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In this paper we derive and discuss the completely spin- and photon-polarization-dependent probability
rates for nonlinear Compton scattering and nonlinear Breit-Wheeler pair production. The locally constant field
approximation, which is essential for applications in plasma-QED simulation codes, is rigorously derived from
the strong-field QED matrix elements in the Furry picture for a general plane-wave background field. We discuss
important polarization correlation effects in the spectra of both processes. Asymptotic limits for both small and
large values of χ are derived and their spin and polarization dependence is discussed.
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I. INTRODUCTION

High-intensity laser experiments have now reached the
point of being able to investigate the strong-field regime
of quantum electrodynamics (QED). In this novel regime,
elementary particles, such as electrons and photons, inter-
act nonperturbatively with extremely strong electromagnetic
fields. Recent measurements performed at the RAL-CLF’s
Gemini laser already hint at the relevance of quantum effects
in radiation reaction [1,2]. The next generation of multi-PW
high-power lasers [3–7] (for a review, see Ref. [8]) will allow
a thorough exploration of this new regime.

The two key strong-field QED processes to be investigated
here are the emission of a photon by an electron (or positron),
known as nonlinear Compton scattering (NLC) [9–11], and
the decay of a high-energy photon into an electron-positron
pair, known as the nonlinear Breit-Wheeler (NBW) process
[11,12]. For upcoming strong-field experiments it will be im-
portant to know not only the kinematic dependence and the
particle spectra, but also the spin and polarization dependency
of these processes. The first reason is because polarized high-
energy electrons and photons find numerous applications such
as nuclear spectroscopy [13] and in being ideal probes for
strong-field loop processes such as photon-photon scattering
[14–17]. The second is to correctly model the incoherent part
of higher-order effects such as the trident process [18–27]
(creation of an electron-positron pair from a photon emit-
ted by nonlinear Compton scattering) and double nonlinear
Compton scattering [28–32], the polarization of the interme-
diate particle must be taken into account. This naturally poses
the question of how important polarization effects are in the
modeling of strong-field electromagnetic cascades [33–41],
which are, in general higher than second order in multiplicity.
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Third, several processes in the extension of strong-field QED
to beyond-the-standard-model physics, are sensitive to partic-
ular polarization channels, such as axionic nonlinear Compton
scattering, which, due to the emission of a pseudoscalar, pro-
ceeds only with a spin flip [42–44], and the decay of an axion
into an electron-positron pair, which has a preference for the
spin of the particles produced [45].

If the electromagnetic background is sufficiently weak,
then spin and polarization effects can be studied in perturba-
tive QED. For linear Compton scattering this has been done
in many works, with Klein and Nishina already studying the
effect of photon polarization [46], and others looking at the
role of spin and polarization [47–50]. Similarly, the photon
polarization dependence of pair production in the collision of
two photons was already considered in the seminal work of
Breit and Wheeler [51]. However, if the intensity of the back-
ground is strong enough that on average more than one photon
interacts with an electron, one must consider nonlinear QED
processes, typically studied in a plane-wave background.

To investigate the relevance of the electron spin in the NLC
and NBW processes several authors compared calculations
for spin-1/2 Dirac particles with corresponding spin-0 Klein-
Gordon particles [52–55]. The effect of the electron being
a spin-1/2 particle on the radiated light spectrum was also
studied experimentally for the case of strong crystal fields
(channeling radiation) [56]. The difference brought by the
electron having a spin is that the spin—and its associated
magnetic moment—can “flip” during the photon emission
which is a quantum effect. In a quantum treatment of radiation
emission the photon spectrum has contribution from both the
electric charge and from the magnetic moment, and both of
these contributions are present even if the incident particles
are unpolarized and the final state polarization remains un-
observed. The contribution of spin flips to NLC has been
studied in a plane-wave pulse in comparison to classical ra-
diation calculations [57,58]. Note the spin can also flip in a
laser background due to a nonradiative process [e.g., involv-
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ing the (dressed) mass operator], which has been studied in
Refs. [59,60]. The combination of radiative and nonradiative
spin flipping has been studied semiclassically in a constant
magnetic field [61].

In NLC the emitted photon polarization has been studied
for an electron in a constant crossed field [18,19,31,62,63], in
a monochromatic plane-wave background [64] and recently
in a plane-wave pulse [65,66]. The dependence of NLC on
the incident electron spin has been calculated in Refs. [67,68]
from the one-loop mass operator via the optical theorem
(therefore yielding no information about final state polariza-
tion properties). The spin-polarization dependence of NLC in
a monochromatic plane wave has been studied in Ref. [69]
without considering the photon polarization, in Ref. [70] in-
cluding the photon polarization, and in Ref. [71] in a pulse. In
Ref. [72] the electron spin-polarization (averaged over photon
polarization) for NLC in a short pulse has been investigated
using the density matrix formalism where also the LCFA
was calculated. For the case of a constant, homogeneous
magnetic field, in which an electron produces (quantum) syn-
chrotron radiation, there have also been several studies for the
spin-polarized but photon-unpolarized case [73,74], and all
particles polarized [75,76]. In some works special emphasis
was placed on radiation by the anomalous spin magnetic mo-
ment [74,77]. For a review on spin-polarized particle beams
in synchrotrons see, e.g., Ref. [78].

For NBW pair production, the effect of photon polarization
(but unobserved spin state of the pair) has been calculated in
a monochromatic plane wave [9,18,79,80] and in a constant
crossed field [63,67,80]. Similar calculations have been per-
formed also for constant magnetic fields [81] and arbitrary
constant electromagnetic fields [82]. The spin of electrons
and positrons produced in NBW has also been studied for a
monochromatic background [64], and the completely polar-
ized NBW cross sections in a strong linearly and circularly
polarized monochromatic plane wave have been calculated in
Ref. [83]. Numerical results for a pulsed plane wave were
obtained in Ref. [84]. Spin-resolved pair production in a
strong field has been calculated also for various different field
configurations (and production processes) [85–88].

In the rest frame of an ultrarelativistic charge, an arbi-
trary strong electromagnetic field “looks” like a crossed field
(as shown by, e.g., the Weizsäcker-Williams approximation
[89,90]). If the field is sufficiently intense, the length scale
on which both NLC and NBW are “formed” is much shorter
than the length scale of the shortest inhomogeneity in the
laser pulse, namely, its wavelength. Hence, the probabilities
can be calculated using a “locally constant” field approx-
imation (LCFA). The significance of strong-field quantum
effects can be quantified using the quantum nonlinearity pa-
rameter, χ , which is defined for electrons and photons as
χe,γ = |Fμν pν

(e,γ )|/(mEcr ), where F is the background field
strength tensor, p(e,γ ) is the probe particle momentum, and
Ecr = m2/|e| is the Sauter-Schwinger critical field of QED,
with electron mass m and charge e < 0. By colliding a high-
energy electron beam with an intense laser pulse it is possible
to reach the regime where χe ∼ 1 [91,92]. In the quantum
regime the LCFA is valid if ξ � 1 and ξ 3/χ � 1, where
ξ = (m/κ0)(E/Ecr ), E is the field strength, and κ0 is the
frequency of the background. The quantity ξ has the meaning

of an inverse Keldysh-type parameter. For practical purposes,
and with χ ∼ 1, the LCFA can be considered a reasonable
approximation for ξ � 10 [72,93], despite its known limi-
tations [94,95]. Monte Carlo sampling of the LCFA rates
[62,95–98] is the central method by which strong-field QED
effects are included in high-intensity laser-plasma simulations
[39,99–101]. Some polarized LCFA rates have been already
implemented in (Monte Carlo) simulation codes to investigate
the radiative self-polarization of fermions in different field
configurations [102–106] and to model photon polarization
effects [63,107], as well as polarized QED cascade formation
[41].

A reasonable amount of work has already been performed
in investigating the role of polarization and spin in different
processes and different electromagnetic backgrounds. Yet a
systematic study of all spin and polarization effects of the
NLC and NBW processes and a consistent derivation of the
LCFA is still lacking. This is achieved in this paper. The
results for the completely polarized LCFA rates presented in
this paper are suitable for a direct implementation in such nu-
merical frameworks. In the current paper we present compact
analytical expressions for the fully polarized NLC and NBW
processes. We calculate these processes in a plane-wave pulse,
from which the LCFA is derived. We find strong correlations
in the spectra between the polarization states of photons and
leptons, especially when χ is large. Asymptotic formulas for
the fully polarized rates are given for small and large values
of the seed particle’s quantum parameter, χ . These asymptotic
approximations are compared quantitatively to the full LCFA
which shows some unexpectedly slow convergence for some
particular polarization channels. All polarization channels in
each of the processes are visualized for various quantum pa-
rameter, and the relative ordering of each channel is explained
phenomenologically.

The paper is organized as follows. In Sec. II we introduce
the polarization and spin bases and give an overview of the
kinematics, crossing symmetry, and general structure of the
probabilities. Sections III and IV present the results for NLC
and NBW, respectively. Both sections include a presentation
of the results for a plane wave and for the LCFA, for which the
spin polarized asymptotic scaling for large and small quantum
nonlinearity parameter is given. Noteworthy aspects of the
results are discussed at the end of each section. In Sec. III
we also include an overview of the derivation. In Sec. V the
paper is concluded. Appendices A and B contain a detailed
derivation of the results for NLC and NBW, respectively.
Throughout the paper we employ natural Heaviside-Lorentz
units with h̄ = c = ε0 = 1.

II. POLARIZATION BASIS

We begin by introducing the polarization states of vec-
tor and spinor particles that will be appear throughout the
calculation and in our final results for the fully polarized non-
linear Compton (NLC) and nonlinear Breit-Wheeler (NBW)
rates. We will concentrate on the case of a linearly polar-
ized plane-wave laser pulse of arbitrary temporal shape. We
introduce the laser polarization εμ and four-wave vector κμ,
satisfying ε·ε = −1, κ·κ = 0 and ε·κ = 0. The normalized
vector potential of the background, a = eA with e < 0, de-

052805-2



SPIN- AND POLARIZATION-DEPENDENT LOCALLY- … PHYSICAL REVIEW A 102, 052805 (2020)

pends only on the phase variable φ = κ·x, and can be given by
aμ(φ) = mξεμh(φ), with the classical nonlinearity parameter
ξ and an arbitrary shape function h(φ). In addition, it is useful
to define the constant background field tensor f μν = κμεν −
κνεμ. Let us also define the magnetic field polarization, β,
satisfying β·β = −1, β·ε = β·κ = 0.

The spatial components of the four-vectors (ε, β, κ) need
to form a right-handed triad. For instance, in the laboratory
frame we can choose κ = ω(1, 0, 0, 1), ε = (0, 1, 0, 0), β =
(0, 0, 1, 0), where ω is the laser frequency. This ensures that
their spatial parts fulfill κ/ω = ε × β, i.e., κ agrees with the
direction of the background field Poynting vector.

A. Photon polarization basis

With the triad of basis vectors (ε, β, κ ), we can define a
(linear) polarization basis for a photon with four-momentum
k as

�1 = ε − k·ε
k·κ κ , �2 = β − k·β

k·κ κ. (1)

By construction the polarization basis vectors fulfill
k·� j = 0 and �i·� j = −δi j . An arbitrarily polarized photon
(in a pure state) with polarization four-vector εk can therefore
be written as the superposition

εk = c1�1 + c2�2. (2)

We will characterize the photon polarization state using the
Stokes parameter τk = |c1|2 − |c2|2, where τk is, in general, a
real number and τk ∈ [−1, 1]. We note that, if τk is chosen to
be an integer and τk ∈ {−1, 1}, then the photon is produced in
an eigenstate of the polarization operator [108], and therefore
the polarization will not precess as the photon propagates
through the background (reviews of photon-photon scattering
can be found in Refs. [109–111]). In this paper, we will
consider the case that τk ∈ {−1, 0, 1}, where τk = 0 indicates
an unpolarized photon (in a mixed state), i.e., a polarization
average. (For unobserved final state polarization one has to
multiply the result by 2.) A photon in the �1 polarization
state is polarized parallel to the laser polarization direction
in a frame in which k and κ are collinear. A photon in the
�2 polarization state is polarized perpendicular to the laser.
Hence, we may refer to these photons as ‖- and ⊥-polarized
photons, respectively.

B. Fermions

The spin basis can be chosen in a similar way to the photon
polarization basis. It is useful to define a basis that does not
precess in the background field. Also, the basis cannot depend
on spacetime coordinates, otherwise we would be modify-
ing the spacetime dependency of the Volkov solution, which
would not fulfill the Dirac equation anymore. For linearly
polarized backgrounds in the ε direction our basis for the spin
four-vector of an electron with momentum p becomes

ζp = β − p·β
p·κ κ. (3)

Then we see that ζp·ζp = −1 and ζp·p = 0, but also very use-
fully: ζp·κ = 0 and ζp·ε = 0. The choice of this basis vector
implies that we are looking specifically at light-front trans-
verse polarization, with the spin vectors oriented along the

magnetic field in the rest frame of the particle. An important
aspect of this choice of the spin-quantization axis is that then
F ·ζp = 0, where F is the background field strength tensor.
This fact immediately ensures that the spin vector of the
particles does not precess under the Bargman-Michel-Telegdi
(BMT) equation [112],

dSμ

dτ
= ege

2m
FμνSν − e(ge − 2)

2m
uμ (u·F ·S), (4)

where Sμ is a general spin-polarization vector, ge the electron
gyromagnetic ratio, and uμ its four-velocity. Although ζp is
defined using the asymptotic momentum, p, we see that we
can replace, without loss of generality, p with the “instanta-
neous” classical kinetic momentum πp(= mu) of the electron
in a plane-wave background,

πp(φ) = p − a + κ
p·a
κ·p − κ

a·a
2κ·p, (5)

and hence ζπ ≡ ζp.
The choice of the basis above Sμ = ζμ therefore ensures

that dSμ/dτ = 0. Thus, the asymptotic polarization state of
the particles agrees with the local values inside the strong
background field. This is a special choice of spin basis. In
general one could expand the spin vectors in a dreibein: Sμ =
Sζ ζ

μ
p + Sηη

μ
p + Sκκ

μ
p , where ηp and κp are two additional

spacelike unit four-vectors perpendicular to p and defined
as ημ

p = εμ − κμ(p·ε)/(p·κ ) and κ
μ
p = mκμ/(κ·p) − pμ/m,

(noting F ·η �= 0 and F ·κ �= 0). Thus, the BMT equation
would imply that a general spin vector precesses. It can be
shown that the vectors (ζp, ηp, κp) are pointing in the direction
of the background magnetic field, electric field, and wave
vector in the rest frame of the particle [72].

The Dirac bispinors are defined using the spin basis ζp,
which is manifest in the density matrices [113]:

upσp ūpσp = 1
2 (/p + m)(1 + σpγ

5/ζ p), (6)

vpσp v̄pσp = 1
2 (/p − m)(1 + σpγ

5/ζ p), (7)

where we explicitly introduce the spin index σp = ±1 to
distinguish states where the spin vector is parallel (spin-↑,
σp = +1) or antiparallel (spin-↓, σp = −1) to ζp.

C. General considerations for the polarization-resolved
probabilities

Nonlinear Compton scattering (NLC) and nonlinear Breit-
Wheeler (NBW) pair production are both 1 → 2 first-order
strong-field QED processes with one interaction vertex (see
Fig. 1). Their corresponding S-matrix elements are related by

p, σp

q, σq

k, j

k, j

q, σq

p, σp

FIG. 1. Feynman diagrams. Left: nonlinear Compton scattering
(NLC). Right: nonlinear Breit-Wheeler (NBW) pair production.
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crossing invariance. The strong-field QED vertex is an interac-
tion of two “dressed” fermion lines (including the exchange of
a number of background laser photons) and one photon line.
We preface the detailed calculation of these two processes
with some general remarks on the (light-front) kinematics
of the processes and the structure of the expressions for the
polarization-resolved probabilities.

To have a unified notation for both processes under study,
let us denote the incoming momentum as pin, the outgoing
momentum of the particle under study as pout, and the mo-
mentum of the outgoing particle we integrate over (i.e., its
momentum is not observed, but its polarization state is) as
the ancillary momentum q. We orient the coordinate system
in such a way that the laser propagates along the positive z
axis, i.e., κ+ = 2ω (where light-front momentum components
are defined p± = p0 ± p3) is the only nonvanishing light-front
component of κμ. Then, for both processes, NLC and NBW,
the light-front momentum conservation can be expressed as

p−
in = p−

out + q−, p⊥
in = p⊥

out + q⊥, (8)

with p⊥ = (p1, p2), and the exchange of “+” momen-
tum between the particles and the background field
does not yield a conservation law. In a plane-wave
background, one can write the S-matrix element
using the four-dimensional light-front δ function
δ(4)(P + �κ ) = 2δ(P+ + �κ+)δ(P−)δ(2)(P⊥) = 2δ(P+ +
�κ+)δl.f.(P) as

S = −ie(2π )4
∫

d�

2π
δ(4)(P + �κ ) M, (9)

where P = pin − pout − q, and the integral over � takes into
account exactly the nonconservation of +-momentum. The
amplitude M is specific to each process and contains all the
spin and polarization dependence. The phase-space integrated
probability for the process under consideration is then given
by

P = 1

2p−
in

∫
d̃3q d̃3 pout |S|2 =:

∫
d� |S|2 (10)

with the Lorentz-invariant on-shell phase space elements un-
derstood in light-front coordinates, i.e., d̃3q = dq−d2q⊥

(2π )22q− .
The conservation of three light-front momentum compo-

nents in Eq. (8) allows one to completely integrate out the
ancillary momentum q. The final particle phase space of pout
is conveniently parametrized by the normalized light-front
momentum transfer s and transverse momentum r⊥:

s := p−
out

p−
in

= κ·pout

κ·pin
, r⊥ := p⊥

out

ms
. (11)

We thus can write the final particle phase space as

d� = dq−d2q⊥
(

m

p−

)2 s

1 − s

ds d2r⊥
8(2π )6

. (12)

Moreover, for the squared S matrix we find

|S|2 = (2π )3e2
( 2

κ+
)2

δl.f.(P) |M|2, (13)

where we used the normalization δl.f.(0) = 1
(2π )3 . Integrating

out the ancillary momentum q consumes the δ function and

allows the total probability to be expressed as

P = α

16π2m2b2

∫ 1

0

ds s

1 − s

∫
d2r⊥ |M|2, (14)

with fine structure constant α = e2/4π , and quantum energy
parameter b = pin·κ/m2. The squared amplitude is given by a
double integral over the laser phase, which takes the form

|M|2 =
∫

dφ dφ′ ei� T j . (15)

Here the integrand is a product of a nonlinearly oscillating
factor, the trace of Dirac matrices T j = �

μ
j Tμν�

ν
j containing

the fermion spin structure in Tμν , and photon polarization
vectors �

μ
j . The specific form of these expressions depends

on the considered process. In the following sections, they are
evaluated in a linearly polarized plane-wave laser background,
first for nonlinear Compton scattering and then for nonlinear
Breit-Wheeler pair production. From the general plane-wave
results, we then rigorously derive the locally constant field
approximation.

III. NONLINEAR COMPTON SCATTERING

This section is devoted to the investigation of fully po-
larized nonlinear Compton scattering, i.e., the emission of
a polarized photon by a spin-polarized electron, where also
the spin-polarization after the photon emission is observed.
We restrict the discussion to the case of all particles being
in polarization eigenstates as discussed above: Initial (final)
electrons can be spin-polarized σp = ±1 (σq = ±1) along the
axis ζp (ζq); photons are emitted in polarization eigenstate � j ,
j = 1, 2.

A. S matrix

We begin by recalling the basic properties of Volkov states,
which are solutions of the Dirac equation in a plane-wave
background,

(i/∂ − e/A − m)�pσp (x) = 0, (16)

and, with the normalized vector potential a = eA, given by

�pσp (x) = Ep(x)upσp, (17)

Ep(x) =
(

1 + /κ/a

2p·κ
)

exp

(
−ip·x −

∫
dφ

2a·p − a·a
2κ·p

)
,

(18)

where Ep are the “Ritus matrices,” upσp are the Dirac
bispinors, and σp = ±1 means the electrons are asymp-
totically aligned or antialigned with the spacelike spin-
quantization axis ζp. Because ζp = ζπ they remain polarized
in that state during the interaction with the laser prior to
emitting a photon—and after.

Let us recall that the normalized vector potential a of the
background plane wave depends only on the phase variable
φ = κ·x and is represented by aμ(φ) = mξεμh(φ), where
ξ is the classical nonlinearity parameter [62], εμ is the
polarization vector obeying ε · ε = −1, and h(φ) is an ar-
bitrary shape function. Examples of shape functions include
h(φ) = cos φ, for a linearly polarized infinite plane wave, and
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h(φ) = φ for a constant crossed field. We now write for the
(normalized) field strength tensor Fμν = mξ f μν ḣ(φ), where
f μν = κμεν − κνεμ is a constant tensor and ḣ(φ) = dh/dφ.

The S-matrix element for this strong-field QED process
(see Fig. 1 left) reads

SNLC(σp, σq, j)

= −ie
∫

d4x �̄qσq (x) /� je
ik·x �pσp (x)

= −ie(2π )4
∫

d�

2π
δ(4)(p + �κ − q − k) MNLC (19)

with the amplitude

MNLC(σp, σq, j) = � j,μ

∫
dφ ei

∫
dφ

k·πp(φ)
κ·q ūqσqJ

μ
NLC(φ)upσp,

(20)
and the Dirac current which is independent of the polarization
properties of all particles

J
μ
NLC(φ) = γ μ + /a/κγ μ

2(κ·q)
+ γ μ/κ/a

2(κ·p)
+ /a/κγ μ/κ/a

4(κ·p)(κ·q)
. (21)

B. NLC probability

With the results from Eq. (14) we can write the probability
as

PNLC, j (σp, σq )

= α

16π2m2b2
p

∫ 1

0

ds s

1 − s

∫
d2r⊥ |MNLC(σp, σq, j)|2,

(22)

where the squared amplitude is given by a double phase in-
tegral over a dynamic phase factor, which is independent of
the particle polarization, multiplied by T j , which is the Dirac
trace Tμν , contracted with the outgoing photon polarization
vectors, T j = �

μ
j Tμν (σp, σq)�ν

j . Explicitly,

|MNLC(σp, σq, j)|2 =
∫

dθ dϕ eiθ
k·〈πp〉

κ·q T j, (23)

with θ = φ − φ′, ϕ = (φ + φ′)/2, and the floating average
defined by

〈πp〉 = 〈πp〉(ϕ, θ ) = 1

θ

∫ ϕ+θ/2

ϕ−θ/2
dφ′′ πp(φ′′). (24)

The dynamic phase for Compton scattering is given by

θ
k·〈πp〉
κ·q = sθ

2bp(1 − s)
[μ + (r⊥ − 〈π⊥

p 〉/m)2] (25)

with normalized Kibble’s mass

μ = 1 + ξ 2〈h2〉 − ξ 2〈h〉2, (26)

energy parameter bp = κ·p/m2, and s = κ·k/κ·p. The spin
trace

Tμν = 1
4 tr [(/q + m)(1 + σqγ

5/ζ q)Jμ(φ)

× (/p + m)(1 + σpγ
5/ζ p)J̄

ν
(φ′)] (27)

can be decomposed into four parts: unpolarized (UP), initially
polarized (IP, depends only on the initial electron polariza-
tion), finally polarized (FP, depends only on the final electron
polarization), and polarization correlation (PC, depends on
both the initial and final electron polarization). These terms
are defined as follows:

Tμν (σp, σq) = UPμν + σpIP
μν + σqFPμν + σpσqPCμν

,

(28)

with the four contributions

UPμν ≡ 1
4 tr[(/q + m) Jμ(φ) (/p + m) J̄

ν
(φ′)], (29)

FPμν ≡ 1
4 tr[(/q + m) γ 5/ζ q J

μ(φ) (/p + m) J̄
ν
(φ′)], (30)

IPμν ≡ 1
4 tr[(/q + m) Jμ(φ) (/p + m) γ 5/ζ p J̄

ν
(φ′)], (31)

PCμν ≡ 1
4 tr[(/q + m) γ 5/ζ q J

μ(φ) (/p + m) γ 5/ζ p J̄
ν
(φ′)],

(32)

where the NLC current from Eq. (21) and its Dirac adjoint
J̄ = γ 0J†γ 0 have to be inserted. (FEYNCALC [114,115] was
used to calculate the traces.) Then the expression for the
differential probability can be written as

dPNLC, j

ds
(σp, σq ) = α

16π2m2b2
p

s

1 − s

∫
dϕ

∫
dθ

∫
d2r⊥

× eiθ
k·〈πp〉

κ·q [UP j + σpIP j + σqFP j + σpσqPC j], (33)

for photons emitted in a polarization state j = 1, 2. Introduc-
ing the Stokes parameter τk of the emitted photon then yields

dP

ds
(σp, σq, τk ) = 1 + τk

2

dP1

ds
+ 1 − τk

2

dP2

ds
. (34)

After evaluating the total of eight different traces, and an-
alytically performing the integration in r⊥, which is Gaussian
(the technical details of these steps are giving in Appendix A),
and regularizing the resulting expressions (e.g., with an “iε”
prescription [116]), one arrives at the expression for the NLC
spectrum in a plane-wave pulse:

dPNLC

ds
= − α

8πbp

∫
dϕ

∫
dθ

−iθ
eix0θμ INLC, (35)

INLC = 1 + σpσq + (1 − g)τkσpσq − ξ 2�h2τk (1 + gσpσq) + ξ 2〈ḣ〉2θ2

2
(g + σpσq)

− iθξ 〈ḣ〉
2

[
sσp + s

1 − s
σq + τk

(
sσq + s

1 − s
σp

)]
, (36)
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where �h2 = [h(φ)−〈h〉][h(φ′)−〈h〉], x0 = s/[2bp(1 − s)],
and g = 1 + s2/[2(1 − s)]. A numerical evaluation of this ex-
pression calls for an additional regularization of that part of
INLC not containing the laser pulse, i.e., being ∝ ξ 0. Several
methods for this regularization have been discussed in the
literature [23,117,118].

The appearance of a preexponential term proportional to
1/θ2 [see, e.g., Eqs. (A21) and (A30)] is known from polar-
ized calculations in a plane wave [66]. In the expression above
it has already been treated using integration by parts, giving
terms

d (θμ)

dθ
= 1 + ξ 2�h2 + θ2ξ 2〈ḣ〉2

2
. (37)

To acquire the LCFA, and specifically a local rate, one per-
forms an expansion of the exponent in Eq. (35) to cubic order
in θ and each term in the preexponent to leading order θ .
Then the integrals over θ can be performed analytically. Let us
define the probability rate R = dP/dϕ as the probability for
emission per unit laser phase. Combining (A52) and (A53),
the differential NLC rate for all particles polarized is then
given by

dRNLC

ds
(σp, σq, τk )

= − α

4bp

{
[1 + σpσq + τkσpσq(1 − g)] Ai 1(z)

+
[
sσp + s

1 − s
σq + τk

( s

1 − s
σp + sσq

)]
× Ai (z)√

z
sgn [ḣ(ϕ)]

+
(

g + σpσq + τk
1 + gσpσq

2

)2Ai ′(z)

z

}
. (38)

The argument of the Airy function Ai (·), its
derivative Ai ′(·) and integral Ai 1(z) := ∫ ∞

z dx Ai (x) is
z = ( s

χe(ϕ)(1−s) )2/3 and depends on the local value

χe(ϕ) = χp|ḣ(ϕ)|, where χp = ξbp. The term sgn [ḣ(ϕ)]
in the second line of (38) appears because of the oscillating
nature of a plane-wave pulse. It shows that this particular term
switches its sign each half cycle of the wave together with
the direction of the magnetic field. Hence, in an oscillating
field with many cycles one can expect that this term averages
to zero when integrating the rate over the pulse if the
field has a certain symmetry such that integrated over a
cycle

∫
dϕ sgn [ḣ(ϕ)]Ai (z)/

√
z ≈ 0. Since z depends only

on |ḣ| this is the case if the field has some (generalized)
parity property ḣ(φ0 ± φ) ≈ −ḣ(φ) for some φ0. In order
to efficiently radiatively polarize electrons this symmetry
needs to be broken, for instance, using an ultrashort subcycle
pulse [72] or by a bichromatic (two-color) field [104].
By superimposing a second harmonic with the correct
phase, e.g., ḣ = cos φ + cos 2φ, the (generalized parity)
symmetry is broken and it is impossible to find a φ0 such that
−ḣ(φ) ≈ ḣ(φ0 ± φ). Similar arguments also hold for NBW
pair production [105].

From this expression we can straightforwardly recover lit-
erature results for the partially polarized cases. The case for
unobserved photon polarization is acquired by setting τk = 0

and multiplying the result by 2 (for the sum over the final
polarization states)

dRNLC

ds
(σp, σq, τk = 0) × 2

= − α

2bp

[
(1 + σpσq)Ai 1(z) +

(
sσp + s

1 − s
σq

)

× Ai (z)√
z

sgn (ḣ) + (g + σpσq)
2Ai ′(z)

z

]
. (39)

This result agrees with the diagonal elements of the spin-
density matrix in Ref. [72].

The rate for unpolarized final state particles, but polarized
initial electrons, had been calculated, e.g., by Ritus via the
imaginary part of the one-loop electron mass operator [67,68].
We can obtain this from the general expression by setting
σq = τk = 0 and multiplying by 4 to take into account the
summation over final state particles:

dRNLC

ds
(σp, σq = 0, τk = 0) × 4

= − α

bp

[
Ai 1(z) + sσp

Ai (z)√
z

sgn (ḣ) + g
2Ai ′(z)

z

]
. (40)

Finally, the case of unpolarized electrons, but polarized
photons can be achieved by setting σp = σq = 0 and multiply-
ing by 2 (which is equivalent to performing an average over
incoming spins and a sum over outgoing ones) to achieve

dRNLC

ds
(σp = 0, σq = 0, τk ) × 2

= − α

2bp

[
Ai 1(z) + (2g + τk )

Ai ′(z)

z

]
, (41)

which agrees with literature results [63].
Finally, the completely unpolarized nonlinear Compton

rate is obtained by setting σp = σq = τk = 0 and multiplying
by 4 for the summation over the final electron spin and photon
polarization states, yielding [9,10]

dRNLC

ds
(σp = 0, σq = 0, τk = 0) × 4

= − α

bp

[
Ai 1(z) + 2g

Ai ′(z)

z

]
. (42)

We can also make a connection to the expressions calcu-
lated by Sokolov and Ternov in a constant and homogeneous
magnetic field. Translating the Airy functions into modified
Bessel functions of the second kind and setting ḣ = 1 we
get perfect agreement with the expressions from the literature
[75].

C. Discussion of the Compton rates

To discuss the relative and absolute weight of the eight
different polarization channels, we plot the different NLC
emission rates for a constant value of χe = χp in Fig. 2. We
can make the following general remarks. For the total yield
of photons due to each polarization channel, shown in Fig. 2,
we see the channels without a spin flip are much larger than
those with a spin flip. The dominant contribution is the nonflip
transition when the polarization of the emitted photon is in
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FIG. 2. Polarization-resolved total rates for nonlinear Compton
scattering as a function of the electron quantum parameter χp.

the ‖ state (which is approximately parallel to the background
electric field for a near head-on collision of electron and laser
pulse). The nonflip channels with the photon emitted in the ⊥
polarization state are next in the hierarchy of rates. All spin-
flip rates are much lower than the nonflip rates. Especially for
χp � 1 they are suppressed by additional powers of χp (cf.
the discussion of the asymptotic behavior below). The most
probable spin-flip channel is the emission of a perpendicularly
polarized photon during an ↑ to ↓ transition.

In order to visualize how the differential photon spec-
trum comprises each polarization channel, in Fig. 3 we select
four constant values of χp at different orders of magnitude:
χp ∈ {0.1, 1, 10, 100}. In general, the hierarchy of the various
polarization channels can be different in the low-energy in-
frared part of the spectrum compared to the high-energy UV
part of the spectrum. For small s → 0 (where s is the fraction
of photon light-front momentum) the rate of spin-flip channels
go to zero, showing that the well-known (integrable) infrared
divergence of the polarization averaged LCFA rates originates
solely in the nonflip channels. For larger values of s the nonflip
and spin-flip channels approach each other, and eventually the
hierarchy even changes with certain spin-flip channels becom-
ing larger than some nonflip channels. (In other words, it is not
just the flip of the spin that determines the hierarchy of rates.)
As χp is increased, the part of the spectrum where the hier-
archy between polarization channels changes moves to larger
values of s. [Note that by the conservation law (8) the final
state electron normalized light-front momentum is just 1 − s.]

Also as χp increases, a new spectral feature develops in
the high-energy part of the spectrum at s ≈ 1. In Fig. 4 we
show the development of this “UV shoulder” in more detail.
While the UV shoulder is known to exist and to develop into
a pronounced peak approximately located at s ∼ 1 − 4/3χp

for χp � 1 [119,120], we see from Fig. 4 that only two of the
eight polarization channels are significantly contributing to it,
with a strong correlation between the spin-polarization states
of all particles for this high-energy feature. This is particularly
apparent in the right panel of Fig. 4. For incident down elec-
trons a ‖ photon is emitted and the electron stays in a down
state. For incident up electrons, a ⊥ photon is emitted while
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FIG. 3. Plots of the polarization-resolved differential Compton
spectra as functions of the normalized photon light-front momentum
s = k−/p− for four different values of χp.

the electron flips to a down state. Thus, by controlling the in-
cident electron polarization one could control the polarization
of the generated gamma rays in this high-energy feature of the
spectrum. Because the photons have very high energy, almost
all of the incident electron energy is transferred to the photon.
The existence of the UV shoulder can be clearly seen in
calculations of two-step part of second-order processes such
as nonlinear trident (NLC followed by NBW) [22,23,25,26],
and its existence has been commented on as contributing to
free-particle “shower”-type cascades [63].

Although in this section we have thus far focused on the
NLC process for electrons, analogous arguments apply to
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FIG. 4. Differential Compton rate for χp = 10, 100 on a linear
scale, highlighting the formation of the UV shoulder at s � 1 for
large χp which has a very strong polarization dependence. The elec-
trons emerging from this interaction are strongly down-polarized.
There is also a strong correlation between the initial electron polar-
ization and the polarization of the emitted photons in the shoulder.

the NLC process for positrons. We note here the necessary
changes. First, in the classical kinetic momentum of the elec-
tron in a plane wave πp(φ) from Eq. (5), a = eA, where e < 0
for an electron. The charge of the positron is positive, |e|.
Thus, the classical kinetic momentum of a positron differs
from that of an electron. The correct expression taking into
account the change in the sign of the charge, is given by
−π−p(φ).

Moreover, the different sign of the charge for electrons and
positrons implies that the vectors of the magnetic moment and
spin are parallel in one case and antiparallel in the other case.
That means the spin-field interaction has the opposite sign for
positrons. Thus, in order to employ the electron NLC rates,
Eq. (38), for positrons one also has to make the replacements:
σp → −σp and σq → −σq. It is evident that neither does this
affect the terms in (38) containing the product σpσq nor does
it affect the spin-averaged rates, Eqs. (41) and (42).

D. Asymptotic limits

For the discussion of the asymptotics of the rate for large
and small values of χp it is convenient to treat spin flip
(σq = −σp) and nonflip (σq = σp) separately, as we will find

them to have different asymptotic behavior. Here we choose
the quantum parameters, χe = χp and χγ = χk , occurring in
the LCFA, to take constant values, which is equivalent to
considering the case of a constant crossed field background.

1. χp � 1

For nonlinear Compton scattering, the χk parameter of the
emitted photon (which is bounded above by the χp parameter
of the initial electron) quantifies the recoil when the electron
emits a photon. Furthermore, the incoming electron parame-
ter, χp, is such that χp, χk ∝ h̄. Therefore, the limit of χp → 0
is synonymous with the classical limit. The asymptotic ex-
pansion of the total NLC rate RNLC for small χp � 1 can be
derived by changing the integration variable from light-front
momentum fraction s to z (the argument of the Airy functions)
and performing a systematic power series expansion in χp,
yielding

R
σp,σp,τk

NLC ∼ αχp

bp

1

2
√

3

{5

2
+ 3

2
τk

−
[

3

4
σp(1 + τk ) + 4 + 3τk√

3

]
χp

+
[5

2

√
3σp(1 + τk ) + 5

48
(75 + 62τk )

]
χ2

p

}
, (43)

R
σp,−σp,τk

NLC ∼ αχ3
p

bp

1

2
√

3

[
15

16
− 5

6
τk +

√
3

2
σp(1 − τk )

]
, (44)

as χp → 0. In the nonflip rate, Eq. (43), the leading order
is O(χp), and the leading order is independent of the spin
state of the incoming electron. A spin splitting (difference
between up and down incident electrons) only occurs in the
order O(χ2

p ) and only for ‖ photon polarization, τk = +1
(there is no spin splitting at all for the ⊥ polarization). For the
spin-flip rate, the leading term is suppressed at O(χ3

p ). Here
the leading term does show spin splitting, but only for the ⊥
photon polarization (τk = −1). The overall leading order of
the photon emission rate agrees with the classical radiation.
The suppression of spin effects in the NLC rates for small
χp � 1 is consistent with the fact that spin is a quantum
property and spin-sensitive effects should disappear in the
classical limit.

2. χp � 1

The asymptotic expansion of the NLC rate for large
χp � 1 can be calculated by first perturbatively expanding the
Airy functions for small argument z. The resulting integrals
can be easily performed for the leading order terms stemming
from the Ai and Ai ′ terms, yielding

R
σp,σp,τk

NLC ∼ αχ2/3
p

bp

�
(

2
3

)
18 × 31/3

[
13

(
1 + τk

2

)

− (3χp)−1/3 σp(1 + τk )
7

2

�
(

1
3

)
�

(
2
3

)]
, (45)

R
σp,−σp,τk

NLC ∼ αχ2/3
p

bp

�
(

2
3

)
18 × 31/3

[
1 − τk

2

+ (3χp)−1/3 σp(1 − τk )
5

2

�
(

1
3

)
�

(
2
3

)]
, (46)
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FIG. 5. Comparison of the total nonlinear Compton rates (col-
ored curves according to the legend) with their asymptotic expan-
sions (black dash-double-dotted curves) for χp � 1 (top) and relative
error of the asymptotic expansion (bottom). We compare the leading
order (LO) and the next-to-leading order (NLO) for the nonflip rates.

as χp → ∞. In this asymptotic limit, for both the spin-flip
and nonflip rates the leading order term is O(χ2/3

p ) and inde-
pendent of the spin of the incident electron. Spin dependence
occurs only in the next to leading order, which is O(χ1/3

p ).
This term completely vanishes for unpolarized electrons,
where the next nonvanishing term is O(1).

To illustrate the asymptotic scaling of the relations in
Eqs. (43)–(46), and their accuracy, the χp � 1 and χp � 1
parts of the total yield have been highlighted in Figs. 5 and 6,
respectively. As already commented above, we see that in the
χp → 0 limit, all spin-flip channels are suppressed by a factor
χ2

p compared to the nonflip channels. However, we also see
that the value of χp at which the asymptotic scaling reaches
a prescribed level of accuracy, changes, depending on the
order of the scaling. To make this manifest, in Fig. 5 (bottom)
we plot the relative error of the asymptotic expression, as
a function of χp. Generally speaking, to arrive at a given
accuracy, the asymptotic relations for the spin-flip channels
require χp to be an order of magnitude more asymptotic, e.g.,
in the case χp � 1, an order of magnitude smaller than for
the nonflip channels. For example, in the χp → 0 limit, a
10% accuracy is reached by the nonflip relations already at
χp ≈ 0.1, whereas it requires χp ≈ 0.01 for the same accuracy
in the asymptotic relations of the spin-flip channels. Like-
wise, it is remarkable that the asymptotic expressions in the
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FIG. 6. Comparison of the (scaled) total nonlinear Compton rates
with their asymptotic expansions (black dash-double-dotted curves)
for χp � 1 (top) and relative error of the asymptotic expansion
(bottom).

χp → ∞ limit [see Fig. 6 (bottom)] reach only an accuracy of
10% for χp � 103 for the spin-flip channels. For the spin-flip
channel and emission of photon into the ⊥ polarization, this
accuracy is reached at an order of magnitude even larger than
this. With present day laser and accelerator technology one
can only reach values of χp � 10, and so large χp asymptotic
expressions can be used only cautiously.

IV. NONLINEAR BREIT-WHEELER PAIR PRODUCTION

A. S matrix

To calculate the probability for nonlinear Breit-Wheeler
pair production we need to utilize the Volkov state for an
(outgoing) positron, which is given by [86,121]

� (−)
pσp

(x) = E−p(x) vpσp, (47)

with the Ritus matrices, Eq. (18), constant positron bispinors
vpσp , and where the superscipt “−” signifies that the positron
Volkov state is a negative energy solution of the Dirac equa-
tion (16). Employing (47), the S-matrix element of NBW [see
Fig. 1 (right)] can be expressed as follows:

SNBW(k j → pσp; qσq )

=
∫

d4x �̄qσq (x)[−ie/ε je
−ik·x]� (−)

pσp
(x)

= −ie(2π )4
∫

d�

2π
δ(4)(k + �κ − q − p) MNBW. (48)
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We emphasize that p (σp) is the four-momentum (spin index)
of the created positron and q (σq) refers to the electron. The
nonlinear Breit-Wheeler amplitude

MNBW(σp, σq, j) = �μ, j

∫
dφ e−i

∫ k·π−p
κ·q dφ ūqσqJ

μ
NBW(φ)vpσp

(49)
can be expressed in terms of the current

J
μ
NBW(φ) = γ μ +

[
/a/κγ μ

2(κ·q)
− γ μ/κ/a

2(κ·p)

]
h(φ)

− /a/κγ μ/κ/a

4(κ·p)(κ·q)
h2(φ), (50)

where the kinetic momentum of the positron is given by
−π−p(φ), with πp(φ) given in Eq. (5).

The Dirac trace for NBW is

Tμν = 1
4 tr [(/q + m)(1 + σqγ

5/ζ q)Jμ(φ)

× (/p − m)(1 + σpγ
5/ζ p)J̄

ν
(φ′)] (51)

and, using the current from (50), can be decomposed into four
parts: unpolarized (UP), electron polarized (EP), positron
polarized (PP), and polarization correlation (PC), which are
defined as follows:

Tμν (σp, σq) = UPμν + σqEPμν + σpPPμν + σpσqPCμν
,

(52)

with the four contributions

UPμν ≡ 1
4 tr[(/q + m) Jμ(φ) (/p − m) J̄

ν
(φ′)], (53)

EPμν ≡ 1
4 tr[(/q + m) γ 5/ζ q J

μ(φ) (/p − m) J̄
ν
(φ′)], (54)

PPμν ≡ 1
4 tr[(/q + m) Jμ(φ) (/p − m) γ 5/ζ p J̄

ν
(φ′)], (55)

PCμν ≡ 1
4 tr[(/q + m) γ 5/ζ q J

μ(φ) (/p − m) γ 5/ζ p J̄
ν
(φ′)].

(56)

B. Pair production probability

The evaluation of the traces for NBW pair production
is presented in detail in Appendix B. With those, and after
performing the integration over the transverse momentum of
the outgoing positron, we find the fully polarization-resolved
NBW pair production probability in a linearly polarized plane
wave of arbitrary shape:

dPNBW

ds
= α

8πbk

∫
dϕ

∫ ∞
−∞

dθ
−iθ eiθμx̃0 INBW, (57)

INBW = 1 + σpσq + τkσpσq(1 − g̃)

+ ξ 2θ2〈ḣ〉2

2
[g̃ + σpσq]

− ξ 2�h2 τk[1 + g̃σpσq]

− iθξ 〈ḣ〉
2

[σp

s
− σq

1 − s
+ τk

(σq

s
− σp

1 − s

)]
, (58)

with the positron’s light-front momentum fraction s = p−/k−,
g̃ = 1 − 1

2s(1−s) , Kibble mass (26) and x̃0 defined in Eq. (B5).

The initial photon is in a polarization state ε charac-
terized by the Stokes parameter τk = |c1|2 − |c2|2, where
ε = c1�1 + c2�2. In addition, the definition of �h2 given
below Eq. (35), as well as the statements about regularization,
apply here as well.

Details of the derivation of the LCFA, including the inte-
grals over the phase variable θ are collected in Appendix B.
Here we present the final result for the completely polarized
NBW pair production rate within the LCFA:

dRNBW

ds
(σp, σq, τk )

= α

4bk

{
[1 + σpσq + τkσpσq(1 − g̃] Ai 1(z̃)

+
[σp

s
− σq

1 − s
+ τk

(σq

s
− σp

1 − s

)]Ai (z̃)√
z̃

sgn (ḣ)

+
[
(g̃ + σpσq) + τk

1 + g̃σpσq

2

]2Ai ′(z̃)

z̃

}
, (59)

where the argument of the Airy functions is given by
z̃ = [χγ (ϕ)s(1 − s)]−2/3. The photon quantum parameter
χγ (ϕ) again refers to the local value in the field, given by
χγ (ϕ) = χk|ḣ(ϕ)|, where χk = ξbk . The quantum energy pa-
rameter bk = k·κ/m2 is related to the center-of-mass energy
of the incident photon colliding with the plane-wave laser
field. We emphasize again that s = p·κ/k·κ is the fractional
light-front momentum of the positron in relation to the light-
front momentum of the incident photon. Likewise, σp refers
to the spin state of the positron, and σq to the spin state of the
electron.

It is straightforward to recover expressions for totally or
partially unpolarized channels. For instance, for the decay of
a polarized photon into an unpolarized pair we have to sum
over all fermion polarizations, which is equivalent to setting
σp = σq = 0 and multiplying the result by 4:

dRNBW

ds
(σp = 0, σq = 0, τk ) × 4

= α

bk

[
Ai 1(z̃) + (2g̃ + τk )

Ai ′(z̃)

z̃

]
. (60)

This agrees with expressions from the literature [63] (some-
times in the literature the Stokes parameter is expressed as
τk = cos 2ϑ , where ϑ is the angle of the photon polarization
in relation to the laser polarization, characterized by �1).

To obtain the completely unpolarized NBW rate we have
to average Eq. (60) over the incoming photon polarization by
setting τk = 0:

dRNBW

ds
(σp = 0, σq = 0, τk = 0) × 4

= α

bk

[
Ai 1(z̃) + 2g̃

Ai ′(z̃)

z̃

]
. (61)
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FIG. 7. Scaled total spin-polarization-resolved NBW pair pro-
duction rates as a function of χk .

We can also find the result for the production of a polarized
pair by unpolarized photons by just setting τk = 0:

dRNBW

ds
(σp, σq, τk = 0)

= α

4bk

{
(1 + σpσq) Ai 1(z̃) + [2(g̃ + σpσq)]

Ai ′(z̃)

z̃

+
(σp

s
− σq

1 − s

)Ai (z̃)√
z̃

sgn (ḣ)

}
. (62)

C. Discussion of the pair production rates

We illustrate the results for the various polarization chan-
nels of NBW pair production in a series of plots, starting with
the total rates in Fig. 7. All of the eight channels are strongly
suppressed for small χk . This is a reflection of the fact that
NBW pair production, unlike NLC, is a pure quantum process
that must vanish in the classical limit as χk → 0. (See also
the detailed discussion of the asymptotic behavior below.)
Similar to NLC scattering, the plot of total NBW rates (see
Fig. 7) shows a certain hierarchy of the polarization channels
which does not change with χk , apart from one particular
channel where a ⊥-photon produces a pair with positron spin
σp =↓ and electron spin σq =↑. In this channel the pair is
produced in its least favourable spin state since the electron
spin is aligned parallel to the magnetic field and the positron
is aligned antiparallel to the magnetic field. This channel
is one of the smallest contributions to the overall rate for
small χk � 1, but is one of the dominant ones for χk � 1.
In general, the most probable channel is the one in which a
photon polarized in the ⊥ state decays into a pair in which
the spins are aligned such that their interaction energy with
the background magnetic field is minimized, i.e., the electron
(positron) is aligned antiparallel (parallel) with the field [76].
This can be seen from the energy in the rest frame of the
particle [122], UB = −μ · B, with μ = eges/2m (and recalling
e < 0 for an electron), where s are the spatial components of
the spin four-vector S = σpζp in the electron rest frame.

In Fig. 8 we plot the light-front momentum spectrum of
produced positrons for a range of incoming photon quantum
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d
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FIG. 8. Spin-polarization-resolved differential NBW pair pro-
duction rates. Observe how photons of different polarization produce
pairs with different symmetry properties. For the largest contribution
which comes from ⊥ photons the spectra are symmetric around
s = 1/2, and the pair has antiparallel spins with both particles in the
desired (lower energy) state. For ‖ photons the pair has preferably
parallel spins, with one high-energy particle and one low-energy
particle being produced.

parameters, χk ∈ {0.1, 1, 10, 100}. It is evident that, espe-
cially for smaller values of χk , only a few channels are
dominant. For increasing χk we see new peak structures ap-
pear close to s ∼ 0, 1 which are strongly related to the “UV
shoulder” seen in Fig. 4 for NLC [119]. The unpolarized pair
production spectrum is symmetric around s = 1/2, i.e., sym-
metric in the exchange of electron and positron s ↔ 1 − s.
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In Fig. 8 we clearly see that not all polarization-resolved
channels adhere to this symmetry. In particular the channels
in which a ‖ photon decays into a pair with parallel spins (i.e.,
only one of the particles is in its preferred energy state), break
the symmetry about s = 1/2, meaning that one of the particles
is preferably created with a higher momentum than the other
one.

D. Asymptotic limits

Here we provide and discuss the asymptotic limits for
small and large constant values of χk for the spin- and
polarization-dependent pair production rates. Here it is con-
venient to distinguish the case of parallel spins σq = σp, and
antiparallel spins σq = −σp.

1. χk � 1

For small χk , the asymptotic scaling of the total NBW
rate can be calculated by using the fact that for χk � 1 the
argument of the Airy functions z̃ is always large. Performing
an asymptotic expansion of the Airy functions for large z̃
yields integrals with a factor e−2z̃3/2/3 which can be treated
using Laplace’s method [123]. The exponential term turns
into the e−8/3χk suppression of the pair production rates which
shows up in all combinations of spin and photon polariza-
tion and reflects the fact that pair production behaves like a
tunneling process in the semiclassical limit for small χk � 1.
Distinguishing the case of parallel spins and antiparallel spins
of the generated pair we find

R
σp,σp,τk

NBW ∼ α

bk
χke− 8

3χk

√
3

2

[1 + τk

25
+ 13(1 + τk )

3 × 211
χk

+ 14 677 + 11 221τk

32 × 218
χ2

k

]
, (63)

R
σp,−σp,τk

NBW ∼ α

bk
χke− 8

3χk

√
3

2

[ (1 + σp)(1 − τk )

16

+ 25 − τk + 13σp(1 − τk )

3 × 210
χk

− 707 + 5005τk − 565σp(1 − τk )

32 × 217
χ2

k

]
, (64)

as χk → 0.
In Fig. 9 we illustrate the asymptotic limits for small

χk � 1 and scaling of the expressions (63)–(64). Here some
interesting observations can be made. In all cases, irrespective
of the spin alignment of the pair, the leading order contribution
of the NBW rate explicitly depends on the incident photon
polarization. For all channels there is an overall exponential
suppression factor e−8/3χk at small χk � 1, reflecting the tun-
neling nature of the NBW pair production process for small
χk . It is quite interesting, however, that the exact leading order
scaling is very much dependent on the specific channel.

For parallel spins, the leading order for ‖ photons
(τk = +1) is ∝ χke−8/3χk , and for ⊥ photons it is much
smaller ∝ χ3

k e−8/3χk since the first two terms in (63) are pro-
portional to 1 + τk . Moreover, there is no spin-splitting, i.e.,
the cases ↑↑ and ↓↓ have the same rate. This is in fact true
not only for small χk as can be seen, for instance, in Fig. 7.

FIG. 9. Asymptotics for spin-polarization-resolved NBW pair
production rates for small χk � 1 (black dash-double-dotted curves)
in comparison to the full LCFA rates (top) and relative error of the
leading order asymptotic expansion (bottom).

For antiparallel spins the leading order of the rate is even
more involved. For ⊥ photons the leading order depends on
the spin alignment of the positron. For positrons produced
in the favorable ↑ state, the rate is large, ∝ χke−8/3χk . How-
ever, for positrons produced in the (unfavourable) ↓ state, the
leading order is much smaller at ∝ χ2

k e−8/3χk . This asymptotic
result reconfirms the dominance of the ↑↓⊥ channel in Fig. 8
for χk = 0.01. For ‖ photons the leading order for antiparallel
spins is ∝ χ2

k e−8/3χk , independent of the spin alignment of the
positron.

It is known from the literature that in the limit χk � 1
the pair production rate of ⊥ photons (τk = −1) is twice as
large as the rate of ‖ photons [62]. Here we have shown that
the former case is dominated by the single spin-polarization
channel ↑↓⊥. In contrast, for ‖ photons two equally prob-
able channels contribute. It is also interesting to look at
certain ratios of the pair production rates for specific incident
photon polarization. For instance, for ‖ photons, τk = +1,
the probability to generate the pair with antiparallel spins is
suppressed as Rσp,−σp,+1

NBW /R
σp,σp,+1
NBW ∼ χk/8, which is indepen-

dent of the value of σp. For ⊥ photons, τk = −1, we have

to distinguish two cases: Rσp,σp,−1
NBW /R1,−1,−1

NBW ∼ 3χ2
k /512 and

R
σp,σp,−1
NBW /R−1,1,−1

NBW ∼ 6/11.
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The lower plot in Fig. 9 shows that the asymptotic ex-
pressions approximate the NBW rates with a high accuracy
only at extremely small values of χk � 1, and in particular
in the interesting range 0.1 < χk < 1 the relative error can be
quite large for some channels. (It should be noted that below
χk < 0.1 the NBW rate is significantly suppressed because of
the exponential factor; see Fig. 7.)

2. χk � 1

The asymptotic expansion of NBW pair creation for large
χk is calculated in a similar manner as the corresponding NLC
expressions. The asymptotic expressions behave as

R
σp,σp,τk

NBW ∼ αχ
2/3
k

bk

3 × 32/3

14 × 22/3

�
(

5
6

)
�

(
1
6

)(
1 + τk

2

)
, (65)

R
σp,−σp,τk

NBW ∼ αχ
2/3
k

bk

32/3

2 × 22/3

�
(

5
6

)
�

(
1
6

)[(
1 − τk

2

)

+χ
−1/3
k σp(1 − τk )

21/3

6 × 31/3

�2
(

1
6

)
�2

(
5
6

)]
, (66)

as χk → ∞.
Here the scalings with χk are in principle the same as

for NLC, just the numerical factors are different. The main
difference is that there is no term at order χ

1/3
k for the case of

parallel spins. The asymptotic expressions for large χk � 1,
Eqs. (65)–(66) are plotted in Fig. 10 (top) and the correspond-
ing relative error (bottom).

The asymptotic plots of the total yield in Figs. 9 and 10
also display the behavior of the “anomalous” channel, ↓↑⊥.
First, it is the only polarization channel to cross the others, be-
ing as improbable as the least probable channel in the χk → 0
limit since the first two terms in Eq. (64) vanish, but increasing
in importance as χk is increased until the χk → ∞ limit where
it is as probable as the most probable channel. It is remarkable
that even by χk as large as O(105), it has not yet reached
its asymptotic value. This fact becomes particularly clear by
looking at the relative error of the asymptotic expansions in
the bottom panels of Figs. 9 and 10. We notice the same
behavior as in the NLC case, that the leading order asymptotic
expressions are more accurate already at less extreme asymp-
totic parameter, whereas the less probable channels require
much larger (smaller) values of χk to reach a given accuracy
in the χk → ∞ (χk → 0) limits.

V. SUMMARY

In this paper we have given a comprehensive overview
of the rates of two of the most important strong-field QED
processes with the polarization of all particles taken into
account. We introduced expressions for fully polarized nonlin-
ear Compton scattering (NLC) and nonlinear Breit-Wheeler
pair-creation (NBW) in a general plane-wave background
and derived concise formulas for the fully polarized locally
constant field approximation (LCFA) of each process. The
asymptotic scaling for each process and all of the eight po-
larization channels has been derived and presented in succinct
expressions, and this scaling has been benchmarked against
the full LCFA result. Although some of these results exist in
other works in the literature, this is, to the best of our knowl-

101 102 103 104 105
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FIG. 10. Asymptotics for spin-polarization-resolved pair pro-
duction rates (black dash-double-dotted curves) in comparison to the
full LCFA for large χk � 1 (top) and relative error of the asymptotic
expansion (bottom) at leading order, except when denoted as NLO.

edge, the first complete presentation and in-depth analysis of
all polarization channels together. In doing so, we have been
able to resolve particle spectra by polarization channel, and
have demonstrated that certain spectral features (such as the
appearance of a “UV shoulder or peak” at large quantum
parameter), are particular to specific polarization channels.
We have also identified “anomalous” channels that change in
relative importance as the corresponding quantum parameter
is increased.

We note from our results that some polarization chan-
nels do not reach their large-χ asymptotic scaling until χ �
O(103). The Narozhny-Ritus conjecture predicts a breakdown
of the QED perturbation expansion in dressed vertices when
αχ2/3 ∼ O(1) [124–127], i.e., χ ∼ O(103). Furthermore, po-
larized one-vertex tree-level processes such as in NLC and
NBW are necessary in order to correctly factorise higher-order
tree-level processes in this perturbation expansion. Therefore
it is likely that the resolution of the Narozhny-Ritus conjecture
has implications for the relative importance of polarization
channels in NLC and NBW at large χ .

All our results have been expressed in a polarization basis
that respects the symmetry of the background field. However,
depending on how polarization is measured in experiment, the
polarization of any “detector” must be borne in mind. For
example, a measurement of high energy photon polarization
has been suggested, which uses the polarization-dependent
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probabilities for Bethe-Heitler pair creation in a Coulomb
field [16,128]. Therefore it is the projection of our results
onto the natural basis of the Bethe-Heitler polarimeter, which
will play a role in any detection. The measurement of the
spin-polarization of high-energy electrons is often performed
using Møller polarimeters [129,130], which, however, are
most sensitive to longitudinal polarization, or Compton po-
larimeters [131,132] which exploit angular asymmetries in the
scattering spectra of linear Compton scattering. Some authors
also propose to use nonlinear QED processes themselves for
polarimetry applications [133,134]. A review for existing and
future electron beam polarimetry can be found in Ref. [135].

Even if the polarization of the incoming or outgoing par-
ticle is not measured, then the LCFA rates for the eight
different polarization channels we have presented are still
relevant for higher-order processes. The correct factorization
of higher-order processes require a consistent polarization of
intermediate particles (propagators) between vertices. In this
way, the polarized LCFA rates presented here can be directly
employed in numerical simulations of electromagnetic cas-
cades in intense background fields [41].
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APPENDIX A: DETAILS OF THE CALCULATION OF THE
LCFA FOR NONLINEAR COMPTON

We start by giving some important kinematic definitions:

s ≡ κ·k
κ·p, (A1)

g = 1 + s2

2(1 − s)
. (A2)

With help of the auxiliary variable L, we can find some
useful kinematic relations for the incident electron momen-
tum p, outgoing electron momentum q and emitted photon
momentum k,

p·q = m2 + Ls κ·p, (A3)

q·k = L κ·p, (A4)

p·k = L(1 − s) κ·p, (A5)

where

L = s

2κ·p(1 − s)

[
m2+X 2

ε + X 2
β

s2

]
= x0

[
1 +

( p⊥
m

− r⊥
)2]

,

(A6)
and we introduced the normalized transverse momentum of
the photon, r⊥ = k⊥/ms, and the auxiliary variables Xε =
k·ε − sp·ε and Xβ = k·β − sp·β. In addition,

x0 = s

2bp(1 − s)
, (A7)

with bp = κ·p/m2.

1. NLC traces

Here we list the expressions for all 8 Dirac traces for
nonlinear Compton scattering, Eqs. (29)–(32). They are eval-

uated using FEYNCALC [114,115]. Here we use the short-hand
notation h′ for h(φ′) and h for h(φ), and also write h − h′ =∫ φ

φ′ ḣ(ϕ)dϕ = θ〈ḣ〉, with θ = φ − φ′ being the laser phase
difference between the NLC amplitude and its complex con-
jugate.

UP1 = q·p − m2 − m2ξ 2(s − 2)2

2(s − 1)
hh′

+mξ (s − 2)2

2(s − 1)s
Xε(h + h′) + 2X 2

ε

s2
, (A8)

UP2 = −q·p − m2 + 2
k·q
s

+ 2
(1 − s)k·p

s
− m2ξ 2s2

2(s − 1)
hh′

+ mξs

2(s − 1)
Xε(h + h′) − 2

s2
X 2

ε , (A9)

IP1 = iξm2 θ〈ḣ〉 s(2 − s)

2(1 − s)
, (A10)

IP2 = −iξm2 θ〈ḣ〉 s2

2(1 − s)
, (A11)

FP1 = iξm2 θ〈ḣ〉 s(2 − s)

2(1 − s)
, (A12)

FP2 = iξm2 θ〈ḣ〉 s2

2(1 − s)
, (A13)

PC1 = q·p − m2 − m2ξ 2(s − 2)2

2(s − 1)
hh′

+mξ (s − 2)2

2(s − 1)s
Xε(h + h′) + 2

s2
X 2

ε + X 2
β

s − 1
, (A14)

PC2 = −3q·p + m2 + 2k·q
s

+ 2(1 − s)k·p
s

+ m2ξ 2s2

2(s − 1)
hh′

− mξs

2(s − 1)
Xε(h + h′) − 2

s2
X 2

ε − X 2
β

s − 1
. (A15)

By using the kinematic relations from above some of the
expressions can be simplified, e.g., q·p − m2 = Lsκ·p. With
these replacements it is straightforward to see that all traces
depend on the transverse photon momentum only quadrati-
cally at most. Here we used that the light-front Levi-Cevita
tensor ε+−xy = −2, i.e., that Levi-Civita terms occurring
in traces with exactly one γ 5 matrix can be simplified as
ε pβεκ = p·κ .

2. Gaussian transverse momentum integrals

We find that the transverse momentum integrals over r⊥ are
all Gaussian for all eight Compton traces. This fact has been
customarily exploited in calculations of spin-averaged nonlin-
ear Compton scattering, to analytically perform the transverse
momentum integrals. Here the relevant integrals for polarized
NLC read

G0 =
∫

d2r⊥ eiθ
k·〈πp〉

κ·q = π

−iθx0
eiθx0μ, (A16)

G1,ε =
∫

d2r⊥ Xε eiθ
k·〈πp〉

κ·q = msξ 〈h〉G0, (A17)
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G2,ε =
∫

d2r⊥ X 2
ε eiθ

k·〈πp〉
κ·q = m2s2

[
ξ 2〈h〉2 + 1

−2iθx0

]
G0,

(A18)

G1,β =
∫

d2r⊥ Xβ eiθ
k·〈πp〉

κ·q = 0, (A19)

G2,β =
∫

d2r⊥ X 2
β eiθ

k·〈πp〉
κ·q = m2s2

−2iθx0
G0, (A20)

with x0 defined in Eq. (A7). With these, we find (we omit the
leading factor G0 here which has to be multiplied to all traces)

UP1 → (g − 1)m2 + i
gm2

θx0

+ m2ξ 2(g + 1)(h − 〈h〉)(h′ − 〈h〉), (A21)

UP2 → (g − 1)m2 + i
gm2

θx0

+ m2ξ 2(g − 1)(h − 〈h〉)(h′ − 〈h〉), (A22)

IP1 → iξm2 θ〈ḣ〉 (g − 1 + s), (A23)

IP2 → −iξm2 θ〈ḣ〉 (g − 1), (A24)

FP1 → iξm2 θ〈ḣ〉 (g − 1 + s), (A25)

FP2 → iξm2 θ〈ḣ〉 (g − 1), (A26)

PC1 → (g − 1)m2 + i
m2

θx0

+ m2ξ 2(g + 1)(h − 〈h〉)(h′ − 〈h〉), (A27)

PC2 → −(g − 1)m2 + i
m2

θx0

− m2ξ 2(g − 1)(h − 〈h〉)(h′ − 〈h〉). (A28)

3. Short coherence interval approximation and θ integrals

With the transverse momentum integrals done, the next
step towards the LCFA is to expand the integrand of the θ in-
tegral to lowest nontrivial order in the short coherence interval
θ � 1. This allows us to perform the θ integrals analytically.
(Note that one can alternatively perform the θ integral first,
and not perform the r⊥ integrals, which leads to an angularly
resolved LCFA; see, for instance, Ref. [136].) For the Kibble
mass in the exponent that means μ → μ0 = 1 + ξ 2ḣ2θ2/12
[94]. Furthermore, in the preexponential terms we use θ〈ḣ〉 →
θ ḣ = ξ 2ḣ2(ϕ) and

(h′ − 〈h〉)(h − 〈h〉) � −θ2

4
ḣ2. (A29)

Inserting the small-θ approximated prefactor G0 �
2πbp

1−s
s

eiθx0μ0

−iθ we obtain

∫
dr⊥ eiθ

k·〈πp〉
κ·q UP1 � 2πbpm2 1 − s

s
eiθx0μ0

[
− g

θ2x0
+ i(g − 1)

θ
− iθ (g + 1)

ḣ2ξ 2

4

]
, (A30)

∫
dr⊥ eiθ

k·〈πp〉
κ·q UP2 � 2πbpm2 1 − s

s
eiθx0μ0

[
− g

θ2x0
+ i(g − 1)

θ
− iθ (g − 1)

ḣ2ξ 2

4

]
, (A31)∫

d2r⊥ eiθ
k·〈πp〉

κ·q IP1 � −2πm2bp
1 − s

s
eiθx0μ0 ξ ḣ (g − 1 + s), (A32)∫

d2r⊥ eiθ
k·〈πp〉

κ·q IP2 � 2πm2bp
1 − s

s
eiθx0μ0 ξ ḣ (g − 1), (A33)∫

d2r⊥ eiθ
k·〈πp〉

κ·q FP1 � −2πm2bp
1 − s

s
eiθx0μ0 ξ ḣ (g − 1 + s), (A34)∫

d2r⊥ eiθ
k·〈πp〉

κ·q FP2 � −2πm2bp
1 − s

s
eiθx0μ0 ξ ḣ (g − 1), (A35)

∫
dr⊥ eiθ

k·〈πp〉
κ·q PC1 � 2πbpm2 1 − s

s
eiθx0μ0

[
− 1

θ2x0
+ i(g − 1)

θ
− iθ (g + 1)

ḣ2ξ 2

4

]
, (A36)

∫
dr⊥ eiθ

k·〈πp〉
κ·q PC2 � 2πbpm2 1 − s

s
eiθx0μ0

[
− 1

θ2x0
− i(g − 1)

θ
+ iθ (g − 1)

ḣ2ξ 2

4

]
. (A37)

Next we perform the integrals over the phase variable θ

yielding Airy functions

∫
dθ iθ eix0θ+i y

3 θ3 = 2π
Ai ′(z)

3
√

y2 , (A38)

∫
dθ eix0θ+i y

3 θ3 = 2π
Ai (z)

3
√

y
, (A39)

∫
dθ

1

−iθ
eix0θ+i y

3 θ3 = 2πAi 1(z), (A40)∫
dθ

1

θ2
eix0θ+i y

3 θ3 = 2πx0

[
Ai 1(z) + Ai ′(z)

z

]
, (A41)

where Ai 1(z) = ∫ ∞
z dx Ai (x) and Ai ′(z) = dAi (z)/dz.
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Here we have rewritten the exponential eiθx0μ0 = eix0θ+i y
3 θ3

with the definitions

y = x0ξ
2ḣ2

4
, z = x0

3
√

y
. (A42)

In addition we use that 3
√

y = √
zξ |ḣ|/2 and thus ξ ḣ/ 3

√
y =

2ḣ/(
√

z|ḣ|) = 2 sgn (ḣ)/
√

z.
The first and second results follow by the integral definition

of the Airy function [137]. The third result can be derived in
the following way:∫ ∞

−∞

dθ

θ
ei(rθ+c3θ

3 )

= lim
ε→0

∫ ∞

−∞

dθ

θ + iε
ei(rθ+c3θ

3 )

= lim
ε→0

−i
∫ ∞

0
dv

∫ ∞

−∞

dθ

θ + iε
ei((r+v)θ+c3θ

3 )−ε vθ

= −2π iAi 1

[ r

(3c3)1/3

]
, (A43)

and the final result was derived in the Appendix of Ref. [66].
(It turns out the final result is equivalent to integrating
once by parts, ignoring the contribution from the pole in
the evaluated term, and then using the standard Sokhotsky-
Weierstrass method to deal with the pole of the resulting 1/θ

integration.)
Here is the collection of all eight NLC traces after the θ

integrals have been performed:

∫
dθ

∫
d2r⊥ eiθ

k·〈πp〉
κ·q UP1 � −4π2m2bp

1 − s

s

[
Ai 1(z) + 2g + 1

z
Ai ′(z)

]
, (A44)∫

dθ

∫
d2r⊥ eiθ

k·〈πp〉
κ·q UP2 � −4π2m2bp

1 − s

s

[
Ai 1(z) + 2g − 1

z
Ai ′(z)

]
, (A45)∫

dθ

∫
d2r⊥ eiθ

k·〈πp〉
κ·q IP1 � −4π2m2bp

1 − s

s
(g − 1 + s)

2Ai (z)√
z

sgn (ḣ), (A46)

∫
dθ

∫
d2r⊥ eiθ

k·〈πp〉
κ·q IP2 � −4π2m2bp

1 − s

s
(1 − g)

2Ai (z)√
z

sgn (ḣ), (A47)

∫
dθ

∫
d2r⊥ eiθ

k·〈πp〉
κ·q FP1 � −4π2m2bp

1 − s

s
(g − 1 + s)

2Ai (z)√
z

sgn (ḣ), (A48)

∫
dθ

∫
d2r⊥ eiθ

k·〈πp〉
κ·q FP2 � −4π2m2bp

1 − s

s
(g − 1)

2Ai (z)√
z

sgn (ḣ), (A49)

∫
dθ

∫
d2r⊥ eiθ

k·〈πp〉
κ·q PC1 � −4π2m2bp

1 − s

s

[
(2 − g) Ai 1(z) + g + 2

z
Ai ′(z)

]
, (A50)∫

dθ

∫
d2r⊥ eiθ

k·〈πp〉
κ·q PC2 � −4π2m2bp

1 − s

s

[
gAi 1(z) − g − 2

z
Ai ′(z)

]
. (A51)

By combining these results according to Eq. (33), and by defining the differential probability rate per laser phase as dR/ds =
dP/dsdϕ we find

dRNLC,1

ds
(σp, σq ) = − α

4bp

{
[1 + σpσq(2 − g)]Ai 1(z) + 2(σp + σq)(g − 1 + s)

Ai (z)√
z

sgn (ḣ)

+ [2g + 1 + σpσq(g + 2)]
Ai ′(z)

z

}
, (A52)

dRNLC,2

ds
(σp, σq ) = − α

4bp

{
(1 + σpσqg)Ai 1(z) + 2(σq − σp)(g − 1)

Ai (z)√
z

sgn (ḣ)

+ [2g − 1 − σpσq(g − 2)]
Ai ′(z)

z

}
. (A53)

for a photon to be emitted in polarization state �1 or �2.

APPENDIX B: DETAILS OF THE CALCULATION OF THE
LCFA FOR PAIR PRODUCTION

For pair production, the incoming channel is characterized
by the scalar product κ·k, with k the photon four-momentum.
The light-front momentum exchange is defined here as s =
p · κ/k·κ , where p refers to the positron momentum. Hence,
for the electron momentum q we have q · κ = (1 − s)q · κ .
Moreover, we define g̃ = 1 − 1

2s(1−s) .

By introducing the auxiliary variable L̃, it is possible to
express

p·q = L̃k·κ − m2, (B1)

q·k = L̃sk·κ, (B2)

p·k = L̃(1 − s)k·κ, (B3)
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where

L̃ = x̃0

[
1 + s2

(
r⊥ − k⊥

m

)2]
= m2 + Y 2

ε + Y 2
β

2s(1 − s)k·κ (B4)

with

x̃0 = 1

2bks(1 − s)
(B5)

and Yε = p·ε − sk·ε and Yβ = p·β − sk·β, and the normalized
transverse positron momentum r⊥ = p⊥/ms. bk = k·κ/m2 is
related to the squared center-of-mass energy of the incident
photons and can be related to the kinematic pair production
threshold of linear Breit-Wheeler via L̃bk � 2, or L̃ � 2/bk .

The dynamic phase of the pair production matrix element
reads (without and with the floating average)

−k·π−p

κ·q = 1

2k·κs(1 − s)

[
m2 + (Yε − mξh)2 + Y 2

β

]
, (B6)

−k·〈π−p〉
κ·q = 1

2k·κs(1 − s)

[
m2μ + (Yε − mξ 〈h〉)2 + Y 2

β

]
= x̃0[μ + s2(r⊥ + 〈a⊥〉/s − u⊥)2], (B7)

with the Kibble mass μ, Eq. (26).

1. NBW traces

The NBW, Eqs. (53)–(56), traces are calculated in an anal-
ogous way to the NLC traces,

UP1 = q·p + m2 − m2ξ 2(1 − 2s)2

2(s − 1)s
hh′

+mξ (1 − 2s)2

2(s − 1)s
(h + h′)Yε − 2Y 2

ε , (B8)

UP2 = −q·p + m2 + 2(1 − s)k·p + 2sk·q − m2ξ 2

2(s − 1)s
hh′

+ mξ

2(s − 1)s
(h + h′)Yε + 2Y 2

ε , (B9)

PP1 = im2ξ θ〈ḣ〉 2s − 1

2s(1 − s)
, (B10)

PP2 = −im2ξ θ〈ḣ〉 1

2s(1 − s)
, (B11)

EP1 = im2ξ θ〈ḣ〉 2s − 1

2s(1 − s)
, (B12)

EP2 = im2ξ θ〈ḣ〉 1

2s(1 − s)
, (B13)

PC1 = q·p + m2 − m2ξ 2(1 − 2s)2

2(s − 1)s
hh′

+mξ (1 − 2s)2

2(s − 1)s
(h + h′)Yε − 2Y 2

ε + Y 2
β

(s − 1)s
, (B14)

PC2 = −3q·p − m2 + 2(1 − s)k·p + 2sk·q + m2ξ 2

2(s − 1)s
hh′

− mξ

2(s − 1)s
(h + h′)Yε + 2Y 2

ε − Y 2
β

(s − 1)s
. (B15)

By employing the kinematic relations from above it is
straightforward to see that all transverse momentum integrals
over the eight traces are Gaussian.

2. Gaussian transverse momentum integrals for NBW

For NBW pair production, all transverse momentum inte-
grals over d2r⊥ are Gaussian as well. However, the expression
of the dynamic phase is slightly different, and so are the
results:

G̃0 =
∫

d2r⊥ eiθ
−k·〈π−p〉

κ·q = eiθ x̃0μ
π

−iθ x̃0s2
, (B16)

G̃1,ε =
∫

d2r⊥ Yε eiθ
−k·〈π−p〉

κ·q = mξ 〈h〉G̃0, (B17)

G̃2,ε =
∫

d2r⊥ Y 2
ε eiθ

−k·〈π−p〉
κ·q =

[
m2ξ 2〈h〉2 + m2

−2iθ̃x0

]
G̃0,

(B18)

G̃1,β =
∫

d2r⊥ Yβ eiθ k·〈π〉
κ·q = 0, (B19)

G̃2,β =
∫

d2r⊥ Y 2
β eiθ k·〈π〉

κ·q = m2

−2iθ x̃0
G̃0, (B20)

with x̃0 defined in Eq. (B5). Employing those Gaussian inte-
grals, the eight NBW traces turn to the following expressions,
omitting again the leading factor G̃0:

UP1 → (1 − g̃)m2 − ig̃m2

θ x̃0

−(1 + g̃)m2ξ 2(h − 〈h〉)(h′ − 〈h〉), (B21)

UP2 → (1 − g̃)m2 − ig̃m2

θ x̃0

+(1 − g̃)m2ξ 2(h − 〈h〉)(h′ − 〈h〉), (B22)

PP1 → −im2ξ θ〈ḣ〉 (g̃ − 1 + s−1), (B23)

PP2 → im2ξ θ〈ḣ〉 (g̃ − 1), (B24)

EP1 → −im2ξ θ〈ḣ〉 (g̃ − 1 + s−1), (B25)

EP2 → −im2ξ θ〈ḣ〉 (g̃ − 1), (B26)

PC1 → (1 − g̃)m2 − im2

θ x̃0

−(1 + g̃)m2ξ 2(h − 〈h〉)(h′ − 〈h〉), (B27)

PC2 → −(1 − g̃)m2 − im2

θ x̃0
.

−(1 − g̃)m2ξ 2(h − 〈h〉)(h′ − 〈h〉) (B28)

3. Short coherence interval approximation and θ integrals

The next step towards the LCFA for NBW is approximat-
ing the integrand for short coherence interval θ � 1. This is
exactly the same as for NLC. The only notable difference
is that we have to insert here the small-θ approximation

052805-17



D. SEIPT AND B. KING PHYSICAL REVIEW A 102, 052805 (2020)

of G̃0 � eiθ x̃0μ0 π
−iθ x̃0s2 = 2πbk

1−s
s

eiθ x̃0μ0

−iθ :∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q UP1 � 2πbkm2 1 − s

s
eiθ x̃0μ0

[
iθ

ξ 2ḣ2

4
(g̃ + 1) + i(1 − g̃)

θ
+ g̃

θ2x̃0

]
, (B29)

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q UP2 � 2πbkm2 1 − s

s
eiθ x̃0μ0

[
iθ

ξ 2ḣ2

4
(g̃ − 1) + i(1 − g̃)

θ
+ g̃

θ2x̃0

]
, (B30)∫

d2r⊥ eiθ
−k·〈π−p〉

κ·q PP1 � 2πm2bk
1 − s

s
eiθ x̃0μ0 ξ ḣ

(
g̃ − 1 + 1

s

)
, (B31)∫

d2r⊥ eiθ
−k·〈π−p〉

κ·q PP2 � 2πm2bk
1 − s

s
eiθ x̃0μ0 ξ ḣ (1 − g̃), (B32)∫

d2r⊥ eiθ
−k·〈π−p〉

κ·q EP1 � 2πm2bk
1 − s

s
eiθ x̃0μ0 ξ ḣ

(
g̃ − 1 + 1

s

)
, (B33)∫

d2r⊥ eiθ
−k·〈π−p〉

κ·q EP2 � 2πm2bk
1 − s

s
eiθ x̃0μ0 ξ ḣ (g̃ − 1), (B34)

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q PC1 � 2πbkm2 1 − s

s
eiθ x̃0μ0

[
iθ

ξ 2ḣ2

4
(1 + g̃) + i(1 − g̃)

θ
+ 1

θ2x̃0

]
, (B35)

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q PC2 � 2πbkm2 1 − s

s
eiθ x̃0μ0

[
iθ

ξ 2ḣ2

4
(1 − g̃) − i(1 − g̃)

θ
+ 1

θ2x̃0

]
. (B36)

Next we have to perform the integrals over θ which will yield the Airy functions.
The results of the θ integration are formally the same as for Compton, Eqs. (A38)–(A41), but with the replacements x0 → x̃0,

y → ỹ and z → z̃, where

ỹ = x̃0ξ
2ḣ2

4
, z̃ = x̃0

3
√

ỹ
=

[
1

χk|ḣ|s(1 − s)

]2/3

. (B37)

With these results we obtain for the eight NBW pair production traces:∫
dθ

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q UP1 � 4π2m2bk

1 − s

s

[
Ai 1(z̃) + 2g̃ + 1

z̃
Ai ′(z̃)

]
, (B38)∫

dθ

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q UP2 � 4π2m2bk

1 − s

s

[
Ai 1(z̃) + 2g̃ − 1

z̃
Ai ′(z̃)

]
, (B39)∫

dθ

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q PP1 � 4π2m2bk

1 − s

s

Ai (z̃)√
z̃

2
(

g̃ − 1 + 1

s

)
sgn (ḣ), (B40)

∫
dθ

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q PP2 � 4π2m2bk

1 − s

s

Ai (z̃)√
z̃

2(1 − g̃) sgn (ḣ), (B41)

∫
dθ

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q EP1 � 4π2m2bk

1 − s

s

Ai (z̃)√
z̃

2
(

g̃ − 1 + 1

s

)
sgn (ḣ), (B42)∫

dθ

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q EP2 � 4π2m2bk

1 − s

s

Ai (z̃)√
z̃

2(g̃ − 1) sgn (ḣ), (B43)

∫
dθ

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q PC1 � 4π2m2bk

1 − s

s

[
(2 − g̃) Ai 1(z̃) + 2 + g̃

z̃
Ai ′(z̃)

]
, (B44)∫

dθ

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q PC2 � 4π2m2bk

1 − s

s

[
g̃Ai 1(z̃) + 2 − g̃

z̃
Ai ′(z̃)

]
. (B45)

Combining these traces by plugging them into

dRNBW, j

ds
(σp, σq ) = α

16π2m2b2
k

s

1 − s

∫
dθ

∫
d2r⊥ eiθ

−k·〈π−p〉
κ·q [UP j + σqEP j + σpPP j + σpσqPC j], (B46)

we get the LCFA expressions for the decay rate per unit laser phase of a polarized photon in a polarization state � j , j = 1, 2,
into a polarized electron-positron pair:

dRNBW,1

ds
(σp, σq) = α

4bk

{
[(1 + σpσq(2 − g̃)]Ai 1(z̃) − 2(σp + σq)

(
1 − g̃ − 1

s

)Ai (z̃)√
z̃

sgn (ḣ)
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+ [2g̃ + 1 + σpσq(2 + g̃)]
Ai ′(z̃)

z̃

}
, (B47)

dRNBW,2

ds
(σp, σq) = α

4bk

{
[(1 + σpσqg̃]Ai 1(z̃) + 2(σp − σq)(1 − g̃)

Ai (z̃)√
z̃

sgn (ḣ)

+ [2g̃ − 1 + σpσq(2 − g̃)]
Ai ′(z̃)

z̃

}
. (B48)

By introducing again the Stokes parameter for the incoming photon we arrive at Eq. (59).
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