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Calculating the distance from an electronic wave function to the manifold of Slater determinants
through the geometry of Grassmannians
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The set of all electronic states that can be expressed as a single Slater determinant forms a submanifold,
isomorphic to the Grassmannian, of the projective Hilbert space of wave functions. We explored this fact by using
tools of Riemannian geometry of Grassmannians as described by [Absil et al., Acta Appl. Math. 80, 199 (2004)]
to propose an algorithm that converges to a Slater determinant that is a critical point of the overlap function with
a correlated wave function. This algorithm can be applied to quantify the entanglement or correlation of a wave
function. We show that this algorithm is equivalent to the Newton method using the standard parametrization
of Slater determinants by orbital rotations, but it can be more efficiently implemented because the orbital basis
used to express the correlated wave function is kept fixed throughout the iterations. We present the equations
of this method for a general configuration interaction wave function and for a wave function with up to double
excitations over a reference determinant. Applications of this algorithm to selected electronic systems are also
presented and discussed.

DOI: 10.1103/PhysRevA.102.052803

I. INTRODUCTION

Electron correlation is at the heart of electronic structure
theory, and its intimate relation to quantum entanglement, as
viewed by quantum information theory, attracts the attention
of researchers from both fields [1–3]. From the point of view
of atomic and molecular physics, the effect of electron corre-
lation on the electronic energy is the most important feature
to be considered, although its consequences on properties are
also relevant in several applications. From the side of quantum
information theory, one is often interested in quantifying the
entanglement of a wave function intrinsically [3–5], irrespec-
tive of any observable, in particular the energy. Many ways to
measure entanglement have been proposed [4], for instance,
by the distance between the quantum state and the set of states
with no entanglement (uncorrelated states). This definition has
a geometric nature, and calls for the geometry of the sets of
quantum states.

In wave-function methods of electronic structure, the cor-
relation due to the fermionic character of the electrons is
always taken into account by using antisymmetrized wave
functions. Slater determinants, which represent mean-field
states, are the simplest of such wave functions. The true
ground-state wave function, on the other hand, presents extra
electron correlation apart of that associated with the Pauli
principle, and if one is concerned with measuring this extra
correlation or entanglement in the wave function, its distance
to the set of Slater determinants is an expected approach
[2]. Using the set of configuration state functions, that are
spin eigenfunctions, is a similar possibility, although more
involved.
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There are multiple ways to define a metric in the space of
electronic states. It cannot be a metric on the Hilbert space of
wave functions, but on its projective space instead, as it must
reflect the fact that the normalization and phase of the wave
functions do not alter their associated physical states. Some
examples of metrics used in quantum mechanics are

DFS(�,� ′) = arccos|〈�|� ′〉|, (1)

DACFC(�,� ′) =
√

1 − |〈�|� ′〉|, (2)

DBRLCM(�,� ′) = 1 − |〈�|� ′〉|2 , (3)

where the wave functions � and � ′ are assumed to be nor-
malized to unit. Equation (1) is the Fubini-Study metric,
introduced in quantum mechanics by Bures [6,7], and it can
be interpreted as the angle between both state vectors. The
second equation has been studied by D’Amico et al. [8],
together with a related metric in the space of densities (their
original metric uses a different normalization condition). The
last one was recently used by Benavides-Riveros et al. [2],
who provided an upper bound to DBRLCM(�HF, �0) based
on the correlation energy (for systems with nondegenerate
ground state):

1 − |〈�HF|�0〉|2 = DBRLCM(�HF, �0)

� |Ecorr|
Egap

= EHF − E0

E1 − E0
, (4)

where �HF and �0 are the Hartree-Fock and the exact ground-
state wave functions, respectively, and E0, E1, and EHF are
the ground state, first excited state, and Hartree-Fock energies.
Furthermore, quantification of static and dynamic correlation
incorporated by a wave function based on this metric has also
been proposed [9].
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For all the above metrics, the distance between two states
described by wave functions � and � ′ is related to the ab-
solute value of their overlap |〈�|� ′〉| by Eqs. (1) to (3).
Therefore, calculating the distance from a given correlated
electronic wave function to the set of Slater determinants is
equivalent to finding the Slater determinant that maximizes
the overlap with such wave function (constrained to nor-
malized wave functions). This is not a trivial task [3], and
analytical expressions are known only for the small case of
two-particle systems [10] and for some specific cases [11].
In [2], Benavides-Riveros et al. opted to measure the corre-
lation of the ground-state wave function by its distance to
the Hartree-Fock wave function [in Eq. (4)], that is not, in
general, the minimizer of the distance among all possible
Slater determinants. Since no analytical procedure is known
for the general case, finding the Slater determinant that min-
imizes the distance to a correlated wave function requires a
numerical optimization on the space of Slater determinants.
This optimization problem has been studied by Zhang and
Kollar [10] and by Zhang and Mauser [11], by both analytical
and numerical procedures. They have also provided an algo-
rithm that converges monotonically, but slowly, to the Slater
determinant with the largest overlap with a correlated wave
function. Their algorithm is discussed below in Sec. III C 3.

To fully appreciate the phenomenon of correlation in elec-
tronic structure, one has to consider how the manifold of
Slater determinants is embedded in the set of all electronic
wave functions. This manifold is the Grassmannian [12,13].
Although Slater determinants are of paramount importance
in electronic structure theory and Grassmannians are of high
importance to geometry [14,15], their connection is rarely
observed when looking at Slater determinants. The first work
to establish this connection dates back to 1980, by Rowe,
Ryman, and Rosensteel [16]. Afterwards, Cassam-Chenaï
(in 1994) [17], Panin (in 2007) [18], and Chiumiento and
Melgaard (in 2012) [19] have also studied the geometry
of the Grassmannian in such context. Very recently, Polack
and coworkers have used the Grassmannian to formulate a
procedure to obtain an initial guess for self-consistent field
calculations [20]. However, systematic applications of the
properties of this “fundamental family of compact complex
manifolds” [14] to the electronic structure theory is still miss-
ing.

The objective of this article is to explore how the geometry
of the Grassmannian can be used to perform the optimization
of the Slater determinant with the largest overlap with an
arbitrary wave function, and thus ultimately measuring its
correlation. We will show that if we explicitly consider the
geometry of the Grassmannian, a more efficient algorithm can
be obtained. Moreover, this algorithm is a Newton method
that uses a set of nonindependent parameters to describe the
Slater determinants (namely, the coefficient matrices on a
fixed orbital basis), contrary to the usual assumption that a
set of independent parameters is necessary to carry out orbital
optimizations with the Newton method.

In Sec. II we review the relation between the Grass-
mannian and the field of electronic structure, along with
the Plücker embedding and the description of many-electron
wave functions by the exterior algebra [21,22]. Up to our
knowledge, researchers in molecular physics and theoretical

chemistry usually have no familiarity with these concepts.
For the detailed treatment of electronic wave functions within
the framework of exterior algebra, the reader is referred to
the works of Mundin [23,24], and Cassam-Chenaï [17]. See
also [25] for applications of this approach in the context of
quantum computation. Section II is ended with the mathe-
matical formulation of the problem we will be concerned
with. Section III describes the algorithms we propose and
compares them from the theoretical point of view. In Sec. IV
some numerical examples are discussed. After the concluding
remarks, we present in the Appendix the complete expressions
for these algorithms over symmetry-adapted spatial orbitals.

II. GRASSMANNIAN AND THE PLÜCKER EMBEDDING

For a molecular system of n electrons, a finite-dimensional
approximation for the space of wave functions can be ob-
tained by first fixing a finite-dimensional vector space of
one-electron wave functions (the spin-orbital space):

W = span{φp}M
p=1 . (5)

This M-dimensional vector space is usually defined by choos-
ing a basis set for an electronic structure calculation. From the
spin-orbital space one can construct n-electron wave functions
as linear combinations of n-electron Slater determinants made
by elements of W . These n-electron wave functions form the
required vector space, that is, the nth exterior power of W ,
denoted by

∧n W [21]. From the point of view of the exterior
algebra, an n-electron Slater determinant is the exterior prod-
uct, or wedge product ∧, of n elements of W . For instance,

|�〉 = 1√
n!

∣∣∣∣∣∣∣∣
ϕ1(1) ϕ2(1) . . . ϕn(1)
ϕ1(2) ϕ2(2) . . . ϕn(2)

...
...

. . .
...

ϕ1(n) ϕ2(n) . . . ϕn(n)

∣∣∣∣∣∣∣∣
= ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn , (6)

where {ϕi}n
i=1 is a linearly independent set, but otherwise

arbitrary, of elements of W . Therefore, the vector space
∧n W

consists of all possible linear combinations of such elements,
and it is identified with the n-electron sector of the Fock space
(whereas the complete Fock space is identified with the exte-
rior algebra of W ,

∧
W =⊕M

n=0

∧n W). In this article, ket
notation will be used for n-electron wave functions, whereas
small Greek letters are used for one-electron wave functions
(orbitals). Aside from subscripts, Slater determinants will be
generally denoted by |�〉 and arbitrary n-electron wave func-
tions by |�〉.

Elements such as ϕ1 ∧ · · · ∧ ϕn ∈∧n W , that can be writ-
ten as the exterior product of elements of W , are said to be
decomposable (the nomenclatures simple and free are also
used by some authors, the latter especially in the context of
quantum entanglement [3]). Slater determinants are thus the
decomposable elements of

∧n W . Furthermore, given a basis
for W , such as in Eq. (5), the set of all decomposable elements
made by n elements of this basis (with no repetition and taken
in order, e.g., by ascending indices) forms a basis for

∧n W .
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An arbitrary element of
∧n W can be constructed as

|�〉 =
∑

I, |I|=n

CI φI1 ∧ · · · ∧ φIn

=
∑

I, |I|=n

CI a†
I1

· · · a†
In
|〉

=
∑

I, |I|=n

CI |�I〉,

(7)

where the summation runs over all multi-indices sets I with
length n. For convenience, the indication |I| = n will be often
dropped, as the length of the multi-indices set is always the
number of electrons, that will be clear by the context. Equa-
tion (7) is clearly interpreted as a configuration interaction
(CI) expansion. We also make the connection with the formal-
ism of second quantization, with a† being creation operators
and | 〉 the vacuum state. Note that |�〉 might be decomposable
or not, depending whether there is a basis for W , say {φ′

p}M
p=1,

such that

|�〉 = φ′
1 ∧ · · · ∧ φ′

n. (8)

In general, given a wave function in the form of Eq. (7),
it is not evident if it is decomposable. We want to find a
characterization of the set of all wave functions in

∧n W that
are decomposable.

Consider the following Slater determinant:

|�〉 = ϕ1 ∧ · · · ∧ ϕn, (9)

with each ϕi being an element of W . If the set {ϕ1, . . . , ϕn} is
linearly dependent, the Slater determinant vanishes, namely,
it is the zero element of the vector space

∧n W . Assuming
that this set is linearly independent, it spans a n-dimensional
vector subspace of W:

span{ϕ1, . . . , ϕn} ⊂ W, (10)

dim(span{ϕ1, . . . , ϕn}) = n. (11)

Obviously, this vector space admits infinitely many other
bases, obtained from {ϕ1, . . . , ϕn} by nonsingular linear trans-
formations:

ϕ′
i =

M∑
p=1

ϕpU
p

i , (12)

span{ϕ1, . . . , ϕn} = span{ϕ′
1, . . . , ϕ

′
n}. (13)

Furthermore, and of central importance for the present argu-
ment, the decomposable element made by ϕ′

i differs to |�〉
[Eq. (9)] by normalization or phase only:

ϕ′
1 ∧ · · · ∧ ϕ′

n = λϕ1 ∧ · · · ∧ ϕn, λ 	= 0. (14)

Thus, there is a one-to-one map between the physical states
that can be represented by a Slater determinant and the set of
n-dimensional subspaces of W . The set of all n-dimensional
vector subspaces of a given vector space W is the Grassman-
nian, or the Grassmann manifold. It will be represented by
Gr(n,W ).

Recall that the normalization and phase of a wave function
is not relevant for the description of the physical state it
represents. Thus, the space of states for the n-electron system

is actually the projective space of
∧n W , denoted by P

∧n W .
This space is the set of the equivalence classes in

∧n W
obtained by the relation |�〉 ∼ λ|�〉, where λ is a nonzero
scalar. The equivalence class of |�〉, indicated by [|�〉], is
composed by the wave functions that differ from |�〉 by a
normalization or phase factor.

From the above discussion, an element of Gr(n,W ) (a
vector subspace of W) is associated to the equivalence class
of a Slater determinant (an element of P

∧n W). This is a
bijection with the set of all Slater determinants (except for
a scalar factor), that forms a submanifold in the space of wave
functions that is a copy of the Grassmannian Gr(n,W ) inside
P
∧n W:

Slater determinants ↪→ n-electron wave functions, (15)

Gr(n,W ) ↪→ P
∧n

W, (16)

[|�〉] �→ [ϕ1 ∧ · · · ∧ ϕn]. (17)

The application given in Eq. (17) is known as the Plücker em-
bedding [14,26]. The image of Gr(n,W ) in P

∧n W satisfies
a set of quadratic equations in P

∧n W , the Plücker relations,
of high importance in the field of algebraic and projective
geometries. Thus, an element |�〉 ∈∧n W is decomposable
if and only if its coefficients on a basis made by decompos-
able elements [as in Eq. (7)] satisfy the Plücker relations. A
particular case of these relations will be shown in Sec. II B.

The strong connection between Slater determinants and
the Grassmannian suggests that the properties of the latter
can be used to work with the former, in particular for their
optimization. This will be explored in the remaining of this
article. Thus, we will make no distinction between a wave
function, that is a point in

∧n W , and its equivalence class
in P

∧n W; we will often say that a wave function is at the
Grassmannian, or belongs to the Grassmannian, when it can
be represented by a Slater determinant; we will also inter-
change the nomenclatures, and make no distinction between
decomposable elements of

∧n W , Slater determinants, and
the vector subspace of W spanned by its orbitals:

[|�〉] = [ϕ1 ∧ · · · ∧ ϕn]

= span{ϕ1, . . . , ϕn} ∈ Gr(n,W ) ⊂ P
∧n

W . (18)

A. Representation of the Grassmannian

The most obvious way to represent a Slater determinant
is by a M × n matrix of rank n, denoted by U , having the
coefficients of a basis of the Slater determinant in a fixed basis
of W [e.g., of Eq. (5)]:

|�〉 = φ′
1 ∧ · · · ∧ φ′

n ⇔ U ∈ RM×n, (19)

φ′
i =

M∑
p=1

φpU
p

i . (20)

Thus, column i has the M coefficients of orbital φ′
i on this

basis of W . Because U is of rank n, its columns are lin-
early independent and span an n-dimensional vector space,
associated to the n-electron Slater determinant. We write
[|�〉] = span(U ). This matrix is not unique [see Eq. (13)].
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Thus, to run over all the Grassmannian when looking for an
optimal Slater determinant of any sort, the entries of U cannot
be freely varied because a change on the entries of U might
provoke no change on the corresponding Slater determinant,
or lead to a matrix U with linearly dependent columns (that
does not span an n-dimensional vector space and does not
represent an n-electron Slater determinant).

Slater determinants can also be parametrized starting from
a pivot Slater determinant, say,

|�0〉 = φ1 ∧ · · · ∧ φn, (21)

by [16,27,28]

|�〉 = eK̂ |�0〉, (22)

where

K̂ =
n∑

i=1

M∑
a=n+1

Ka
i (a†

aai − a†
i aa). (23)

A transformation matrix from this basis to a basis of |�〉 is
given by

Ufull = exp

{(
0n×n −KT

K 0(M−n)×(M−n)

)}
. (24)

Note that the matrix U in Eq. (19) corresponds to the first n
columns of Ufull.

This second parametrization is originated from the works
of Thouless [27], and has been studied by several authors in
the context of electronic structure theory [16,29–31]. It offers
a set of n(M − n) independent parameters Ka

i (not considering
possible symmetry constraints), that is exactly the dimension
of the Grassmannian [12]. This parametrization is largely used
to carry out variations on the orbitals in self-consistent field
(SCF) methods [28,32–37], and one often refers to occupied-
virtual (and other “type X–type Y”) orbital rotations in orbital
optimizations. It is the de facto parametrization used in mod-
ern SCF calculations. However, in Sec. III B we will show that
the first type of representation described above, Eq. (19), can
also be used for a Newton optimization of Slater determinants,
contrary to what is often assumed [28,35,36].

B. Example: Hydrogen molecule

We will illustrate the concepts discussed so far for the
MS = 0 states of the hydrogen molecule H2, described by
a minimal basis set (1s alpha and beta orbitals centered in
each atom), with real coefficients and orbitals. This case al-
lows a visualization of the Grassmannian as embedded in the
projective space of the two-electron wave functions, depicted
in Fig. 1. For convenience, we will use symmetry-adapted
orbitals:

φ+ = N+(1sA + 1sB), (25)

φ− = N−(1sA − 1sB), (26)

with N± = 1√
2(1±〈1sA|1sB〉)

, but the present discussion does not

depend by any means on this particular basis, and only in
Sec. IV A it will become apparent the reason for this choice.

FIG. 1. (a) A representation of P(
∧2 WH2 )MS=0, along with the

four Slater determinants given in Eq. (29). (b) The MS = 0 subset
of the Grassmannian Gr(2,WH2 ) embedded in P(

∧2 WH2 )MS=0.
(c) The space of the parameters Kα and Kβ , that determines the
surface at (b) by Eq. (38).

The orbital and two-electron wave function spaces are (beta-
spin orbitals are indicated by overlines)

WH2 = span{φ+, φ−, φ+, φ−}, (27)
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∧2
WH2 = span{φ+ ∧ φ+, φ+ ∧ φ−,

φ− ∧ φ+, φ− ∧ φ−,

φ+ ∧ φ−, φ+ ∧ φ−}, (28)(∧2
WH2

)
MS=0

= span{φ+ ∧ φ+, φ+ ∧ φ−,

φ− ∧ φ+, φ− ∧ φ−}. (29)

As (
∧2 WH2 )MS=0 is four dimensional, its projective space is

three dimensional. An arbitrary element of (
∧2 WH2 )MS=0 is

|�〉 = C13 φ+ ∧ φ+ + C14 φ+ ∧ φ− + C23 φ− ∧ φ+

+ C24 φ− ∧ φ−. (30)

A visual representation of this space can be obtained in the fol-
lowing way: The elements of P(

∧2 WH2 )MS=0 can be viewed
as the “rays” (straight lines that pass through the origin) in
a four-dimensional space. Each of these lines cross the unit
sphere S3 ⊂ R4 in two antipodal points. They represent the
two normalized wave functions in (

∧2 WH2 )MS=0 associated
to the same physical state, but differing by sign. To fix one
representative element, we choose the one with non-negative
coordinate for (say) φ+ ∧ φ+, that is, the “upper hemisphere”
of S3 with respect to the direction of φ+ ∧ φ+. Finally, we
project these points of S3 ⊂ R4 into the R3 space defined by
C13 = 0, obtaining the unit ball in R3, so that each of its points
represents an element of P(

∧2 WH2 )MS=0. This representa-
tion is depicted in Fig. 1(a). It can be interpreted as what an
observer in R4 would see, when looking at S3 from the top.
At the center of the visualization “plane” there is [φ+ ∧ φ+]
(as this observer is looking exactly from its direction), and the
other elements of the basis in Eq. (30) are represented (twice)
in the boundary of the ball.

The Plücker relation that characterizes how the Grassman-
nian Gr(2,WH2 ) is embedded in P(

∧2 WH2 ) is (there are
much more equations, with more terms, for larger cases) [14]

C12C34 − C13C24 + C14C23 = 0, (31)

where C12 and C34 are the coefficients of Slater determinants
with MS 	= 0, and are zero in the present case. Furthermore,
we are choosing normalized wave functions with C13 � 0, and
thus the relation becomes

C24

√
1 − (C2

24 + C2
14 + C2

23) − C14C23 = 0. (32)

The Grassmannian is represented by the set of points in the
space of variables {C24,C14,C23} that satisfies this relation,
and the corresponding wave functions can be written as single
Slater determinants. Figure 1(b) illustrates how this man-
ifold is embedded in P(

∧2 WH2 ), with the representation
described above.

Observe that the straight lines seen in Figs. 1(a) and 1(b),
joining φ+ ∧ φ+ with each one of the other Slater determi-
nants in the basis of Eq. (30), represent wave functions that are
linear combinations of φ+ ∧ φ+ with only one other element
of Eq. (30). For instance, the vertical line represents wave
functions of the form

|�〉 = C13 φ+ ∧ φ+ + C24 φ− ∧ φ−. (33)

In the “north hemisphere”, C13 and C24 have the same sign,
whereas in the “south hemisphere” they have opposite signs.
Except for the cases when one of C13 or C24 is zero, the points
of this line are not at the Grassmannian [see Fig. 1(b)], what
means that the wave function above cannot in general be taken
as a single Slater determinant, a well-known fact in electronic
structure theory. On the other hand, the horizontal straight
lines, connecting φ+ ∧ φ+ and φ+ ∧ φ− or φ+ ∧ φ−, are at
the Grassmannian. The corresponding wave functions are

|�1〉 = C13 φ+ ∧ φ+ + C23 φ− ∧ φ+,

|�2〉 = C13 φ+ ∧ φ+ + C14 φ+ ∧ φ−,
(34)

that are linear combinations of φ+ ∧ φ+ with single excita-
tions from φ+ to φ− (at alpha or beta spin, respectively). As
it turns out to be, linear combinations with singly excited
determinants can always be represented as a single Slater
determinant:

|�1〉 =(C13 φ+ + C23 φ−) ∧ φ+,

|�2〉 =φ+ ∧ (C13 φ+ + C14 φ−).
(35)

The fact that |�〉 [in Eq. (33)] does not belong to the Grass-
mannian in general, whereas |�1〉 and |�2〉 do, is clearly seen
in the Plücker relations (31) and (32): the coefficients of |�〉
do not satisfy Eq. (32), but the coefficients of |�1〉 and |�2〉
do.

Equation (35) suggests that every point of the MS = 0
subset of the Grassmannian Gr(2,WH2 ) can be obtained as

|�〉 = (a φ+ + bφ−) ∧ (c φ+ + d φ−
)
, (36)

to be represented by the matrix

U =

⎛
⎜⎝

a 0
b 0
0 c
0 d

⎞
⎟⎠. (37)

The division into blocks comes from the fact that we are
concerned with a single value for MS , what naturally excludes
mixing among alpha and beta orbitals. On the other hand, the
orbital a φ+ + bφ− can also be interpreted as a rotation of φ+
toward φ− by an angle of Kα = arctan( b

a ). Analogously, one
defines Kβ = arctan( d

c ). The corresponding normalized Slater
determinant, made of normalized orbitals, becomes

|�〉 = [cos(Kα ) φ+ + sin(Kα ) φ−]

∧ [cos(Kβ ) φ+ + sin(Kβ ) φ−]

= eK̂ (φ+ ∧ φ+), (38)

where K̂ is defined in Eq. (23). Equations (37) and (38) are the
two parametrizations of the Grassmannian, based on the coef-
ficient matrices and on orbital rotations, described in Sec. II A.
Finally, the MS = 0 subset of the Grassmannian is complete if
the space of the parameters Kα and Kβ is [−π

2 , π
2 ] × [−π

2 , π
2 ],

as shown in Fig. 1(c).
The concepts of this section are illustrated in an animation

in the Supplemental Material [38]. An analogous represen-
tation of the MS = 0 subset of the Grassmannian has been
obtained by Cassam-Chenaï [17], although he represents the

052803-5



AOTO AND DA SILVA PHYSICAL REVIEW A 102, 052803 (2020)

projective space in a more pictorial fashion. The reader is
strongly referred to his work for a deeper discussion of the
concepts presented in this section.

C. Overlap with a correlated wave function

Consider now an arbitrary wave function |�ext〉 ∈∧n W ,
that does not necessarily belong to the Grassmannian (sub-
script “ext” stands for “external to the Grassmannian”). For
instance, this could be the exact or some approximate wave
function for the ground state of the system. The objective of
this work is to devise and study algorithms to find the Slater
determinant that maximizes the overlap to this wave function.
This makes sense only for the equivalence classes of |�ext〉
and of the Slater determinants, their corresponding elements
in P

∧n W . Thus, our problem consists in optimizing the
following function, defined at the Grassmannian:

f ([|�〉]) = |〈�|�ext〉|√〈�|�〉〈�ext|�ext〉
. (39)

III. ALGORITHMS

In this section we will discuss algorithms for the optimiza-
tion of the function defined in Eq. (39), using the Newton
method. To simplify the analysis and the discussion of the
equations, they will be presented on a spin-orbital basis,
with no inclusion of spatial symmetry. Complete equations
using spatial orbitals and considering spatial symmetry from
Abelian point groups are given in the Appendix.

A. Algorithm 1: By independent parameters in |�〉 = eK̂ |�0〉
With the parametrization given by Eq. (22) one can directly

apply the Newton method. Let

f� : Rn(M−n) → R

K �→ f (eK̂ |�0〉) (40)

be the function that represents the overlap function f
[Eq. (39)], but defined over the space of orbital rotation pa-
rameters. An improved Slater determinant is obtained from
|�0〉 with the parameters Ka

i (collected in K) that solve the
equation

HK = −J , (41)

where J and H, the Jacobian and Hessian of f�, are made by
the first and second derivatives of f�. Calculation of f�, J,
and H is straightforward when K = 0, and |�ext〉 is given as a
normalized linear combination of excitations on top of |�0〉:

|�ext〉 = C0|�0〉 +
∑
i,a

Ca
i |�a

i 〉 + 1

4

∑
i, j,a,b

Cab
i j

∣∣�ab
i j

〉+ · · · ,

(42)
with Cab

i j = Cba
ji = −Cba

i j = −Cab
ji . In such conditions,

f�(K = 0) = C0, (43)

Ja
i = ∂ f�(K = 0)

∂Ka
i

= (−1)i+nCa
i , (44)

Hab
i j = ∂2 f�(K = 0)

∂Ka
i ∂Kb

j

=
{−C0, a = b, i = j
−(−1)i+ jCab

i j , otherwise.

(45)

Note that the Jacobian is constructed from the coefficients
of single excitations, whereas the Hessian is formed by the
coefficients of the reference (diagonal elements) and of the
double excitations (all with respect to |�0〉). However, these
expressions are valid only if K = 0, otherwise, higher-rank
excitations also contribute, in a nontrivial way. Hence, if this
algorithm is used to optimize f , the basis of W used to
expand |�ext〉 has to be changed in every iteration, to obtain
the coefficients as excitations with respect to the new Slater
determinant |�〉 = eK̂ |�0〉.

Changing the orbital basis used to expand |�ext〉 is very
disadvantageous. First of all, because this is a time-consuming
step. If carried out in a straightforward way, it is accomplished
by the formula

|�ext〉 =
∑

I

CI |�I〉 =
∑

I

CI φI1 ∧ · · · ∧ φIn

=
∑

I

C′
I |�′

I〉 =
∑

I

C′
I φ′

I1
∧ · · · ∧ φ′

In
, (46)

C′
I =

∑
J

CJ det((Ufull )
I
J ), (47)

where Ufull is the transformation matrix from the basis {φ′
p}

to the basis {φp}, obtained from K by Eq. (24). The matrices
(Ufull )I

J are the minors of the matrix Ufull, with the entries in
the rows and columns given by the multi-indices I and J . This
is the bottleneck step, and its computational cost is discussed
in Sec. III C 2. However, the main disadvantage is that the
representation of the external wave function is changed in
every iteration. This implies that, if |�ext〉 is an approximate
wave function based on some kind of rank truncation, say, a
configuration interaction with single and double excitations
(CISD) wave function over the reference |�0〉, it will not
contain only single and double excitations over the new Slater
determinant |�〉 = eK̂ |�0〉. Therefore, the initial structure of
this wave function is lost, and a full configuration interaction
(FCI) like wave function has always to be used as external
wave function. Throughout this text, any possible rank trunca-
tion scheme used to construct |�ext〉 will be generally denoted
as the structure of |�ext〉.

B. Algorithm 2: Using the coefficients matrix U

The difficulties in the algorithm above arise from the stan-
dard parametrization by orbital rotations [Eq. (22)]. It is often
assumed that a set of independent parameters is necessary to
perform a Newton optimization of orbitals, as otherwise the
Hessian matrix is singular or near singular close to the optimal
orbitals [28]. This would exclude the possibility of using
directly the matrix U , defined in Eq. (19), for such kind of
optimization. However, this is exactly what the optimization
procedure on the Grassmannian of Absil and coworkers do
[39].

Using the M × n matrices of full rank to represent the
elements of the Grassmannian, Absil and coworkers have
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studied the Riemannian geometry of the Grassmannian. These
matrices form the noncompact Stiefel manifold ST(n, M), and
all computations are carried out on it, whereas tools of differ-
ential geometry are used to go back and forth from the Stiefel
manifold to the Grassmann manifold. With this technique,
Absil and coworkers presented several formulas for geometric
concepts on Grassmannians, such as canonical metric and
geodesics. More important for this work, a Newton method
specific for the Grassmann manifold was also proposed. It
works in the following way [39]: Given f : Gr(n,W ) → R
a function defined on the Grassmannian with real values suf-
ficiently smooth, let

f♦ : ST(n, M ) → R

U �→ f (span(U )) (48)

be the corresponding function on the Stiefel manifold, that
is, the function defined over M × n matrices that, when
calculated on any representative matrix U of |�0〉, returns
f ([|�0〉]). The procedure is carried out by computations over
the matrix U , that belongs to the Stiefel manifold:

(i) One first solves the following equation for the unknown
η♦U ∈ HU = {U⊥K : K ∈ R(M−n)×n}:

U⊥D(·⊥grad f♦(·))(U )[η♦U ] = −U⊥grad f♦(U ). (49)

(ii) Update |�0〉 → |�〉 by moving along the geodesic on
the Grassmannian in the direction of η♦U , by computing a
singular value decomposition (SVD) of η♦U = U�VT and
calculating

[|�〉] = span(UV cos � + U sin �). (50)

In these equations, U⊥ is any full-rank M × (M − n) ma-
trix such that U T U⊥ = 0; the gradient of f♦ at U is the M × n
matrix whose entries are given by (grad f♦(U ))p

q = ∂ f♦(U )
∂U p

q
(U );

DF (x)[y] = d
dt F (x + ty)|t=0 is the directional derivative of F

at x in the direction of y; W⊥ = I − W (W T W )−1W T is the
projection onto the orthogonal complement of the matrix W .
The center dot in Eq. (49) denotes the point where the function
has to be evaluated (and thus it stands for U + tη♦U when
calculating the directional derivative); and the matrices U ,
�, and V are M × n orthonormal, n × n diagonal, and n × n
orthonormal, respectively.

There is a clear analogy between Eq. (49) and the stan-
dard Newton method, Eq. (41): the left-hand side of Eq. (49)
is related to the second derivatives of f♦, calculated in the
direction of η♦U , whereas in the right-hand side are the first
derivatives. However, the projectors onto the orthogonal com-
plement of U and the requirement that the unknown η♦U

belongs to HU (for every element η of HU , U T η = 0) guaran-
tee that variations in U that do not change |�0〉 are canceled
out [39]. Thus, the usage of a redundant set of parameters does
not pose a problem here.

We have adapted this procedure for the overlap function f ,
defined in Eq. (39). Assuming U orthogonal, U T U = 1, this
function can be calculated as

f ([|�〉]) = f♦(U ) =
∑

I

CI FI , (51)

and Eq. (49) becomes the following system of linear equa-
tions:

M∑
r=1

n∑
s=1

Hpr
qs (η♦U )r

s = −J p
q , (52)

where

Hpr
qs =

M∑
p̄=1

(U⊥ )p
p̄

∑
I

CI (H̃I ) p̄r
qs , (53)

J p
q =

M∑
p̄=1

(U⊥ )p
p̄

∑
I

CI (GI ) p̄
q, (54)

(FI ) = det(U |I ), (55)

(GI )p
q = det((U

q← ep)|I ), (56)

(HI )pr
qs = det((U

q← ep
s← er )|I ), (57)

(H̃I )pr
qs =

{
(HI )pr

qs if s 	= q,

−FIδpr otherwise.
(58)

The notation A|I indicates the n × n submatrix of A whose

rows are in the multi-index I , A
q← b represents the matrix A

with the qth column replaced by b, and ep is the pth element
of the canonical basis of RM . The condition η♦U ∈ HU can be
imposed by extending the linear system with the n2 equations
U T η♦U = 0, and solving it with a least-square subroutine.

To see how the quantities GI and HI appear, note that

∂FI

∂U p
q

(U ) = ∂ det(U
∣∣
I
)

∂U p
q

(U )

= tr

(
adj(U

∣∣
I )

∂ (U |I )

∂U p
q

(U
))

= tr

⎛
⎜⎝det(U

1← δ1qep)
∣∣
I

. . . det(U
1← δnqep)

∣∣
I

...
. . .

...

det(U
n← δ1qep)

∣∣
I . . . det(U

n← δnqep)
∣∣
I

⎞
⎟⎠

= (
GI
)p

q
, (59)

where adj(W ) represents the classical adjoint, or adjugate, of
the matrix W . The quantities HI appear similarly from the
directional derivative of the gradient in the left-hand side of
Eq. (49). Thus, the matrices GI and HI are associated to
the first and second derivatives of f♦. The factor −FI in the
diagonal entries of H̃I is a contribution from the projector ·⊥
to the directional derivative [see Eq. (49)].

One has to calculate several n × n determinants in this
algorithm, as it is necessary for the basis transformation of
the wave function |�ext〉 [see Eq. (46)]. However, in the case
of the present algorithm the number of such determinants is
smaller (see Sec. III C 2) and the external wave function is
expressed always in the same basis, with the CI coefficients
that appear in the equations being the same at all iterations.

The case of a CISD wave function and the usage
of symmetry-adapted spatial orbitals

We apply the equations outlined above for the case
where the external wave function is a CISD (configuration
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interaction with single and double excitations) wave function
|�CISD〉. This exemplifies the advantages of this algorithm:
first, the summations over I in Eq. (52) are always over the
same single and double excitations, with the same CI coeffi-
cients throughout the iterations. This does not happen for the
algorithm based on orbital rotations, described in Sec. III A. In
that case, the wave function |�CISD〉 must be given as a linear
combination of excitations on top of the Slater determinant of
each iteration, that obviously changes, and it is not necessarily
the reference used to construct the CISD wave function.

A second advantage is that an efficient implementation is
possible, that benefits from the structure of the wave function,
in particular by exploiting symmetry-adapted spatial orbitals.
In such case the matrix U is divided into blocks and so are
the matrices used to calculate FI , GI , and HI . Because the
determinant of a block-diagonal matrix is the product of the
determinant of each block, these quantities are decomposed in
similar quantities for each spin and irreducible representation.
For example, if all indices pqrs belong to the same spin and
irreducible representation, say alpha orbitals and irreducible
representation � = 1, then

(HI )pr
qs = (HIα

1

)pr

qs

∏
� 	=1

FIα
�

∏
�

FIβ

�
, (60)

whereas if indices pq belong to alpha orbitals, but rs belong
to beta orbitals (and same irreducible representation � = 1):

(HI )pr
qs = (GIα

1

)p

q

(
GIβ

1

)r
s

∏
� 	=1

FIα
�
FIβ

�
. (61)

The complete equations for spin-restricted CISD wave func-
tions are given and discussed in the Appendix.

C. Theoretical comparison of the algorithms

1. Procedures are equivalent

For every initial Slater determinant |�0〉, both algorithms
produce the same Newton step |�0〉 → |�〉. In fact, first note
that Algorithm 2, based on the coefficients matrices U , takes
into account the intrinsic geometry of the Grassmannian as
studied by Absil and coworkers [39]. Thus, it is independent
of the chosen orbital basis, either for the complete one-particle
space W or for the vector space [|�0〉]. Therefore, once an
orbital basis for |�0〉 has been chosen,

|�0〉 = φ1 ∧ φ2 ∧ · · · ∧ φn, (62)

one can always consider a basis for W that contains it, and
extend it to the virtual space of |�0〉:

W = [φ1 ∧ φ2 ∧ · · · ∧ φn ∧ · · · ∧ φM]. (63)

In this condition, the matrix that represents |�0〉 is trivial:

U =
(

1n×n

0(M−n)×n

)
. (64)

Now, let |�ext〉 be expanded in the basis {φp}M
p=1, such

that both algorithms can be applied. This is not required for
Algorithm 2 but we consider it here for the sake of the present
argument. A straightforward application of Eq. (52) with U
given by Eq. (64) shows that the Jacobian and the Hessian in

TABLE I. Number of distinct n × n determinants used in both
algorithms, without considering any spin or spatial symmetry re-
striction. The number of electrons is represented by n, and the total
number of spin orbitals by K . The total number of possible Slater
determinants is Nfull, whereas N represents the number of Slater
determinants with nonvanishing contribution to the wave function in
question. Nfull is assumed to grow as 1

n ( K
n )K [28].

Alg. 1 N2
full = (Kn)2 = ( K!

n!(K−n)! )
2 ∼ 1

n2 ( K
n )2K

Alg. 2 general N[1 + nK + (nK )2] ∼ Nn2K2

FCI ( K!
n!(K−n)! )[1 + nK + (nK )2] ∼ ( K

n )K nK2

CISD [1 + n(K − n) + n(n−1)(K−n)(K−n−1)
4 ]

×[1 + nK + (nK )2] ∼ n4K4

the Algorithm 1, based on orbital rotations, appear as subma-
trices at the right- and left-hand side matrices:

J =
(

0n×n

J

)
, (65)

Hp
q =

(
an×n

H
p
q

)
. (66)

Submatrix a, although nonzero, does not affect the solution of
Eq. (52) since all columns of η♦U ∈ HU must be orthogonal to
the columns of U [η♦U ∈ HU , see comment before Eq. (49)]:

η♦U =
(

0n×n

K

)
= U�VT , (67)

where we recall that a singular value decomposition will be
applied to η♦U in Algorithm 2. Submatrix K in Eq. (67) is the
same that solves Eq. (41) of Algorithm 1. Finally, by expand-
ing the functions exponential, cosine, and sine for matrices,
one shows that the updated U matrix obtained by Eq. (50)
is the same as the first n columns of Eq. (24), except by
multiplication to the orthogonal matrix VT (from the singular
value decomposition), that does not change the corresponding
Slater determinant:

[|�〉] = [eK̂ |�0〉] = span(UV cos � + U sin �). (68)

Hence, both procedures are equivalent.

2. Computational cost of the algorithms

The algorithms presented above scale differently with the
system size. They both rely on the calculation of a large
number of n × n determinants, with n being the number of
electrons [compare Eq. (47) with Eqs. (55)–(57)]. However,
the number of such determinants is quite different in each
case, and they are compared in Table I. Algorithm 1 scales ex-
ponentially, irrespective of the kind of external wave function,
since a full orbital transformation has to be performed. On
the other hand, in Algorithm 2, the basis used to expand the
external wave function is preserved along the iterations, and
thus the number of Slater determinants used for its expansion
remains unchanged (N). This might be much smaller than the
total number of possible Slater determinants (Nfull), as for a
CISD external wave function. However, even for a full config-
uration interaction (FCI) external wave function the number of
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determinant calculations that need to be performed increases
slower than in Algorithm 1, although still exponentially. In
actual computations, the external wave function is usually
eigenfunction of Sz, and often considers molecular spatial
symmetry, reducing the number of determinant calculations.
Relations among FI , GI , and HI of similar multi-indices can
also be used to avoid calculating several of the determinants,
speeding up computations (see the Appendix A 1 b). Further-
more, the transformation of the wave function in Algorithm 1
can be performed much efficiently by the procedure proposed
by Malmqvist [40]. However, this analysis shows that a faster
procedure can be obtained with Algorithm 2, in particular be-
cause it can exploit the structure of the external wave function.

3. Comparison with the algorithm of Zhang and Kollar

A possible pitfall of the Newton method as applied here is
that it might converge to a saddle point of the overlap function,
as it strongly depends on the initial Slater determinant (this
is further explored in Sec. IV A). In our test applications,
discussed in Sec. IV, this has not been a problem since we
are concerned with ground-state wave functions, for which
the restricted Hartree-Fock wave function is a perfectly fine
starting guess. Furthermore, for these cases the present algo-
rithm converges quite fast, typically in three iterations. On the
other hand, the algorithm proposed by Zhang and Kollar [10]
is more robust, optimizing the overlap function by working
with one orbital at a time: in each iteration, all orbitals of the
Slater determinant are fixed except for, say, φi; this orbital is
updated such that the overlap function is maximized under
the restriction that φi is orthogonal to all other orbitals of the
Slater determinant. In the next iteration the procedure is re-
peated with φi+1 (now with φi fixed), or back to φ1, cyclically,
until convergence is obtained. This procedure is guaranteed to
converge to a maximum, although not necessarily to a global
maximum [10]. However, it takes a large number of iterations
to converge, especially after reaching the plateau where just
small updates are made after each iteration (see Fig. 1 of [10]).
Thus, the present algorithms, based on the Newton method,
and the one from Zhang and Kollar, are complementary and
could be used in conjunction: the more robust, but slower,
algorithm of Zhang and Kollar can be used to reach the re-
gion of the Grassmannian close to the optimum point (where
iterations lead to small variations of the overlap function), and
thereafter the Newton method, as presented here, used for a
fast convergence toward the critical point.

IV. SOME EXAMPLES

We have coded pilot implementations of the algorithms
discussed in the previous section by using PYTHON. Tensor
contractions to generate the elements of Eq. (52) are straight-
forwardly implemented with NUMPY [41,42]. A hand-crafted
C/Fortran code can obviously speed up computations, but the
present implementations suffice for our initial purposes. For
Algorithm 2, based on coefficient matrices, two implemen-
tations have been coded: one for a general |�ext〉 and one
specific for |�ext〉 being a CISD wave function. The accuracy
of the implementations has been checked by the following
means:

(1) The Jacobian and Hessian in the Algorithm 1 have
also been calculated by finite differences and compared to the
analytical versions [Eqs. (44) and (45)].

(2) We performed sanity checks on the Algorithm 2 to
ensure that the solution of Eq. (52), η♦U , really satisfies the
original Eq. (49), of Absil and coworkers, with derivatives
calculated by finite differences.

(3) Both implementations of the Algorithm 2 lead to the
same matrices of Eq. (52).

(4) All implementations give the same iterations when
the same |�CISD〉 is used, as required by the conclusion of
Sec. III C 1.

In this section we will describe some example calculations
carried out with these implementations.

A. Hydrogen molecule in a minimal basis

We start by searching the Slater determinant with largest
overlap to the exact ground-state wave function (the FCI wave
function |�0〉) for the hydrogen molecule described by a min-
imal basis set, as discussed in Sec. II B. The STO-3G basis-set
representation [43] has been used. Analytic expressions to
measure entanglement and correlation can be derived for this
case [44]. It is still of profound physical importance since the
distance between |�0〉 and the Grassmannian reaches its max-
imum in the dissociation limit, with noninteracting electrons,
as recently discussed by Ding and Schilling [3]. Here, we will
focus on the behavior of the overlap function.

For this small case there is a simple expression for the
function to be optimized, being clear where its maximum is:
The exact wave function has the form of Eq. (33) and, from
Eq. (38), one obtains (considering normalized wave functions)

〈�(Kα, Kβ )
∣∣�0〉 = C0 cos(Kα ) cos(Kβ )

+
√

1 − C2
0 sin(Kα ) sin(Kβ ), (69)

where C0 is the coefficient of φ+ ∧ φ+ (the “reference de-

terminant”), and
√

1 − C2
0 is the coefficient of φ− ∧ φ− (the

“doubly excited determinant”). The absolute value of this
overlap assumes its maximum at φ+ ∧ φ+ (Kα = Kβ = 0), if
|C0| > 1√

2
. This is the case for every internuclear distance

R, in particular close to the equilibrium distance, where the
weight of the reference determinant is much larger than of the
excited determinant (see Fig. 2). However, note that φ− ∧ φ−
(|Kσ | = π/2) is another critical point of this function, and
the Newton method might converge to it, depending on the
Slater determinant used to start the optimization. In general,
the overlap function might have several critical points over
the Grassmannian, and the optimization procedure might not
converge to a maximum. In practice, if |�0〉 is the exact or an
approximate wave function for the ground state, an obvious
starting point is the Hartree-Fock Slater determinant.

The behavior of the overlap function depends on the dis-
tance between |�0〉 and the Grassmannian. If |�0〉 is close
to the Grassmannian, the maximum at (Kα, Kβ ) = (0, 0) is
very clear. When |�0〉 becomes far from the Grassmannian,
moving away from φ+ ∧ φ+, it gets closer to opposite regions
of the Grassmannian, in particular to φ− ∧ φ−, whose contri-
bution to |�0〉 increases. In the limit R → ∞, |C0| = 1√

2
and
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FIG. 2. The function f�(Kα, Kβ ) = |〈�(Kα, Kβ )|�0〉|, for the hydrogen molecule, for the internuclear distances of (a) 1.4a0, (b) 3.0a0, and
(c) 7.0a0. The upper images show the three-dimensional representation as discussed in Sec. II B, and the bottom images show the space of the
parameters Kα and Kβ . The exact wave function |�0〉 is represented by a square in the upper images.

|�0〉 becomes equally distant to every Slater determinant of
the form

|�〉 = [cos(K ) φ+ + sin(K ) φ−]

∧ [cos(−K ) φ+ + sin(−K ) φ−]

= (a φ+ +
√

1 − a2 φ−)

∧ (a φ+ −
√

1 − a2 φ−). (70)

The maximum overlap is reached not at a single point of the
Grassmannian, but in a submanifold of it. This submanifold,
seen in Fig. 2(c), is the stripe crossing diagonally the param-
eters space. [Note that, although |�0〉 appears to be closer to
φ− ∧ φ− in Fig. 2(c), this is just because this representation
does not preserve the metric of the projective space.]

B. Selected systems

For H2 in a minimal basis set (1s orbital centered in
each atom), the point in the Grassmannian with maximum
overlap with the exact ground-state wave function is just the
restricted Hartree-Fock Slater determinant |�HF〉 = φ+ ∧ φ+
(see Sec. IV A). This is not the case in general. In this section
we present the value of |〈�minD|�ext〉| for selected systems,
where |�minD〉 is the optimized Slater determinant with largest
overlap with |�ext〉 [and thus with minimum distance to |�ext〉

according to the metrics in Eqs. (1)–(3)]. As for |�ext〉, we
use the configuration interaction with single and double ex-
citations (CISD) wave function, calculated with the MOLPRO

package [45]. We consider the following basis sets: STO-
3G [43], 6-31G [46], and cc-pVnZ [47] (n ∈ {D, T, Q}). The
optimization procedure is started with |�HF〉, the restricted
Hartree-Fock wave function. The frozen core approximation
has been used in all examples; this implies that core orbitals of
|�minD〉 are the same of |�HF〉 since the elements of the Jaco-
bian associated to these orbitals are zero [see Eq. (44)]. Thus,
the optimization of |�minD〉 can be made over a Grassmannian
of smaller order, by considering only orbitals correlated in
|�CISD〉.

Aside from applying the present algorithms, the objective
of this section is to compare |�minD〉 and |�HF〉 or, equiv-
alently, |〈�minD|�CISD〉| and |〈�HF|�CISD〉|, the latter being
directly available after a CISD calculation. Note that

〈�HF|�CISD〉 = 〈�HF|P̂minD + Q̂minD|�CISD〉
= 〈�HF|�minD〉〈�minD|�CISD〉

+〈�HF|Q̂minD|�CISD〉
≈ 〈�HF|�minD〉〈�minD|�CISD〉, (71)

where P̂minD = |�minD〉〈�minD| is the projector onto |�minD〉
and Q̂minD = 1 − P̂minD. The approximation in Eq. (71) holds
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FIG. 3. The square of the absolute value for the overlap between |�minD〉, and |�CISD〉 (top graphs) or |�HF〉 (bottom graphs). Inset graphs
show the curves in a closer range at the region indicated by the rectangle.

whenever |�minD〉 is not too far from |�HF〉, hence the term
with QminD can be neglected. Thus,

〈�HF|�CISD〉
〈�minD|�CISD〉 ≈ 〈�minD|�HF〉. (72)

Recall that |〈�minD|�HF〉| is related to the distance (measured
in P

∧n W) between these two Slater determinants, and either
side of Eq. (72) can be used to estimate the importance of us-
ing the optimized |�minD〉 (instead of plain |�HF〉) to measure
the correlation. In the calculations we carried out, Eq. (72)
holds.

The first application is for H2 in larger basis sets, be-
ing |�CISD〉 the exact wave function. In Fig. 3(a) we show
the values of |〈�minD|�CISD〉|2 and |〈�minD|�HF〉|2 as func-
tion of the internuclear distance. The qualitative behavior of
|〈�minD|�0〉|2 is the same at all the basis sets, namely, it
rapidly decreases during the dissociation, reaching the value
of circa 0.5. The reasoning has been discussed in Sec. IV A.
However, for larger basis sets, |�minD〉 deviates from |�HF〉,
in particular at larger interatomic distances. For the cc-pVQZ
basis set at R ≈ 7.0a0, |〈�minD|�0〉|2 is 94% of the value of
|〈�HF|�0〉|2.

For the Li2 molecule, we observe a more complex variation
of |〈�minD|�0〉|2 along the dissociation, presenting a maxi-
mum at R ≈ 5.5a0, slightly after the equilibrium distance (at

R = 5a0). This maximum indicates that the correlation at this
point is minimum, as already discussed by Benavides-Riveros
and coworkers [9]. Although the qualitative behavior of
|〈�minD|�0〉|2 does not change with basis set, |〈�minD|�HF〉|2
is strongly dependent on the basis set. The deviation of
|〈�minD|�0〉|2 from |〈�HF|�0〉|2 increases for larger basis
sets, particularly in regions where correlation is also large.
Note that, under the frozen core approximation, the CISD
wave function is also exact for Li2.

Table II shows results from the optimization of |�minD〉,
with respect to the CISD wave function, for some other
molecules. As it happens for the previous examples, |�minD〉
is quite close to |�HF〉, especially for systems with small
correlation, such as water in the equilibrium geometry. For
the stretched water molecule correlation effects increase and
|〈�minD|�HF〉|2 decreases, but it is still over 0.98. Observe that
〈�minD|�HF〉 is rather less sensitive to the increase of basis set
than 〈�minD|�CISD〉. For the ozone molecule, and for the three
transition metal diatomic molecules, both 〈�minD|�CISD〉 and
〈�minD|�HF〉 are quite insensitive with basis set.

V. CONCLUSIONS

In this article we described procedures to optimize the
critical points of the overlap to an arbitrary wave function over
the set of Slater determinants. This can be used to measure the
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TABLE II. Results for the optimization of the Slater determinant with the largest overlap with the CISD wave function (|�minD〉), for
selected systems and basis sets.

Molecule Geometry Basis set |〈�minD|�CISD〉|2 × 100 |〈�minD|�HF〉|2 × 100

H2O ROH = 0.9633 Å cc-pVDZ 95.063 99.961
aHOH = 102.57◦ cc-pVTZ 94.504 99.954

cc-pVQZ 94.391 99.945

H2O ROH = 2.5 Å cc-pVDZ 63.356 98.533
aHOH = 102.57◦ cc-pVTZ 70.812 98.481

cc-pVQZ 72.786 98.518

O3 ROO = 1.2728 Å cc-pVDZ 87.310 99.405
aOOO = 116.75◦ cc-pVTZ 87.181 99.539

cc-pVQZ 87.215 99.572

ScH RScH = 1.7754 a0 cc-pVDZ 92.059 99.785
cc-pVTZ 92.361 99.769
cc-pVQZ 92.472 99.769

CuH RCuH = 1.4626 a0 cc-pVDZ 93.451 99.722
cc-pVTZ 93.544 99.761
cc-pVQZ 93.481 99.761

ZnO RZnO = 1.7047 a0 cc-pVDZ 92.016 99.593
cc-pVTZ 91.916 99.698
cc-pVQZ 91.827 99.723

distance between a correlated wave function and the set of
Slater determinants, that is a measure of correlation incor-
porated in the wave function. Obtaining such distance is
important to understand the relation between electronic cor-
relation and entanglement [2,3], and to analyze the interplay
between static and dynamic correlation [9]. The optimization
procedures described here can be used for relatively large sys-
tems, using exact as well as approximate wave functions. An
efficient version specific for a configuration interaction with
single and double excitations (CISD) wave function is pre-
sented. We developed these procedures by acknowledging that
the set of Slater determinants form a submanifold of the space
of wave functions. This manifold is the Grassmannian, whose
geometry is of central importance in mathematics, but still of
few known applications in atomic and molecular physics or
in theoretical chemistry, even though Slater determinants are
key elements to electronic structure theory. This work shows
how the geometry of the Grassmannian can be used for both
theoretical considerations on the electron correlation and the
practical optimization of a Slater determinant.

We have considered two approaches for an optimization
process based on the Newton method. The first is using the
standard parametrization by orbital rotations, and the second
is an algorithm that explores the intrinsic geometry of the
Grassmannian, as described by Absil et al. [39]. We showed
that both algorithms are equivalent, in the sense that they lead
to the same iterations (the same sequence of Slater determi-
nants). However, the second algorithm allows a much more
efficient implementation since it avoids the undesirable basis
transformation step of the external wave function, that is not
only time consuming, but destroys the original rank truncation
of the wave function. Furthermore, the second algorithm uses
directly the full coefficients matrix of the orbitals in the Slater
determinant, that is a set of nonindependent parameters. It is
often assumed that wave-function optimizations based on the
Newton method cannot be performed in such condition, and

an independent set of parameters that covers the desired space
of wave functions is necessary. Here, we showed that this is
perfectly possible, as long as this is made carefully to project
out the variations on the redundant parameters that do not
change the wave function. This is done after considerations
on the geometry of the underlying manifold [39].

The present algorithms converge quickly, typically in
three iterations, as long that the starting point is reasonably
close to the maximum overlap Slater determinant, such as
the restricted Hartree-Fock Slater determinant for most of
the systems. However, the procedures might converge to a
relative maximum or to saddle points, if started with a poor
initial guess. For such difficult cases, the present algorithms
can be used in conjunction with the procedure of Zhang and
Kollar [10], that converges more robustly, although in much
more iterations.

Applications of the algorithm suggest that using the
restricted Hartree-Fock wave function |�HF〉 to measure cor-
relation is qualitatively equivalent to using |�minD〉, the Slater
determinant that minimizes the distance to an external wave
function |�ext〉. For most of the cases, |〈�minD|�ext〉|2 ac-
counts for more than 99% of |〈�HF|�ext〉|2. However, there
are quantitative differences when correlation is very large,
and basis set truncation effect might be strong on both
|〈�minD|�ext〉| and |〈�minD|�HF〉|. We emphasize that the
present examples are all singlet and closed-shell systems,
with CISD wave functions based on a restricted Hartree-Fock
reference, what forces |�minD〉 to be also spin restricted, and
thus naturally close to |�HF〉. For instance, |�minD〉 is actually
very far from the unrestricted Hartree-Fock wave function
in cases of instabilities on the restricted Hartree-Fock wave
function, as in the dissociation limit of H2 and Li2 molecules
discussed here. Larger differences between |〈�minD|�CISD〉|
and |〈�HF|�CISD〉| are thus expected for open-shell cases,
where the spin restriction over |�minD〉 has to be relaxed.
Furthermore, the single-reference CISD method is of limited
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usage nowadays, and the evaluation of |〈�minD|�CCSD〉|,
where |�CCSD〉 is the coupled cluster with single and double
excitations [48,49], for instance, is more appealing. However,
the full set of excited determinants would be needed for the
present algorithms. One possible approximation is to consider
only the projection of the CCSD, wave function into the space
of up to doubly excited determinants, that is a CISD-like
wave function. Hence, the present algorithms allow several
numerical investigations on the quantification of electronic
correlation.
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APPENDIX

1. Spatial orbitals and symmetry considerations

In this Appendix we present explicit formulas for the case
where |�ext〉 is constructed from symmetry-adapted spatial
orbitals, based on Abelian point groups. This means that the
spin-orbital space [Eq. (5)] is given as the following direct
sum of spaces:

W = Wα
1 ⊕ · · · ⊕ Wα

g ⊕ Wβ

1 ⊕ · · · ⊕ Wβ
g , (A1)

where the vector space associated to the irreducible represen-
tation (irrep) � and spin σ is of dimension M�:

Wσ
� = [φ�

1 ⊗ σ ∧ · · · ∧ φ�
M�

⊗ σ
]
. (A2)

In this condition, Eq. (23) becomes [28]

K̂ =
∑

�

∑
(i,a)∈�

Ka,�
i

(
Ea,�

i − Ei,�
a

)
, (A3)

where E p,�
q = a†

αp,�aαq,� + a†
βp,�aβq,� are the singlet excita-

tion operators for the irrep �. Extension of the algorithm
based in orbital rotations discussed in Sec. III A is straight-
forward, although care should be taken to the orbital ordering
and the sign of coefficients.

a. Algorithm 2: Equations for a general |�ext〉
Function f♦ becomes

f♦(U ) =
∑

I
occ(I ) = occ(U )

CI

∏
�

FI�
α

FI�
β
, (A4)

and Eq. (52) becomes(
Hσ ′�′

σ�

)pr

qs
((η♦U )σ ′�′ )r

s = −(Jσ� )p
q, (A5)

where σ� indicates the block of the corresponding matrix
associated to spin σ and irrep �. The notation “occ(I ) =
occ(U )” indicates that only terms of |�ext〉 that have the
same number of electrons as U in all blocks must be in-
cluded. Indices p and r run over all orbitals of that symmetry

(M� in number), whereas q and s run over the electrons in
that spin and symmetry. In the following equations, quanti-
ties Jσ� and GI�

σ
are two-index tensors of shape (M�, nσ

� ),
whereas Hσ ′�′

σ� and H̃I�
σ

are four-index quantities, of shape
(M�, nσ

�, M�, nσ ′
�′ ) and (M�, nσ

�, M�, nσ
� ), respectively. The

tensor product ⊗ between a (M, n) quantity by a (M ′, n′)
quantity is the (M, n, M ′, n′) quantity whose entries are

(A ⊗ B)pr
qs = Ap

qBr
s . (A6)

Jσ� = U �
σ ⊥

∑
I

occ(I ) = occ(U )

CI

( ∏
{σ ′,�′}	={σ,�}

FI�′
σ ′

)
GI�

σ
,

(A7)

Hσ�
σ� = (U �

σ ⊥ ⊗ 1)
∑

I
occ(I ) = occ(U )

×CI

( ∏
{σ ′,�′}	={σ,�}

FI�′
σ ′

)
H̃I�

σ
, (A8)

Hσ ′�′
σ� = (

U �
σ ⊥ ⊗ U �′

σ ′ ⊥
) ∑

I
occ(I ) = occ(U )

×CI

⎛
⎜⎜⎜⎝

∏
{σ ′′, �′′} 	= {σ ′, �′}
{σ ′′, �′′} 	= {σ, �}

FI�′′
σ ′′

⎞
⎟⎟⎟⎠GI�

σ
⊗ GI�′

σ ′
, (A9)

where the last equation holds for {σ, �} 	= {σ ′, �′}.
These equations are obtained after considering the

block-diagonal structure of the matrices U |I , (U
q← ep)|I , and

(U
q← ep

s← er )|I , along with the fact that the determinant
of a block-diagonal matrix is the product of the determinants
of its blocks (see Sec. III B). If I has a different number
of electrons than in U in any of its σ� blocks [i.e,
occ(I ) 	= occ(U )] the matrices above have nonsquare blocks
and their determinants are zero.

b. Algorithm 2: Equations for a restricted CISD wave function

Suppose now that |�ext〉 is a spin-restricted CISD wave
function, based on a restricted and closed-shell reference
Slater determinant. The reference determinant is given as

|�0〉 = φ�=1
1 ∧ · · · ∧ φ�=g

ng
∧ φ

�=1
1 ∧ · · · ∧ φ

�=g
ng

= |�0〉1 ∧ · · · ∧ |�0〉g ∧ |�0〉1 ∧ · · · ∧ |�0〉g, (A10)

where, for example, the subspace of [|�0〉] associated to alpha
orbitals of irrep 1 is [|�0〉1] and so on. Overlines indicate beta
spin. To simplify the notation, only the blocks where some
excitation occurs will be shown, and the blocks not shown are
assumed to be equal as in the reference determinant. Thus, for
example,∣∣�a

i

〉
�

= |�0〉1 ∧ · · · ∧ φ�
1 ∧ · · · ∧ φ�

i−1

∧φ�
i+1 ∧ · · · ∧ φ�

n�
∧ φ�

a ∧ · · · ∧ |�0〉g (A11)
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is an alpha single excitation from i to a in the irrep �. With
this notation, the CISD wave function can be written as

|�CISD〉 = C0|�0〉 +
∑

�

∑
(i,a)∈�

Ca,�
i

(∣∣�a
i

〉
�

+ ∣∣�a
i

〉
�

)

+
∑

�

∑
(i > j)
(a > b)

}
∈�

Cab,�
i j

(∣∣�ab
i j

〉
�

+ ∣∣�ab
i j

〉
�

)

+
∑

�

∑
(i, a)
( j, b)

}
∈�

Cab,�
i j

∣∣�a
i

〉
�

. . .
∣∣�b

j

〉
�

+
∑
�>�′

∑
(i, a) ∈ �

( j, b) ∈ �′

Aab,��′
i j

(∣∣�b
j

〉
�′ . . .

∣∣�a
i

〉
�

+ ∣∣�b
j

〉
�′ . . .

∣∣�a
i

〉
�

)
+
∑
�>�′

∑
(i, a) ∈ �

( j, b) ∈ �′

Bab,��′
i j

(∣∣�b
j

〉
�′ . . .

∣∣�a
i

〉
�

+ ∣∣�a
i

〉
�

. . .
∣∣�b

j

〉
�′
)

+
∑

I doubles over |�0〉
occ(I ) 	= occ(0)

CI

∣∣�I
〉
, (A12)

where Cab,�
i j = Cba,�

ji , as it is a restricted wave function. As will

be seen below, Aab,��′
i j and Bab,��′

i j always appear summed,
and thus the coefficients of double excitations arising as prod-
uct of single excitations at different blocks are merged in a
single quantity D:

Dab,��
i j = Cab,�

i j , (A13)

Dab,��′
i j = Aab,��′

i j + Bab,��′
i j for � 	= �′. (A14)

Determinants that have some spin or irrep with a number
of electrons different than in the reference determinant are
collected in the last term, and they contribute neither to f♦ nor
to the matrices used in the optimization. Applying this wave
function in the equations of Appendix A 1 a, the following
equations are obtained. At first we define some intermediates:

F0 =
∏
�

F 2
I�
0
, (A15)

F�
0 =

∏
�′ 	=�

F 2
I�′
0

, (A16)

F��′
0 =

∏
�′′ 	= �

�′′ 	= �′

F 2
I�′′
0

, (A17)

with analogous definitions for F��′�′′
0 and F��′�′′�′′′

0 ;

K��′ = 2
∑

(i, a) ∈ �

( j, b) ∈ �′

Dab,��′
i j FI�

0
FI�′

0
FIa,�

i
FIb,�′

j

for � 	= �′. (A18)

In these equations, I�
0 is the multi-index of the reference for

irrep �, whereas Ia,�
i is the multi-index for the single excita-

tion from i to a, also in �. The other type of multi-index that
appears is Iab,�

i j , for double excitations at irrep �:

L� = 2FI�
0

⎛
⎜⎜⎜⎝
∑

(i,a)∈�

Ca,�
i FIa,�

i
+

∑
(i > j)
(a > b)

}
∈�

Cab,�
i j FIab,�

i j

⎞
⎟⎟⎟⎠

+
∑

(i, a)
( j, b)

}
∈�

Dab,��
i j FIa,�

i
FIb,�

j
. (A19)

The factor 2 takes into account the contributions from alpha
and beta excitations, both totally within the same irrep �. With
the so far defined quantities, we are able to calculate f♦(U ),
assuming U orthonormal:

f♦(U ) = C0F0 +
∑

�

F�
0 L� +

∑
�>�′

F��′
0 K��′

. (A20)

It is not difficult to see the origin of each term of Eq. (A20)
[compare to Eq. (A4)]: the first is the contribution from the
reference determinant, that is the product of all FI�

0
, for all �

and for each spin. Since it is a closed-shell restricted wave
function, this is just F0. The second term of Eq. (A20) is
the contribution of all excitations within the same irrep: for
all such excitations, the other irrep blocks contribute with a
F 2

I�′
0

, that form a common F�
0 ; the contribution of the irrep

in question is the CI coefficient, times an appropriate FI� ,
as can be seen in Eq. (A19). The last term is the contri-
bution of excitations at mixed irreps (say � and �′): each
determinant contributes with one FI�

0
, one FI�′

0
(from the

spins where no excitations occurred, whichever they are), and
the FI� and FI�′ of corresponding single excitations. This is
clearly seen in (A18), and the contribution of remaining irreps
forms F��′

0 .
For the matrices H and J , Eqs. (A7) to (A9), the interpre-

tation is similar. We define the intermediates [the quantities
GIa,�

i
, Ĝ�

ia, and M� have shape (M�, n� ), whereas G � , H̃,

and H � have shape (M�, n�, M�, n� )]:

Ĝ�
ia = FI�

0
GIa,�

i
+ FIa,�

i
GI�

0
, (A21)

C
a,�

i = Ca,�
i +

∑
� 	=�

1

FI�
0

∑
( j,b)∈�

F
Ib,�

j
Dab,��

i j , (A22)

M� = C0FI�
0

GI�
0

+
∑

(i,a)∈�

C
a,�

i Ĝ�
ia

+
∑

(i > j)
(a > b)

}
∈�

Cab,�
i j

(
FI�

0
GIab,�

i j
+ FIab,�

i j
GI�

0

)

+
∑

(i, a)
( j, b)

}
∈�

Dab,��
i j FIa,�

i
GIb,�

j
, (A23)
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G � = C0GI�
0

⊗ GI�
0

+
∑

(i,a)∈�

C
a,�

i

(
GIa,�

i
⊗ GI�

0
+ GI�

0
⊗ GIa,�

i

)

+
∑

(i > j)
(a > b)

}
∈�

Cab,�
i j

(
GI�

0
⊗ GIab,�

i j
+ GIab,�

i j
⊗ GI�

0

)

+
∑

(i, a)
( j, b)

}
∈�

Dab,��
i j GIa,�

i
⊗ GIb,�

j
, (A24)

H � = C0FI�
0

H̃I�
0

+
∑

(i,a)∈�

C
a,�

i

(
FI�

0
H̃Ia,�

i
+ FIa,�

i
H̃I�

0

)

+
∑

(i > j)
(a > b)

}
∈�

Cab,�
i j

(
FI�

0
H̃Iab,�

i j
+ FIab,�

i j
H̃I�

0

)

+
∑

(i, a)
( j, b)

}
∈�

Dab,��
i j FIa,�

i
H̃Ib,�

j
. (A25)

Note that the terms from “single excitations” in these quanti-
ties contain a contribution from double excitations that occur
partially in � and partially in another irrep [see Eq. (A22)],
and thus represent indeed single excitations from the point of
view of irrep �.

Finally,

J� = U �⊥

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
F�

0 M� +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
∑
� 	=�

F��
0 L� +

∑
� > �

� 	= �

� 	= �

F�� �
0 K� �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

FI�
0

GI�
0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (A26)

H�
� = (U �⊥ ⊗ 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
F�

0

(
H � + (1 ⊗ U �⊥)G �

)
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
∑
� 	=�

F��
0 L� +

∑
� > �

� 	= �

� 	= �

F�� �
0 K� �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(

FI�
0

H̃I�
0

+ GI�
0

⊗ (U �⊥GI�
0

)
)
⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

(A27)

H�′
� = 2(U �⊥ ⊗ U �′ ⊥)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
F��′

0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FI�′
0
M� ⊗ GI�′

0
+ FI�

0
GI�

0
⊗ M�′ + 1

2

∑
(i, a) ∈ �

( j, b) ∈ �′

Dab,��′
i j Ĝ�

ia ⊗ Ĝ�′
jb

−
⎛
⎝ ∑

(i,a)∈�

Ĝ�
ia

∑
( j,b)∈�′

FIb,�′
j

Dab,��′
i j

⎞
⎠⊗ GI�′

0
− GI�

0
⊗
⎛
⎝ ∑

( j,b)∈�′
Ĝ�′

jb

∑
(i,a)∈�

FIa,�
i
Dab,��′

i j

⎞
⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−C0F��′
0 +

∑
� 	=�,�′

F��′�
0 L� +

∑
� > �

� 	= �, �′

� 	= �, �′

F��′� �
0 K� �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

FI�
0

FI�′
0

GI�
0

⊗ GI�′
0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (A28)

By inspection on these expressions one can see that the quantities FI and GI for single excitations, FIa,�
i

and GIa,�
i

, are used often

and their storage does not pose a problem. Other quantities such as H̃I and those associated to double excitations are too many
for storage, but they are used only once. Thus, an efficient implementation of these equations can be made that explores these
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facts. Furthermore, the following relations among FI , GI , and HI hold, and can be used to calculate some of these quantities
from others:

FIa
i

= (−1)i+n
n∑

q=1

U a
q

(
GI0

)i
q, (A29)

FIab
i j

= (−1)i+n+(b>a)
n∑

q=1

U a
q

(
GIb

j

)i
q, (A30)

(
GIa

i

)p

q =
{

(−1)i+n
∑n

q′=1(1 − δqq′ )U a
q′
(
HI0

)pi

qq′ , p 	= a

(−1)i+n
(
GI0

)i
q
, p = a

(A31)

where (b > a) = 1 if b > a, 0 otherwise.
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