−1 with an overall scale

factor given in the last column for all the entries.

Ion w
(2γ )
∞ 
w

(2γ )
μ/M 
w

(2γ )
rel w

(2γ )
total Ref. [10] Difference Scale

p̄2- 4He 9.368 660 56(8) −3.401 634 59(3) −0.014(13) 5.953(13) ×104

π 2- 4He 1.393 610 183(13) −0.107 446 652 −0.002 1(19) 1.284 1(19) ×104

μ2- 4He 1.055 000 450(9) −0.062 760 569 −0.001 6(15) 0.990 7(15) ×104

3He 5.102 332 10(5) −0.002 072 586 −0.008(7) 5.093(7) 5.102 −0.009(7) ×101

4He 5.102 332 10(5) −0.001 561 748 −0.008(7) 5.093(7) 5.102 −0.009(7) ×101

6Li+ 1.940 596 769(17) 0.000 285 792 −0.002 0(17) 1.938 8(17) 1.940 −0.001 2(17) ×103

7Li+ 1.940 596 769(17) 0.000 245 024 −0.002 0(17) 1.938 8(17) 1.940 −0.001 2(17) ×103

9Be++ 1.817 044 074(16) 0.000 609 834 −0.002 2(16) 1.815 4(16) 1.816 −0.000 6(16) ×104

11B3+ 9.215 899 72(8) 0.004 337 325 −0.014(8) 9.206(8) 9.211 −0.005(8) ×104

12C4+ 3.302 270 041(30) 0.002 022 242 −0.006 3(33) 3.297 9(33) 3.300 −0.002 1(33) ×105

14N5+ 9.454 118 46(9) 0.006 428 723 −0.023(10) 9.438(10) 9.444 −0.006(10) ×105

16O6+ 2.313 121 264(21) 0.001 691 971 −0.006 8(29) 2.308 0(29) 2.310 −0.002 0(29) ×106

19F7+ 5.038 630 60(5) 0.003 681 211 −0.018(6) 5.024(6) 5.029 −0.005(6) ×106

20Ne8+ 1.003 642 572(9) 0.000 806 412 −0.004 4(14) 1.000 1(14) 1.001 −0.000 9(14) ×107

important with increasing Z and is larger in magnitude than
the mass correction in all cases, but of opposite sign, except
for Z = 2, where they both lower the infinite-nuclear-mass
decay rate. For relativity we followed Ref. [8] assuming the
effect for a two-electron system is bounded by the unscreened
and fully screened shifts for a single-electron ion and applied
the mean to the w(2γ ) values. Our best estimates of the net
rates are in the last column with the uncertainties indicated
in parentheses representing the full single-electron range. Our
final numbers are essentially the same as those of Derevianko
and Johnson [10], who found this procedure in Ref. [8] for
infinite-mass nuclei consistent with their relativistic calcula-
tions for the low-Z ions. However, for neutral helium, where
relativistic effects are small and electron correlation effects
are large, there is a marginal disagreement of 0.09 ± 0.07 s−1.

Experimental lifetimes of 5.03(26) × 10−4 s for both 4He
and 3He [12] and 1.97(10) × 10−2 s for 7Li+ [13] are entirely
consistent with our respective calculations of 5.178(45) ×
10−4 and 1.9634(28) × 10−2.

FIG. 1. Plots of the two-photon emission rate w(2γ )(4He) and the
difference 
w(2γ ) = w(2γ )(μ2- 4He) − w(2γ )(4He) (red) as fractions
y of the unit energy range normalized to unity.

V. ASTROPHYSICAL APPLICATION

Spitzer and Greenstein [36] investigated the two-photon
emission by neutral hydrogen as a source of continuum radi-
ation from planetary nebulae and Osterbrock [37] has further
elaborated its importance where particle densities are less than
about 104 cm−3. Since hydrogen has its 2p 2Po

3/2 level very
close to 2s 2S1/2, collisions can be competitive in depopulating
that level to 1s 2S1/2. The hydrogen emission before mass and
relativity corrections has an integrated rate of 8.2294 s−1 [5]
extending from 121.9 μm to a maximum at 243.1 μm and
then decreasing through the visible and infrared spectral re-
gions. At low densities, this two-photon emission exceeds the
contributions from the recombination of ionized hydrogen and
helium from the Balmer limit at 364.6 μm to about 447.5 μm
[37] if there is no significant recombination of twice-ionized
helium.

For comparison, the two-photon spectrum of neutral he-
lium has a total rate of 50.093 s−1 extending from 601.40 μm
to a maximum at 120.28 μm deceasing to about 64% of the
peak value at 364.6 μm. Typically, helium will be present with
1/10 the hydrogen abundance by number, so the two-photon
emission by helium could be an important addition to the
continuum emission around 400 μm in some planetary neb-
ulae. Similarly for helium in the early universe, two-photon
emission will affect the populations of the two lowest S
states.

VI. CONCLUSIONS AND DISCUSSION

The results of this work improve the accuracy of the two-
photon decay rates in helium and the heliumlike ions up to
Z = 10 by several orders of magnitude from parts in 104 to
parts in 109, at least in the nonrelativistic limit, and the effects
of finite nuclear mass have been included to all orders in
μ/M. The accuracy is sufficient to extract the leading two
coefficients in the mass-polarization part of the finite-mass
correction, and to test the algebraic relationships connecting
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the Cx and Dx coefficients. This provides a very sensitive way
to test the equivalence of the L and V forms. It is interesting
that all three contributions to the finite-mass effects must si-
multaneously be taken into account to bring the L and V forms
into agreement. The results also demonstrate the high accu-
racy of our two-electron wave functions in doubled Hylleraas
coordinates, and the pseudostates obtained from them to per-
form the sum over virtual transitions to intermediate P states.

The accuracy of the Cx and Dx coefficients could undoubt-
edly be improved by the use of perturbation theory for the
mass-polarization operator Hmp in place of the simple finite-
differencing method used here, but at substantially higher
computational cost. Also, perturbation theory is of limited
usefulness for the heavy-helium cases because μ/M is not suf-
ficiently small, and so direct calculations with Hmp included
explicitly in the Hamiltonian are essential. It would be much
more useful and interesting to include relativistic effects as a
perturbation, as has recently been done for the closely related
tune-out wavelength [38], in order to improve the accuracy for
4He and resolve an indicated discrepancy with the relativistic
configuration-interaction (CI) calculations [10] shown in Ta-
ble VI. Helium is the case of greatest astrophysical interest,
and so an improved accuracy is important. Relativistic correc-
tions will be the topic of a future publication.
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APPENDIX

The purpose of this Appendix is to give a simple way to
sum over the two independent polarization vectors ε̂1 and
ε̂2 perpendicular to k1 and k2 in order to obtain the angular
correlation function (1 + cos2 θ12).

Let k1 and k2 define the xy plane (the collision plane).
Then two possible independent choices for |ε̂1·ε̂2|2 are first,
choose ε̂1 = êz, ε̂2 = êz perpendicular to the xy plane. Then
|ε̂1·ε̂2|2 = 1. Second, choose ε̂1 = k̂1 × êz, ε̂2 = k̂2 × êz so
that they both lie in the xy plane. Then, since by assumption
k̂i·êz = 0,

|ε̂1·ε̂2|2 = |(k̂1 × êz )·(k̂2 × êz )|2
= |k̂1·k̂2|2
= cos2 θ12.

The sum of both polarization contributions is thus a factor of
1 + cos2 θ12.

Similarly for the case of single-photon transitions, we need
to integrate |ε̂·Q|2 over solid angles d� for the direction
of emission k. For purposes of the integration, assume that
Q points in the z direction. Then two possible independent
choices for ε̂ are first, choose ε̂1 to point in the k̂ × Q̂ di-
rection. In this case, ε̂1·Q = 0, and so it does not contribute.
Second, choose ε̂2 to lie in the (k, Q) plane orthogonal to ε̂1.
Then if k̂·êz = cos θ , ε̂2·êz = sin θ , and the angular integral is∫

4π

|ε̂2·Q|2d� = |Q|2
∫

4π

sin2 θ d�

= 8π

3
|Q|2. (A1)
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