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Energy difference between the lowest doublet and quartet states of the boron atom
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The energies of the lowest 2Pu, 4Pg, and 2Dg states of the boron atom are calculated with μhartree accuracy,
in the basis of symmetrized, explicitly correlated Gaussian lobe functions. Finite nuclear mass and scalar
relativistic corrections are taken into account. This study contributes to the problem of the energy differences
between doublet and quartet states of boron, which have not been measured to date. It is found that the
2Pu → 4Pg excitation energy, recommended in the Atomic Spectra Database, appears underestimated by more
than 300 cm−1.
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I. INTRODUCTION

Highly accurate calculations, carried out within the well-
grounded theory of quantum mechanics, are currently possible
for few-electron atoms and molecules. The results are usually
compared with spectroscopic data. This collation verifies the
theory and computational methods, but may also stimulate
improvements of the experiment. History of the studies on the
rovibrational spectrum of the hydrogen molecule is a good
example of such positive feedback [1,2]. The calculations
may also provide reliable results where experimental data are
missing. For the boron atom, intersystem radiative transitions
were not observed, therefore the energy differences between
the spin doublet and quartet states, listed in the Atomic Spec-
tra Database (ASD) [3] are based on numerical extrapolation
of the transition energies known for heavier, isoelectronic
ions [4].

According to this extrapolation, the lowest 4Pg term has
the energy higher by 28 644.3 cm−1, than the ground state
term (2Pu). The J quantum number is omitted, because the
fine structure is not considered in the present work. The
energy of a nonsplitted term is not observable, and is com-
puted from experimental data, as weighted average over
associated, J-dependent term energies. Calculations of this
energy difference were also carried out in the past, but the
results do not agree with that “experimental” value. The
short review is limited to most recent articles, because the
results of earlier calculations [5,6] were simply too inaccu-
rate for a comparison with spectroscopic data. Froese Fischer
and coworkers [7] used the multiconfiguration Hartree-Fock
(MCHF) method, with finite nuclear mass and scalar relativis-
tic corrections taken into account, and obtained the excitation
energy amounting to 28 959(5) cm−1. It is to be noted that
their computational method was validated for the carbon
cation, with theoretical result different from experimental one
by only 7 cm−1. Chen [8] predicted 28 719.46 cm−1, using
configuration interaction wave function, and also including
relativistic and finite nuclear mass corrections. Nakatsuji

and coworkers [9] employed the free-complement chemical-
formula-theory (FC-CFT) method. The value of 28 826 cm−1

is obtained, with their nonrelativistic, fixed-nucleus energies,
and assuming that the respective corrections would contribute
c.a. 50 cm−1, similarly as in the calculations by Chen and
Froese Fischer. The largest discrepancy between theoretical
and experimental excitation energy exceeds 300 cm−1. Com-
putational results are, however, rather scattered and a decisive
calculation requires a wave function that provides sufficiently
accurate absolute electronic energies. Apart of the 2Pu and 4Pg

states, the lowest 2Dg state is also the subject of the present
study, because the transition energies to the latter, from the
ground state, are known and may serve for the estimation
of uncertainty of final results. The experiment-based energy
difference between 2Pu and 2Dg terms amounts to 47 846.74
cm−1 [3].

In theoretical studies of the boron atom, not necessarily
aimed at the 2Pu → 4Pg excitation, most efforts to date were
devoted to the ground state [10–12]. Preliminary Hylleraas-
CI calculations were reported by Ruiz [13]. Highly accurate,
nonrelativistic energies were obtained with the explicitly cor-
related r12-MR-CI method [14], and in the diffusion Monte
Carlo (DMC) simulations [15]. There is a masterpiece of CI
calculations, by Almora-Diaz and Bunge [16], with the orbital
basis containing functions corresponding to the l quantum
number reaching 20 (z-type orbitals), yielding the energy only
31 μhartree above the variational limit. Well-hit extrapolation
to the complete basis set missed this limit by 6μhartree.
Best results were obtained with explicitly correlated Gaussian
functions (ECG) [17,18]. The estimated error of nonrelativis-
tic energy of this state was smaller than 1 μhartree. Similar
accuracy was achieved for the 2Sg states, and the transition
energies between the ground state and S-symmetry states were
reproduced within a fraction of cm−1, with finite nuclear
mass, relativistic (including fine and hyperfine structure for
the ground-state term) and leading radiative corrections taken
into account.
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The wave functions and energies of comparable accuracy
are missing for the 4Pg and 2Dg states, and the results are
scarce in the literature [5–7,9]. The present paper is aimed at
filling in this hole, and contributing to final resolution of the
discrepancies concerning the energy differences between the
spin doublet and quartet terms of the boron atom.

Nonrelativistic wave functions, expressed as linear combi-
nations of symmetry-adapted, explicitly correlated Gaussian
functions, and variational energies with scalar relativistic cor-
rections are obtained for the lowest 2Pu, 4Pg, and 2Dg states.
Atomic units are used unless stated otherwise. The conversion
factor to the energy unit used commonly in spectroscopy
amounts to 1 hartree=219 474.63 cm−1

II. METHOD

The stationary Schrödinger equation for the n-electron
atom is solved with the nonrelativistic Hamiltonian,

Ĥ = − ∇2
nuc

2mnuc
+

n∑
i=1

(
−∇2

i

2
− Z

ri

)
+

n∑
i> j=1

1

ri j
, (1)

where i and j count the electrons. Details of the method have
been introduced in earlier papers devoted to the lithium and
carbon atoms [19,20], and various states of many-electron
harmonium [21–24]. The wave function,

�(r1, s1, . . . , rn, sn)

=
K∑

I=1

CI Â�I (s1, . . . , sn)P̂χI (r1, . . . , rn), (2)

is expressed as a linear combination of explicitly correlated
Gaussian primitives (lobes),

χI (r1, . . . , rn) = exp

[
−

n∑
i=1

aI,i(ri − RI,i )
2 −

n∑
i> j=1

bI,i j r
2
i j

]
,

(3)

symmetrized by the spatial symmetry projector P̂, proper
for chosen one-dimensional, irreducible representation of the
selected finite point group. This wave function is not an eigen-
function of the square of the angular momentum operator
(L̂2), for nonzero RI,i vectors. The deviation from the exact
L(L + 1) eigenvalue is effectively diminished by the pro-
cedure of variational energy minimization, in which the pa-
rameters (linear CI and nonlinear aI,i, bI,i j , and RI,i) are
established. Action of P̂ upon χI annihilates from the wave
function, a finite subset of unwanted components, whose sym-
metry properties are specific to some other representations
of the Kh point group, and ensures convergence towards the
desired state. �I (s1, . . . , sn) is the spin function, common
for all basis functions for a given state, which is sufficient,
because the spatial functions are nonorthogonal. Namely,

�I (s1, . . . , s5) = [α(1)β(2) − β(1)α(2)]

× [α(3)β(4) − β(3)α(4)]α(5) (4)

is used for both doublets, and

�I (s1, . . . , s5) = [α(1)β(2) − β(1)α(2)]α(3)α(4)α(5) (5)

for the quartet. Â is the antisymmetrizer, which ensures proper
permutational symmetry of the wave function.

The relativistic energy of a resting system may be written
as the power series of the fine structure constant α = 1

4πε0

e2

h̄c .
Omitting the rest mass contribution,

Erel = Enr + E (2) + E (3) + · · · , (6)

where Enr is the nonrelativistic energy, E (2) contains the
Breit-Pauli relativistic corrections, and higher order terms
are known as the radiative (QED) corrections. All these
corrections may be calculated in a perturbative manner, as
expectation values of respective operators, with a known non-
relativistic wave function. The Breit-Pauli Hamiltonian may
be split to the relativistic shift ĤRS operator, with the expecta-
tion value ERS, and the fine and hyperfine structure operators,
which contain spin-orbit and spin-spin coupling terms. Only
the former is considered in this work. It is convenient to write
it down as the sum of the following terms:

ĤRS = Ĥ1 + Ĥ1n + Ĥ2 + Ĥ3 + Ĥ4 + Ĥ4n. (7)

These operators describe, respectively, the electronic mass-
velocity correction,

Ĥ1 = − 1

8c2

n∑
i=1

∇4
i , (8)

the electron-nucleus Darwin term,

Ĥ2 = Zπ

2c2

n∑
i=1

δ(ri ), (9)

the sum of the electron-electron Darwin term and spin-spin
Fermi contact interaction (both have the same mathematical
form, after integration over spin variables [25]),

Ĥ3 = π

c2

n∑
i> j=1

δ(ri j ), (10)

and the electron orbit-orbit term,

Ĥ4 = 1

2c2

n∑
i> j=1

(∇i · ∇ j

ri j
+ ri j · [(ri j · ∇i )∇ j]

r3
i j

)
, (11)

which describes the interaction of magnetic dipoles arising
from orbital motion of the electrons. There are two terms in
Eq. (7) that have nonzero value only for finite nuclear mass,
namely the nuclear mass-velocity correction,

Ĥ1n = − 1

8m3
nucc2

∇4
nuc, (12)

and the nucleus-electron contribution to orbit-orbit magnetic
interaction energy,

Ĥ4n = − Z

2mnucc2

n∑
i=1

(∇i · ∇nuc

ri j
+ ri · [(ri · ∇i )∇nuc]

r3
i

)
.

(13)

Distinction of the cases of fixed and nonfixed nucleus
requires only the modification of the nuclear mass in all
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TABLE I. Nonrelativistic energies, deviations of < L2 > from L(L − 1), and extrapolated energies, for fixed nucleus. For extrapolated
(Eextr) results, standard deviations of the least significant digits are given in parentheses.

K Enr 〈L2〉 − L(L + 1) K Enr 〈L2〉 − L(L + 1)

2Pu (L=1)
277 −24.653001970 7.81 × 10−6 2745 −24.653862346 1.73 × 10−7

406 −24.653462344 5.76 × 10−6 4022 −24.653865404 8.82 × 10−8

595 −24.653681184 3.48 × 10−6 5679 −24.653867017 4.97 × 10−8

872 −24.653785377 1.83 × 10−6 7456 −24.653867660 3.54 × 10−8

1278 −24.653833991 7.33 × 10−7 10304 −24.653868064 2.12 × 10−8

1873 −24.653854171 3.30 × 10−7 Eextr −24.65386890(14) 0
4Pg (L=1)
277 −24.521826756 1.10 × 10−5 1873 −24.522039020 2.26 × 10−7

406 −24.521944458 7.17 × 10−6 2733 −24.522040459 1.11 × 10−7

595 −24.521999781 3.07 × 10−6 3580 −24.522041147 5.47 × 10−8

872 −24.522023448 1.47 × 10−6 4672 −24.522041430 3.49 × 10−8

1278 −24.522035395 4.74 × 10−7 Eextr −24.52204180(5) 0
2Dg (L=2)
277 −24.434439490 1.86 × 10−4 2745 −24.435961389 5.34 × 10−6

406 −24.435110865 1.43 × 10−4 4023 −24.435972976 2.69 × 10−6

595 −24.435568403 7.98 × 10−5 5858 −24.435978480 1.30 × 10−6

872 −24.435789658 4.04 × 10−5 8231 −24.435981009 5.35 × 10−7

1278 −24.435896508 1.90 × 10−5

1873 −24.435941219 1.01 × 10−5 Eextr −24.43598347(63) 0

Hamiltonians, from infinity to the one proper for a given
isotope of boron. The wave function given by Eqs. (2) and (3)
is expressed in relative coordinates—ri denotes the position
of ith electron relatively to the nucleus. Therefore explicit
transformation of the operators, both nonrelativistic and rel-
ativistic, from the laboratory to the center-of-mass coordinate
frame, is not necessary. Only relative coordinates appear in
these operators explicitly. Each differentiation over a coor-
dinate in the Cartesian laboratory frame, may be written as
a properly weighted sum of differentiations over respective
relative and center-of-mass coordinates. Differentiation of a
function, which is dependent on relative coordinates only,
over a center-of-mass coordinate, gives zero, so the final result
is the same with nontransformed operators as with explicit
elimination of the center-of-mass motion [26].
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FIG. 1. Energy extrapolation using deviation of 〈L2〉 from
L(L+1), for the 2Pu state.

III. NUMERICAL RESULTS

In the first step, nonrelativistic wave functions are con-
structed. The ground-state wave function of the boron atom
has Pu symmetry. Assuming the magnetic quantum number
equal to 0, this symmetry is effectively represented by the Au

representation of the Ci point group, with the projector,

P̂ = Ê − î, (14)

and all RI,i vectors placed at the z axis of the coordinate frame.
The C4v point group is employed for both excited states, with
RI,i vectors confined to the xy plane. The projector proper for
the A2 representation,

P̂ = Ê + Ĉ1
4 + Ĉ2 + Ĉ3

4 − σ̂v1 − σ̂v2 − σ̂d1 − σ̂d2, (15)
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FIG. 2. Energy extrapolation using deviation of 〈L2〉 from
L(L+1), for the 4Pg state.
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FIG. 3. Energy extrapolation using deviation of 〈L2〉 from
L(L+1), for the 2Dg state.

produces effectively the Pg symmetry of the quartet state, and
the B1 representation, with

P̂ = Ê − Ĉ1
4 + Ĉ2 − Ĉ3

4 + σ̂v1 + σ̂v2 − σ̂d1 − σ̂d2, (16)

is adequate for the Dg state, producing the wave function
converging to the normalized sum of eigenfunctions of L̂z,
pertaining to mL = 2 and mL = −2.

The accuracy of nonrelativistic energies is assessed, ex-
ploiting the convergence of 〈L̂2〉, whose known exact limits
amount to L(L + 1). Basis sets were extended stepwise, be-
ginning with 1, 2, and 3 ECGs and then appending functions
optimized two steps back in the process, to the current set.
Optimization of all variational parameters of the new basis
followed, aimed at energy minimization. Successive basis
sizes formed thus initially the Narayana’s cows sequence [27].
For large bases, functions appeared that contributed too little
to the energy, and these functions were removed from the
set. The threshold value was set to 1, 0.5, or 0.2 nanohartree,
dependent on the estimated distance to the variational limit.
The values of nonrelativistic energies and 〈L2〉, calculated for
infinite-mass nucleus, with K basis functions, are collected in
Table I. It is noticed that the energy depends smoothly on the
error of the square of angular momentum, 〈L2〉 − L(L + 1)—

similarly as for the carbon atom [20]. This observation, which
has no theoretical background and may be related to the
method of construction of consecutive basis sets, gives rise to
an assumption that the rotational energy error becomes nearly
constant fraction of the total energy error. Either linear (for
the ground state, Fig. 1) or quadratic (for both excited states,
Figs. 2 and 3) functions are fitted to five best points, giving
estimations of complete basis set limits of the electronic en-
ergies. Variational energies look converged to a fraction of
μhartree for 2Pu and 4Pg states, while the accuracy for the 2Dg

state is a little worse, with the distance to the estimated limit
still amounting to c.a. 2.5 μhartree. The wave function of this
state has apparently more complicated character, but calcula-
tion with a significantly larger basis set was not feasible.

Comparison with literature data, in Table II, reveals that
the variational energy of the ground state, obtained in the
present work with 7456 basis functions, is lower than the
best previous result [18] by 0.5 μhartree, and with 10 304
basis functions surpasses also the old estimate of the complete
basis set limit. The 〈L2〉-based extrapolation lowers this limit
by 0.85μhartree. There are no published energies of compa-
rable accuracies, for both excited states. The calculation by
Nakatsuji [9] yielded the energy of the ground state, higher
by 0.135 mhartree than the present result. On the contrary,
the energy of the 4Pg state was too low, overstepping the
variational limit by 0.58 mhartree. The MCHF energies by
Froese Fischer [7] look more balanced, being higher by 0.345
(2Pu state) and 0.219 (4Pg state) mhartree. Most accurate non-
relativistic energy of the 2Dg state, published to date [8], is by
more than 2 mhartree higher than the present one.

Concerning the components of relativistic corrections
(Table III), the convergence of the mass-velocity and electron-
nucleus Darwin terms is still unsatisfactory for all states, with
differences of few μhartree, between the two most accurate
wave functions. This inaccuracy is due to ∇4 and δ(r) oper-
ators, whose expectation values converge very slowly in the
basis of Gaussian functions, which do not represent properly
the wave functions at coalescence points (cusps). Fortunately,
the errors of 〈Ĥ1〉 and 〈Ĥ2〉 have opposite signs and cancel to
a significant extent. The number of stable significant digits of
〈Ĥ3〉 is even smaller than that of 〈Ĥ2〉, but the absolute value

TABLE II. Comparison of nonrelativistic energies with published results.

Method 2Pu
4Pg

2Dg

MCHF (lmax = 7) [5] −24.651009 −24.431353
VMC [6] −24.64502(6) −24.51581(6) −24.42486(5)
CI (lmax = 6, selected) [8] −24.652032 −24.521401 −24.433575
MCHF (lmax = 5) [7] −24.653523595 −24.521822334
FC-CFT [9] −24.653734(103) −24.522622(50)
r12-MR-CI [14] −24.653787
DMC [15] −24.65379(3)
CI (lmax = 20) [16] −24.65383733
CI, extrapolated [16] −24.653862(2)
ECG, K=5100 [17] −24.65386608
ECG, K=8192 [18] −24.653867537
ECG, extrapolated [18] −24.65386805(45)
ECG lobes (present work) −24.653868064 −24.522041430 −24.435981009
Eextr (present work) −24.65386890(14) −24.52204180(5) −24.43598347(63)
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TABLE III. Scalar relativistic corrections (in mhartree), for fixed nucleus.

K 〈Ĥ1〉 〈Ĥ2〉 〈Ĥ3〉 〈Ĥ4〉 ERS

2Pu

277 −36.599999 29.743913 −0.601678 −0.057897 −7.515662
406 −36.728411 29.867256 −0.597815 −0.057872 −7.516842
595 −36.806576 29.938863 −0.595500 −0.057843 −7.521055
872 −36.834510 29.969803 −0.594004 −0.057833 −7.516544
1278 −36.863671 29.998464 −0.593480 −0.057827 −7.516515
1873 −36.873790 30.008434 −0.592950 −0.057823 −7.516129
2745 −36.893141 30.027586 −0.592638 −0.057822 −7.516015
4022 −36.897900 30.032285 −0.592543 −0.057821 −7.515980
5679 −36.904331 30.038645 −0.592389 −0.057820 −7.515896
7456 −36.910731 30.044909 −0.592249 −0.057820 −7.515891
10 304 −36.913837 30.047995 −0.592174 −0.057820 −7.515836
4Pg

277 −36.062593 29.388974 −0.578999 −0.027932 −7.280549
406 −36.062306 29.387961 −0.576977 −0.027940 −7.279263
595 −36.120148 29.442882 −0.576059 −0.027944 −7.281270
872 −36.135572 29.460497 −0.575635 −0.027944 −7.278654
1278 −36.155086 29.479579 −0.575179 −0.027944 −7.278630
1873 −36.166969 29.491458 −0.574979 −0.027944 −7.278433
2733 −36.172481 29.496815 −0.574859 −0.027943 −7.278469
3580 −36.179044 29.503374 −0.574758 −0.027943 −7.278371
4672 −36.181062 29.505364 −0.574684 −0.027943 −7.278325
2Dg

277 −35.970107 29.276227 −0.585496 −0.042998 −7.322373
406 −36.038120 29.340083 −0.583894 −0.043104 −7.325035
595 −36.141397 29.439580 −0.582434 −0.043201 −7.327453
872 −36.182799 29.478829 −0.581222 −0.043269 −7.328461
1278 −36.222970 29.517760 −0.580282 −0.043298 −7.328790
1873 −36.263293 29.557494 −0.579795 −0.043309 −7.328902
2745 −36.281367 29.575076 −0.579327 −0.043314 −7.328933
4023 −36.290237 29.583798 −0.579005 −0.043317 −7.328761
5858 −36.308459 29.601703 −0.578769 −0.043319 −7.328843
8231 −36.313784 29.606950 −0.578644 −0.043319 −7.328797

is smaller by two orders of magnitude. On the other hand, the
orbit-orbit magnetic interaction energies look accurate within
one nanohartree. Total relativistic corrections (last column of
Table III), calculated with the two largest basis sets, differ
by less than 0.1 μhartree for all states, although there is
no way to extrapolate these results and estimate the error
margin more rigorously. For the ground state, the results by
Puchalski [18] are available, obtained with the method that

involves regularization of the ∇4 and δ(r) operators, which
leads to much better convergence, and yields the scalar rel-
ativistic correction amounting to −7.515977 mhartree. This
means that the error of best present calculation amounts
to 0.141 μhartree.

In order to compare the computed excitation energies with
experimental data, nuclear mass proper for a particular isotope
has to be taken into account. The most abundant isotopes

TABLE IV. Variationally bound, and extrapolated nonrelativistic energies (in hartree), and scalar relativistic corrections (in mhartree) for
11B and 10B isotopes of boron.

2Pu(11B) 2Pu(10B) 4Pg(11B) 4Pg(10B) 2Dg(11B) 2Dg(10B)

Enr −24.652625854 −24.652502219 −24.520826909 −24.520706030 −24.434765075 −24.434644055
Eextr −24.65262669 −24.65250305 −24.52082728 −24.52070640 −24.43476754 −24.43464652
〈Ĥ1〉 −36.906350 −36.905605 −36.173742 −36.173014 −36.306284 −36.300219
〈Ĥ1n〉 −6.5×10−12 −8.6×10−12 −6.3×10−12 −8.4×10−12 −6.3×10−12 −8.4×10−12

〈Ĥ2〉 30.043429 30.042975 29.500886 29.500440 29.602345 29.596644
〈Ĥ3〉 −0.592094 −0.592086 −0.574607 −0.574600 −0.578563 −0.578680
〈Ĥ4〉 −0.057750 −0.057743 −0.027879 −0.027873 −0.043248 −0.043241
〈Ĥ4n〉 −0.003040 −0.003342 −0.002961 −0.003255 −0.002977 −0.003273
ERS −7.515805 −7.515802 −7.278303 −7.278301 −7.328727 −7.328720
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TABLE V. Isotopic shifts for term energies (components in
hartree, total in cm−1).

K Enr (10B) − Enr (11B) ERS(10B) − ERS(11B) Erel (10B) − Erel (11B)

2Pu

7456 0.0001236349 3.0 × 10−9 27.13538
10 304 0.0001236348 3.1 × 10−9 27.13538
4Pg

3580 0.0001208790 2.2 × 10−9 26.53036
4672 0.0001208790 2.2 × 10−9 26.53036
2Dg

5858 0.0001210195 6.8 × 10−9 26.56220
8231 0.0001210195 6.9 × 10−9 26.56222

of boron are 11B and 10B, whose nuclear masses amount to
20 063.7375 a.u. and 18 247.4689 a.u., respectively. The same
basis sets are used in the calculations, as for fixed nucleus—
only the linear parameters are allowed to vary. Table IV
lists the nonrelativistic energies and all components of scalar
relativistic corrections, for the largest basis, for each state.
Extrapolations to complete basis sets are carried out with the
same corrections as for fixed nucleus. Concerning the terms
not appearing for fixed nucleus, 〈Ĥ1n〉 is damped effectively
by the third power of the nuclear mass in the denominator,
and amounts to few femtohartree only, which is negligible
at the accuracy level achieved in present calculations. On the
other hand, 〈Ĥ4n〉 amount to few μhartree. Other components’
values, however, change to such an extent that total scalar
relativistic corrections differ from those obtained for fixed
nucleus by few nanohartree only.

The wave numbers proper for excitations from the ground
state to the lowest 4Pg and 2Dg states, calculated for
11B, and not accounting for the fine structure, amount to
28 978.75 cm−1 and 47 855.62 cm−1, respectively. The latter
differs from the experiment-based one by 9 cm−1, which is
comparable with the energy difference between the 2P1/2 and
2P3/2 states (fine structure, 15 cm−1) [3]. Similar accuracy is
expected for the excitation energy to the 4Pg state.

The isotopic shifts may be easily calculated from present
results. The differences of term energies, between 11B and
10B, computed with the same basis, remain very stable as the
basis size is increased—similarly as for the carbon atom [20].

They are given in Table V, with a larger number of significant
digits than total energy, for the two largest basis sets. Isotopic
shift of −0.57316 cm−1 is obtained for the 2Pu →2 Dg exci-
tation, while the measured value, averaged over two spectral
lines, is equal to −0.569(3) cm−1 [28]; −0.60502 cm−1 is
predicted for the 2Pu → 4Pg transitions.

IV. CONCLUSIONS

The present work provides most accurate to date, nonrel-
ativistic energies of the lowest 2Pu, 4Pg, and 2Dg states of
the boron atom. With scalar relativistic corrections and finite
nuclear mass taken into account, term energies are obtained,
whose main source of remaining error is the missing fine
structure. The measured fine splitting amounts to c.a. 15 cm−1

for the 2Pu term, c.a. 11 cm−1 for the 4Pg term, and less
than 1 cm−1 for the 2Dg term [3]. The computed 2Pu → 2Dg

excitation energy confirms the experiment-based result within
c.a. 11 cm−1, and comparable accuracy is expected for the
2Pu → 4Pg excitation. This reveals gross inaccuracy of the lat-
ter excitation energy, based on experimental data for heavier,
isoelectronic ions. This inaccuracy exceeds 300 cm−1, there-
fore an update of the content of Atomic Spectra Database [3]
would be recommended, concerning the energies of the quar-
tet states of the boron atom. It is worth noting that the
predictions of the MCHF study [7] were accurate within
20 cm−1. Further calculations that would include splitting of
energy levels due to magnetic spin-orbit and spin-spin cou-
plings are desired.

On the technical side of the work, it is proven again that the
symmetrized, explicitly correlated Gaussian lobe functions
form an efficient basis for atomic states, in spite of not being
eigenfunctions of the L̂2 operator. Lower variational energies
are obtained at shorter expansions, than with basis functions
having exact symmetry properties.
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