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Solving optimization problems with Rydberg analog quantum computers: Realistic requirements
for quantum advantage using noisy simulation and classical benchmarks
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Platforms of Rydberg atoms have been proposed as promising candidates to solve some combinatorial
optimization problems. Here we compute quantitative requirements on the system sizes and noise levels that
these platforms must fulfill to reach quantum advantage in approximately solving the Unit-Disk Maximum
Independent Set problem. Using noisy simulations of Rydberg platforms of up to 26 atoms interacting through
realistic van der Waals interactions, we compute the average approximation ratio that can be attained with a
simple quantum annealing-based heuristic within a fixed temporal computational budget. Based on estimates
of the correlation lengths measured in the engineered quantum state, we extrapolate the results to large atom
numbers and compare them to a simple classical approximation heuristic. We find that approximation ratios of at
least ≈0.84 are within reach for near-future noise levels. Not taking into account further classical and quantum
algorithmic improvements, we estimate that quantum advantage could be reached by attaining a number of
controlled atoms of ∼8000 for a time budget of 2 s, and ∼1000–1200 for a time budget of 0.2 s, provided the
coherence levels of the system can be improved by a factor 10 while maintaining a constant repetition rate.
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I. INTRODUCTION

In recent years, quantum hardware has witnessed very
rapid technological progress [1,2], while still being charac-
terized by a substantial level of imperfections [3,4]. It is thus
a very timely task to realistically assess the requirements for
reaching a break-even point with classical algorithms and
hence guide future necessary developments. This task first
requires the identification of problems that are difficult to
solve classically and for which some quantum platforms are
expected to provide some form of speedup. Among the many
classes of computational problems put forth as promising can-
didates, NP-hard combinatorial optimization problems stand
out as prototypical hard problems. Many of them have indus-
trial relevance and exhibit a natural encoding onto quantum
machines, through Ising Hamiltonians and quantum anneal-
ing (see, e.g., Ref. [5]). Recently, for instance, the MaxCut
and the Maximum Independent Set problems have received
attention as candidates for quantum advantage [6–8]. These
optimization problems are particularly well suited to noisy
intermediate scale quantum (NISQ) computers, as they can
be solved using various hybrid quantum-classical approaches
[9–12].

The predictive assessment of a break-even point calls for
a realistic modeling of imperfections and a precise definition
of the algorithmic success metric. While the above-mentioned
quantum approaches (including quantum annealing) provide
a general framework for tackling combinatorial optimization
problems with quantum machines [9,10], very little is known
about their performance under realistic hardware models, in-
cluding a precise modeling of the microscopic Hamiltonian,

decoherence effects, and readout errors. These imperfections
give these quantum algorithms a stochastic and heuristic na-
ture. In particular, approximate (i.e., valid, but suboptimal)
solutions to a given instance of a problem might be returned.
These approaches should therefore be compared with classical
algorithms designed for the similar task of approximately
solving NP-hard problems, namely, approximation algorithms
[13]. For such a comparison, the most widespread success
metric is known as the approximation ratio. This quality factor
must be put in perspective with the execution time of both
kinds of algorithms.

Due to the spatial structure of their interatomic interac-
tions, platforms of Rydberg atoms [14] have been recently
proposed [8] as candidate quantum processors to solve a
subclass of the MIS problem called the Unit-Disk Max-
imum Independent Set problem (UD-MIS). For instance,
Ref. [8] compared the probability for finding the UD-MIS so-
lution using the—analog—quantum annealing algorithm and
the—digital (i.e., gate-based)—Quantum Approximate Opti-
mization Algorithm (QAOA [12]) algorithm in the absence of
quantum noise, showing the potential of the QAOA approach.
Reference [15] investigated the generic effect of dephasing
and relaxation noise on the QAOA algorithm with a simplified
hard-sphere model of the Rydberg interaction.

Despite the promises of the digital (QAOA) approach and
the steady progress to make Rydberg platforms suitable dig-
ital platforms [16,17], they are still lagging behind the two
major digital quantum computing platforms, namely, super-
conducting [18] and trapped-ion [19] processors, in terms of
gate fidelities. Conversely, the number of controllable atoms
in today’s most advanced analog Rydberg setups is close to
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100 [20,21] and far exceeds the number of qubits of digital
platforms, thus severely challenging classical simulation ca-
pabilities. While recent experimental work [22] demonstrated
the implementation of adiabatic processes that could allow to
tackle UD-MIS on grid graphs (square and triangular), other
recent works [20,23,24] demonstrated the possibility for ar-
bitrarily positioning tens of neutral atoms, making it possible
for the Rydberg platform to tackle almost any of the graph
instances coming up in UD-MIS problems.

In this work, we therefore quantitatively compare the po-
tential of Rydberg platforms, described in a realistic way and
operated as analog quantum processors, to solve the UD-
MIS optimization problem using a quantum annealing-based
approximation method, with respect to a simple classical ap-
proximation approach for this problem.

We start by setting up a generic methodology for com-
paring quantum and classical randomized approximation
algorithms via the comparison of the maximum approxima-
tion ratio achievable within a predefined computational time
budget. In particular, we study how the system size and
number of random samples (or repetitions) impact the approx-
imation ratio.

On the classical side, we introduce a previously not
introduced (to our best knowledge), simple locality-based
approximation heuristic, inspired from state-of-the-art ap-
proximation algorithms [25–27], and benchmark it on a class
of experimentally-implementable random graphs. We qualify
it with respect to our time-budget metric and use it to estimate
a classical boundary.

On the quantum side, we construct a hardware model
with a realistic account of the van der Waals interactions, of
decoherence and readout errors, and we validate it against
published experimental results.

We conduct, under this model and improved noise mod-
els mimicking near-term and future hardware improvements,
numerical noisy simulations of Rydberg systems executing
an annealing schedule (similar to the schedules used in
Refs. [8,22]) aimed at heuristically tackling UD-MIS. We say
this process constitutes a “quantum-annealing-based heuris-
tic,” as it differs from standard quantum annealing by the
fact that the final Hamiltonian (the experimental Rydberg
“resource” Hamiltonian) is not the ideal “target” UD-MIS
Hamiltonian. We reach the unprecedented number of 26
atoms (to our best knowledge, previous noisy simulation work
reached 16 [22] and 18 [15] atoms). In so doing, we iden-
tify the existence of a finite and noise-dependent optimal
annealing time, a property that is specific to systems with
decoherence.

We use these numerical results to estimate correlation
lengths within Rydberg systems for various noise levels.
Based on this correlation length and on statistical arguments,
we extrapolate the numerical results to larger numbers of
atoms. By comparing the so-obtained best quantum approx-
imation ratio to that obtained by our classical approximation
approach, we find an estimation of the conditions under which
Rydberg platforms should outperform the classical approach.

The paper is organized as follows: Sec. II introduces the
UD-MIS problem and the classical algorithmic approaches
to solving it; in Sec. III we describe the methods, quantum
(III A) and classical (III B), that we selected for our compar-

ison; finally, in Sec. IV we state our results relative to the
break-even point, in terms of noise levels and number of
variables, between classical and quantum approaches.

II. THE UNIT-DISK MAXIMUM INDEPENDENT
SET PROBLEM

In this section, we describe the UD-MIS problem, and
introduce the concept of approximation algorithm. It allows
us to describe our methodology for comparing quantum and
classical approaches to NP-hard problems, which consists in
studying the ability to approximately solve NP-hard problems
within a predefined time budget.

A. Definition

Let G ≡ (V, E ) denote a graph with vertex set V and
edge set E . Let N ≡ |V | denote the number of vertices of
G, and S ≡ (n(S)

1 . . . n(S)
N ) denote a length-N bitstring (n(S)

i ∈
{0, 1}) with Hamming weight (number of nonzero bits) |S| =∑N

i=1 nS
i .

The Maximum Independent Set (MIS) problem consists in
solving the following maximization problem:

max
S∈B

|S| (1)

s.t. S ∈ I.S.,

where I.S. (for “Independent Sets”) is the set of bitstrings
(n1, . . . , nN ) corresponding to independent sets of G, i.e.,
sets of mutually nonconnected vertices. Namely, a bit-
string S = (n1, . . . , nN ) corresponds to an independent set if
∀(i, j) ni = n j = 1 ⇒ (i, j) /∈ E . B denotes the set of all
possible bitstrings. The size of B is exponential in the graph
size, |B| = 2N .

In other words, the MIS problem consists in, given a graph
G, determining the size of the largest possible independent
set and returning an example of such a set [28, p. 108, on
MaxClique, the dual problem of MIS].

The Unit-Disk MIS (UD-MIS) problem is the MIS problem
restricted to unit-disk graphs. A graph is a unit-disk graph
if one can associate a position in the two-dimensional plane
to every vertex such that two vertices share an edge if and
only if their distance is smaller than unity. Figure 1 displays
an example of a unit-disk graph, with an example maximum
independent set for that graph, in red.

B. Classical algorithmic approaches

UD-MIS is NP-hard, which means that any NP optimiza-
tion problem can be reduced (reformulated) as UD-MIS with
polynomial overhead [28]. Under the widely believed as-
sumption that P �= NP, this implies that there is no generic
polynomial-time algorithm for UD-MIS, i.e., no algorithm
that would take as input any unit-disk graph and return an
independent set of maximum size, with certainty or good
probability, in polynomial time.

However, while restricting the input of the MIS problem
to unit-disk graphs preserves NP-hardness, the difficulty of
approximately solving it drastically changes. UD-MIS indeed
allows for efficient approximation algorithms, as we will now
discuss.
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FIG. 1. An example of a unit-disk graph with 10 vertices. The red
dots correspond to a maximum independent set for this graph, i.e., a
set of mutually nonconnected vertices of maximum cardinality.

An approximation algorithm to an NP-hard problem is a
polynomial-time algorithm returning solutions that are guar-
anteed to be within a certain percentage of the optimum in
terms of a cost function. Here the cost function is the cardi-
nality |S| of an independent set.

Formally, a polynomial-time algorithm A may be called
approximation algorithm [13,29] to a given NP-hard maxi-
mization problem if, given an instance I (in our case, a graph
G), it returns a solution S such that

α ≡ C(S, I )

C(S∗, I )
� φ(|I|), (2)

where φ is a scalar function, sometimes called approxima-
tion factor, specifying a guarantee on the approximation
ratio achieved achieved by the algorithm on inputs of size
|I|. NP-hard optimization problems may then be classified
with respect to the approximation factor achieved by their
best approximation algorithm, on what could be called an
“approximability scale” from least approximable to most ap-
proximable.

For instance, a maximization problem allowing only for
factors φ(|I|) decreasing with |I| is usually informally con-
sidered as hard to approximate. This is in fact the case for
the general MIS problem, which cannot allow for anything
better than a polynomially decreasing factor under specific
complexity-theoretic assumptions [13].

Some other NP-hard problems, such as MaxCut, allow for
a constant-factor approximation algorithm, i.e., with φ(|I|) =
φ independent of the input size. A value close to 1, with a
simple enough algorithm, may render the problem easy to
approximately solve in practice.

UD-MIS falls in yet another category of problems, usu-
ally informally considered as the “most easily approximable
problems,” namely, those allowing for a Polynomial-Time
Approximation Scheme (PTAS).

Formally, a PTAS is an approximation algorithm that,
given any ε > 0 achieves a factor (1 − ε) in O(polyε (|I|));
i.e., given any fixed ε, the complexity of returning a solution

TABLE I. Examples of NP-hard optimization problems with
varying degrees of approximation hardness, sorted from least ap-
proximable (general MIS) to most approximable (Knapsack, which
allows for a strong version of PTAS called f-PTAS [13]).

Problem Best approx. factor [13]

General MIS Polynomial
Bounded-degree MIS Constant
MaxCut Constant (∼0.878)
VertexCover PTAS
UD-MIS PTAS
Knapsack f-PTAS

within a factor (1 − ε) of the optimal is polynomial in the size
of the input. A PTAS may therefore return solutions arbitrarily
close to the optimal, at the expense of a longer computational
time (the degree and coefficients of the polynomial may in-
crease when ε decreases). In other words, a PTAS makes a
problem “constant-factor approximable for any factor.”

Table I gives examples of problems with varying degrees
of approximabilities. Note how the MIS problem goes from
inapproximable (polynomial factor) to constant-factor and
PTAS-approximable when one restricts its input to bounded-
degree graphs and unit-disk graphs, respectively.

All PTAS’s for UD-MIS rely on the common idea of par-
titioning the graph into small subinstances that are solved
separately. The returned solution is then the union over the
local solutions. Their practical computational complexity as
ε increases is notably quite sharp [27,30], which raises the
question of how quantum approaches may fare compared to
them.

Two main strategies can be distinguished for the UD-MIS
approximation: two-level shifting schemes [25,27,30,31] and
Breadth-First-Search-sphere-based schemes [26]. We imple-
mented a locality-based heuristic inspired from the latter, as
described in Sec. III B. For this approach, as we shall explain
in the next section, we look at the best approximation ratio it
can achieve within a certain time limit.

C. Methodology: Comparing quantum and classical
approximation algorithms

The basic idea behind our work is to compare the best clas-
sical and quantum approaches, given the same time budget,
to the UD-MIS problem, with realistic assumptions as to the
imperfections of the quantum hardware.

We view our work as a comparison of classical and
quantum approximation algorithms [13] to this problem. We
therefore focus on a standard metric to evaluate the quality of
the approximate solutions, namely, the approximation ratio:

α ≡ C(S, G)

C(S∗, G)
, (3)

where S denotes an approximate solution to a particular graph
instance G, S∗ the optimal solution, and C the cost function
that one seeks to maximize. In this study, we typically look
at expected approximation ratios, averaged over both random
instances of graphs and independent runs of a given algorithm,
whether classical or quantum.
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Moreover, in order to take into account the fact that one
may have the time to run an algorithm many times within a
predefined time budget, either serially or in parallel, and is
then likely to select the best outcome as output, we also look
at what we call the “maximum approximation ratio” or “best-
of-nshots approximation ratio.”

Formally, we define it as

α(nshots ) ≡ max
i∈{1,...,nshots}

C(Si, G)

C(S∗, G)
, (4)

where S1, . . . , Snshots are approximate solutions resulting from
nshots independent runs of a given algorithm A on the same
instance G. It may be regarded as the plain approximation
ratio defined in Eq. (3), but achieved by a meta-algorithm A′
consisting of nshots independent runs of A and the selection of
the best result as output.

As with the basic approximation ratio, we then look at
that quantity averaged over random instances and/or several
independent runs of A′ (each of them in turn consisting in
nshots independent runs of the algorithm A under study).

The average maximum expectation ratio reflects the typical
procedure one would follow with a quantum algorithm or ran-
domized classical approach (perform many repetitions of the
state preparation algorithm, either serially or in parallel, and
keep the best solution among all the repetitions). However,
we also keep track of the basic average expectation ratio,
which we also find instructive as an assessment of the typical
achievable intrinsic approximation ratio. Besides, it provides
a lower bound for the maximum approximation ratio.

III. METHODS

A. Quantum approach: Solving UD-MIS using Rydberg atoms

In this section, we describe how the solution of the
UD-MIS problem can be approximated using a hybrid
quantum-classical algorithm whose quantum part makes use
of a platform of Rydberg atoms.

1. Variational Quantum Simulation approach to the UD-MIS
optimization problem

The UD-MIS problem can be reformulated as a minimiza-
tion problem that consists in finding the ground-state energy
of the following Hamiltonian:

Htarget ≡ −
∑
i∈V

n̂i + u
∑
i, j∈E

n̂in̂ j (5)

with n̂i = (I − σ̂ z
i )/2. The u parameter is a fixed Lagrange

multiplier, whose value can be optimized in an outer optimiza-
tion loop. In this work, we will fix u to a value u > 1 (namely,
u = 1.35), which guarantees that the ground state of Htarget

will necessarily be an independent set (IS). The full derivation
of the cost function Htarget is given in Appendix C.

To solve (at least approximately) the problem of finding
the ground state of Htarget, we follow the Variational Quantum
Simulation (VQS) framework, as introduced in Ref. [11]. An
analog version of the Variational Quantum Eigensolver (VQE)
[32], VQS consists in minimizing the expectation value of
Htarget over a family of variational states |�(�θ )〉 constructed

using an analog quantum computer:

Etarget (�θ ) ≡ 〈�(�θ )|Htarget|�(�θ )〉. (6)

The ansatz states are prepared by a (generically time-
dependent) “resource Hamiltonian” Hresource(�θ ) whose param-
eters �θ are optimized with a classical computer to minimize
Etarget (�θ ). Typically, possible variational parameters are the
coefficients of the various terms of the resource Hamiltonian
(if they are tunable), the duration of application of each term,
etc. In a nutshell, VQS consists in designing a Hamiltonian
schedule Hresource(�θ ) to prepare a final state |�(�θ )〉 that is as
close as possible to the ground state of Htarget.

2. Resource Hamiltonian for a Rydberg platform

We now turn to the available resource terms for Hresource(�θ )
when working with a Rydberg platform. One of the most
common Rydberg setups implements an Ising Hamiltonian
[14]:

HRydberg
resource (t ) = ω(t )

2

∑
i∈V

σ̂ x
i − δ(t )

∑
i∈V

n̂i +
∑

i, j∈V 2

V

r6
i j

n̂in̂ j, (7)

with three “resource terms”: a Rabi term, a dephasing term,
and a van der Waals interaction term. While the third term
is time-independent (in the following, we will take V/h =
2.7 MHz, following Ref. [22]), the first two terms are time-
dependent and tunable, and as such ω(t ) and δ(t ) can be
regarded as variational parameters �θ (after a suitable discrete
parametrization). Several strategies are then possible to design
schedules over Hresource that prepare a (possibly approximate)
ground state of Htarget. In this work, we will use the quantum
annealing schedules described in Refs. [8,22] to build Hresource

from Eq. (7).

3. Quantum annealing-inspired schedule construction

The goal of the quantum annealing (QA) algorithm is to
prepare the ground state of a given Htarget. Starting from a
Htarget, QA prescribes a generic form for the time-dependent
Hamiltonian that is meant to prepare the target ground state.
This Hamiltonian, which, in reference to the VQS notation,
we will also refer to as a resource Hamiltonian, usually as-
sumes the following form:

H annealing
resource (t ) ≡ 
(t )

∑
i

σ̂ x
i + 
̃(t )Htarget (8)

with the initial and final conditions 
(t = 0) = 1, 
̃(t =
0) = 0, 
(t = tf ) = 0, 
̃(t = tf ) = 1, and the assumption
that the initial state is |�(t = 0)〉 = |+〉⊗n [i.e., the ground
state of H annealing

resource (t = 0)]. We note that |+〉 is defined as |+〉 =
(|0〉 + |1〉)/

√
2, where |0〉 (resp. |1〉) denotes the ground (resp.

excited, i.e., Rydberg) state of the atom.
A main advantage of QA is that the so-called adiabatic

theorem (see, e.g., Ref. [10]) guarantees that this temporal
evolution prepares the (exact) ground state |�0〉 of Htarget

(provided the annealing time is long enough).
A drawback of QA is that the prescribed form for H annealing

resource

may not match the resource Hamiltonian that is available on
a given platform. In our case, indeed, the three resource terms
available on the Rydberg platform cannot straightforwardly
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implement H annealing
resource . The most consequential difference is

the interaction term: while QA would dictate a hard-sphere
interaction between neighboring atoms [u

∑
i, j∈E n̂in̂ j term in

(5)], Rydberg atoms interact with a 1/r6 potential. Moreover,
the value of this potential cannot be turned on and off at will,
as would be required by a time-dependent 
̃(t ) drive fulfilling
the initial and final conditions.

Several advanced strategies could be investigated to make
the Rydberg resource Hamiltonian better match the resource
Hamiltonian prescribed by QA. For instance, a stroboscopic
scheme was proposed in Ref. [8]. One could also optimize,
under the constraint of keeping the graph identical, the lo-
cations of the atoms themselves, to minimize the effect of
long-range tails. While those strategies could likely lead to
a better resource Hamiltonian (insofar as it would be closer
to the QA form and thus be endowed with mathematical
guarantees via the adiabatic theorem), they have not yet been
implemented experimentally and therefore warrant a detailed
separate analysis that is outside the scope of this paper.

Here, instead, we deliberately stick with already exper-
imentally implemented terms [23] in an effort to quantify
what can be achieved with today’s technology. We use the full
experimental Rydberg Hamiltonian as our resource to produce
states, and evaluate results through the ideal target Hamil-
tonian from Eq. (5). We merely take inspiration from the
QA resource Hamiltonian to design a resource Hamiltonian
that prepares a reasonable approximation to the target ground
state while complying with the constraints of the Rydberg
architecture:

a. Initialization. One cannot start from the superposition
state |�(t = 0)〉 = |+〉⊗n, but only from the state |�(t =
0)〉 = |0〉⊗n where no atoms are in the excited (Rydberg) state.

b. Schedule. As already mentioned, the van der Waals in-
teraction of Eq. (7) differs from the hard-sphere interaction∑

i, j∈E n̂in̂ j required by our problem, Eq. (8). Moreover, we
cannot turn it off at will as the initial conditions on 
̃(t )
require. As a partial accommodation for these differences, we
design the time evolution of HRydberg

resource as follows, with three
stages (illustrated in Fig. 2):

(1) For 0 < t < trise, we are going to increase ω from 0
to a maximum value ω0. The goal of this stage is to bring
the system from state |0〉⊗n to state |+〉⊗n [indeed, the ground
state at ω = 0 (resp. ω = ω0) is |0〉⊗n (resp. |+〉⊗n)]

(2) For trise < t < trise + tsweep, we are going to increase the
value of δ from δ0 to δmax in order to favor sets with a large
number of atoms, while keeping the tunneling (Rabi) term on

(3) For trise + tsweep < t < tf , we are going to decrease ω

from ω0 to 0. The goal is for the state of the system at the end
of this stage to be the ground state |�0,Rydberg

resource 〉 of

HRydberg
resource (t = tf ) = −δmax

∑
i∈V

n̂i +
∑

i, j∈V 2

V

r6
i j

n̂in̂ j .

We note that the very same adiabatic process as presented
above has already been implemented experimentally, albeit
for grids and not general graphs [22]. Importantly, even if
this schedule were applied on a noiseless system, and slowly
enough to guarantee adiabaticity, the differences between the
experimental Rydberg Hamiltonian and the ideal UD-MIS

FIG. 2. Time dependence of the coefficients of the dephasing
(top) and Rabi (bottom) terms; see Eq. (7).

Hamiltonian may imply nonoptimal output results. Reference
[33] gives examples of graph instances where the 1/r6 tail
of the Rydberg Hamiltonian does change the nature of the
ground state compared to the ideal UD-MIS Hamiltonian.
The two Hamiltonians are, however, arguably close enough
to justify a study of the ability of the former to generate ap-
proximately optimal states for the latter, within a VQS picture,
as we do here.

With the above schedule, the number of variational param-
eters �θ is still daunting. We are thus going to consider the
parameters ω0, δ0, δmax, trise, and tsweep as fixed experimental
parameters:

ω0/(2π ) = 1.89 MHz, (9)

δ0/(2π ) = −6.0 MHz, (10)

δmax/(2π ) = 4.59 MHz, (11)

trise = 0.25tf , (12)

tsweep = 0.44tf . (13)

The only remaining variational parameter is thus the to-
tal annealing time tf . In the absence of noise, the adiabatic
theorem would make this parameter useless, as the success
probability of QA gets larger as the annealing time tf gets
larger. In the presence of noise, however, long annealing times
lead to an increased sensitivity to decoherence, and it thus be-
comes important to choose a tf large enough that one can find
a good approximation to the ground state, but short enough
that the system has not undergone too much decoherence.

We note that this form of optimization is nothing but a
very crude optimal control protocol, and that much more
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sophisticated schedules 
(t ), 
̃(t ) could be designed using
quantum optimal control (see, e.g., Ref. [34]).

The approximation ratio for our algorithm is defined, in its
“one-shot version” (see discussion in Sec. II C), as

α ≡ Etarget (t∗
f )

EMIS(S∗)
(14)

with Etarget defined in Eq. (6), and EMIS(S∗) = −|S∗|. We
note that because of the definition of Htarget, Etarget is usually
negative.

4. Hardware model

The Hamiltonian given in Eq. (7) describes the system of
neutral atoms in the absence of errors. In this work, based on a
validation with respect with previously published experimen-
tal data, we take into account two sources of errors: dephasing
noise and readout errors.

a. Decoherence by dephasing. Decoherence is taken into
account via a simple dephasing model that gives a reasonably
accurate fit of the published experimental data (as checked in
Appendix A 1). Following Ref. [22], we describe this dephas-
ing with a Lindblad master equation

dρ

dt
= −i[H, ρ] − 1

2

∑
i∈V

γi[{L†
i Li, ρ} − 2LiρL†

i ], (15)

where ρ is the density matrix describing the mixed state of
the system, and H ≡ HRydberg

resource (t ). The jump operators Li cor-
responding to dephasing take the following form:

Li = n̂i. (16)

We choose a uniform dephasing described by a single dephas-
ing parameter γi = γ .

b. Readout assignment errors. Following Ref. [35], we
model the readout errors by a simple assignment error model
that accounts for the probability ε of erroneously detecting an
excited atom |1〉 while it was in fact in its ground state |0〉
(false positives), as well as the probability ε′ of not detecting
an excited atom (false negatives). This simple error model is
characterized by a so-called assignment probability matrix:

A1 =
[

p(0|0) p(0|1)
p(1|0) p(1|1)

]
, (17)

with P(1|0) = ε and P(0|1) = ε′, that modifies single-qubit
probabilities as follows:[

p̃(0)
p̃(1)

]
= A1

[
p(0)
p(1)

]
. (18)

We will neglect any leakage out of the computational sub-
space, and thus assume P(0|0) = 1 − ε and P(1|1) = 1 − ε′.

The probability distribution for all atoms is thus modified
as P̃ = {A1 ⊗ A1 · · · ⊗ A1} · P.

c. Repetition rate. The repetition rate in state-of-the-art
experiments is in the 3–5 Hz range [36,37]. It is dominated
by the time it takes to load atoms into the trap and by the final
measurement stage. In particular, the duration of the annealing
(tf ) is negligible compared to the duration of the other stages.

FIG. 3. Illustration of the execution of lines 4 to 10 of Algorithm
1, for d=2, on a graph with 20 vertices (top left). Top right: a
random vertex u(in blue) is selected, and the sphere Sd (u) of vertices
within distance d (red) is computed. Bottom right: An optimal MIS is
computed for Sd (u) (yellow vertices). All vertices from Sd (u), along
with all vertices not in Sd (u) but connected to a vertex in the MIS of
Sd (u) are then removed. Bottom left: a new random vertex has been
selected for the next iteration of the algorithm.

B. Classical approach: A locality-based heuristic

We now switch, in this section, to a description of a simple
locality-based UD-MIS approximation heuristic for UD-MIS,
inspired from [26]. We use it to estimate the classical bound-
ary, given a fixed time budget, of the UD-MIS approximation.
Algorithm 1 and Fig. 3 describe its operation.

The design of this heuristic was motivated by the rela-
tive complexity of existing Polynomial-Time Approximation
Schemes [26,27,31,38]. While they all consist in splitting a
graph into subinstances that are solved independently, several
decompositions generally have to be considered, before mak-
ing a choice guaranteeing a lower bound on the approximation
ratio. We chose to implement a simpler, intuitive approach that
requires only, during one run, to process each vertex exactly
once.

We obtain this simplification at the price of renouncing to
a provable guarantee on the approximation ratio. However,
since we are able to compute numerically these approximation
ratios (by solving instances optimally to obtain the optimal
maximum independent set size) up to relatively large sizes
(500–550 vertices), this is a relatively minor drawback.

Another motivation is that the local nature of solving sub-
problems in our method is reminiscent of the finite quantum
correlation distances that have been estimated experimentally
in Rydberg systems [22], and numerically in our simulations
(see Appendix F). It makes it particularly relevant to a com-
parison with Rydberg adiabatic quantum computing systems.

Our algorithm (Algorithm 1) consists in an overall
while loop that continues until the graph is empty. In an
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FIG. 4. Approximation ratio as a function of the problem size. Solid lines and circles: average maximum approximation ratio over a fixed
2 s run time (=10 shots in the quantum case). Dashed lines and squares: average (single-shot) approximation ratio. Left: Quantum annealing
with Rydberg atoms for different noise levels (γ = 3.0 [red]: state-of-the-art noise level, γ = 0.3 [blue]: near-term noise level, γ = 0.0 [black]:
noiseless case). Dotted lines: extrapolation using data for 12–26 atoms (see inset) [see Eq. (19)] with 95% prediction interval. Dash-dotted lines:
constant extrapolation for one-shot case, based on the last (γ = 0.3) and last three (γ = 3.0) points. Optimized annealing time tf (see text).
Right: average maximum approximation ratios and average approximation ratios achieved by classical locality-based approach for maximum
resolution distance d of 0 [red], 5 [blue], 10 [green], and 15 [magenta]. Results were obtained by averaging over 100 random unit-disk graphs.
Inset: Maximum graph size (atom number) reachable by classical algorithm within 2 s as a function of d .

iteration of the while loop, UD-MIS is locally solved around
a randomly selected vertex. We refer to this set of randomly
selected vertices as “seeds.” For each seed u, we compute
[using Breadth-First Search (BFS) [29]] the set of vertices
within a distance d of u, that we call Sd (u). d is an integer
that is given as an execution parameter to the algorithm (by
distance we mean shortest-path distance within the graph
and not geometric distance between points). UD-MIS is then
solved optimally for the subgraph induced by Sd (u), which
is removed from the graph. This process is repeated until
the graph is empty. Figure 3 illustrates an iteration of the
algorithm on a specific seed. The final solution returned by
the algorithm is then the union of all the local maximum
independent sets obtained throughout the execution by locally
solving UD-MIS around the seeds. To ensure that the returned
solution is indeed an independent set, in addition to removing
Sd (u) from the set of vertices after its processing, we further
remove any vertex connected to the computed Maximum In-
dependent Set of Sd (u). Such vertices are indeed constrained
to not be part of the final solution. In Fig. 3 one can see an
instance where vertices not belonging to Sd (u) are nonetheless
removed from the graph, because they are connected to the
Maximum Independent Set of Sd (u).

Note that the iterations of the algorithm cannot be easily
parallelized as the results from solving Sd (u) condition which
vertices are removed, and therefore the rest of the execution
of the algorithm.

Contrary to Ref. [26] or [27], we do not formally call this
simple locality-based randomized approach an “approxima-
tion algorithm,” as we do not provide a provable guarantee,
regardless of the graph, on the achieved approximation ratio
given a certain value of d . However, in practice, it qualitatively
behaves like a PTAS, as one can see on Fig. 4 (right), in the
sense that the average approximation ratio achieved by this
locality-based heuristic gets closer to 1 as d increases.

Much like the parameters used in Refs. [26] and [27], d
therefore acts as a tunable parameter that can be used to refine
the quality of an approximation at the expense of a potentially
longer computation time.

Convergence to an approximation ratio of 1 for any graph
as d increases is guaranteed by the fact that if d exceeds the
diameter (the length of the longest shortest path between any
pair of vertices) of the graph, then no matter the choice of seed
u, Sd (u) will cover the graph entirely, and a global optimal
Maximum Independent Set will be computed.

A particular but valid parametrization for Algorithm 1 con-
sists in choosing d = 0. It appears, for instance, in Fig. 4 or

.
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Fig. 13. By definition, a BFS sphere Sd (u) with d = 0 simply
corresponds to {u}. The “MIS” of a graph with one vertex
u is simply {u} and the set Cu,d (see line 7 of Algorithm
1) is simply the neighborhood of u in the graph. Running
the heuristic with d = 0 therefore corresponds to randomly
selecting available vertices and putting them into the returned
solution, without really computing anything.

IV. RESULTS

In this section, we summarize our main findings, namely,
quantum and classical approximability results, and then ex-
plain the practical implications of this comparison.

The main results are shown in Fig. 4, where we compare
the approximation ratios as defined above as a function of
the problem size for various external parameters, both in the
quantum and the classical approach.

A. Results of the quantum approach

The quantum results are shown in the left panel of Fig. 4.
We show the average approximation ratios obtained in three
hardware scenarios for Rydberg platforms: (1) state-of-the-art
hardware, corresponding to already published experimental
results [22], with noise levels captured by one parameter,
γ = 3.0; (2) near-term hardware, corresponding to current
noise levels on the most advanced platforms, with noise levels
divided by a factor of 10 with respect to the first scenario [36],
γ = 0.3; (3) noiseless hardware, with a vanishing noise pa-
rameter γ = 0.0. The definition of and justification for these
models is given in Sec. III A 4 and in Appendix A.

We show the average results obtained with a time budget
of 0.2 s and 2 s. With a realistic experimental repetition rate
of about 5 Hz [36,37] (comprising initialization, evolution,
and readout), these two cases correspond to a single repetition
(measurement) of the algorithm, and 10 repetitions, respec-
tively. They thus correspond to the two possible definitions
for the approximation ratio that we discussed in Sec. II C.

As expected, decreasing noise levels yield improved ap-
proximation ratios, as do longer computational time budgets.
For small system sizes (here number of neutral atoms), the ap-
proximation ratio decreases as the number of atoms increases.
The behavior then differs for different run times.

For one repetition (0.2 s) the approximation ratio (corre-
sponding to the statistical expectation value of the approxi-
mation over the quantum state distribution) saturates for the
largest values of noise (γ = 3.0, and to a lesser extent γ =
0.3), while it slowly decreases for smaller noise parameters
(γ = 0.0).

For several (10) repetitions, the approximation ratio does
not seem to saturate but instead to slowly decrease with the
number of atoms.

Both behaviors—saturation for one shot and slow decrease
for several shots—can be explained, and we will use this
explanation to extrapolate the curves to much larger number
of atoms.

The saturation one observes for the average one-shot ap-
proximation ratio and the larger noise levels can be traced
back to the finite correlation lengths induced by an imperfect
preparation of the sought-after MIS solution.

By analyzing the spin-spin correlation function, we com-
pute rough estimates of the spin correlation length ξ

for various system sizes and noise levels (see details in
Appendix A 4), and conclude that the correlation length is
set primarily by the noise (decoherence) level and is roughly
independent of the system size (see Fig. 12). (The value we
find for γ = 3.0, ξ ≈ 1.4, is very similar to the correlation
length extracted in previous experiments, albeit on a regular
lattice [22].) This allows us to compute the approximate sys-
tem size N∗ above which finite-size effects should become
irrelevant in the numerical simulation. Such a size can be
estimated by counting the number of atoms comprised in
a ξ × ξ square. For the atom density we consider, ν = 2,
we find N∗ ≈ 4 for γ = 3.0 and N∗ ≈ 30 for γ = 0.3 (for
γ = 0, we find much larger, although finite estimates, of
>1000: our resource Hamiltonian prepares only an approx-
imate ground state of Htarget, as expected). We argue that
the average approximation ratio, which is a function of the
average (local) spin value 〈zi〉 [see Eq. (6)], should not depend
on N beyond N∗. (It also depends, a priori, on 〈ziz j〉, but this
correlation can be regarded as weak because the dynamics are
dominated, by design, by independent-set configurations; see
Appendix E 1.)

We therefore extrapolate the value computed numerically
for N = N∗ to larger values, provided we can reach a size
of N∗ atoms with our numerical simulations. By reaching
26 atoms, we achieve this for N∗(γ = 3.0)(≈4) and N∗(γ =
0.3)(≈30). Since we can even go beyond N∗ (especially so for
γ = 3.0), we can not only perform the extrapolation, but also
check that the approximation ratio has already reached satura-
tion for number of atoms close to N∗. The extrapolated values
are shown as the dash-dotted lines in Fig. 4. We can regard
these values as a lower bound for the quantum approximation
ratio.

The shape of the slow decrease in the maximum approxi-
mation ratio after several runs (Fig. 4, left side, solid lines and
dotted extrapolation) can be rationalized by statistical argu-
ments. In the simpler case of a uniform final state distribution
and mild assumptions detailed in Appendix G, one can show
that the maximum approximation ratio after nshots repetitions

on a system of Natoms atoms is upper bounded by α +
√

lnnshots
2Natoms

,

with α the one-shot expectation value (α = 1/2 for a uniform
state distribution). It turns out that the actual approximation

ratio for a uniform state distribution obeys the same ∝
√

lnnshots
2Natoms

dependence as its upper bound.
Interestingly, at fixed number of shots, for the uniform dis-

tribution, the maximum approximation ratio decreases quite
slowly (∝1/

√
Natoms) with the number of atoms. Conversely,

at a fixed number of atoms, the increase in approximation
ratio is very slow (∝√

lnnshots), and even more so with larger
number of atoms. This has the practical implication that a
very large number of repetitions (shots) may not be the most
efficient way to improve the quality of the algorithm. In par-

ticular, the
√

lnnshots
2Natoms

scaling of the approximation ratio gain

limits the potential added value of running several quantum
machines in parallel within the same time budget, and select-
ing the best result. For ∼1000 atoms, using our simplified
model, running a hundred machines in parallel would amount
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to a gain of only about
√

ln100
2×1000 � 0.047 in terms of approxi-

mation ratio.
A mathematically rigorous extension of this observation to

the generically non uniform state distribution produced by the
quantum algorithm is beyond the scope of this work. Nev-
ertheless, not only is the approximation ratio obtained for a
uniform distribution a lower bound to the approximation ratio

we obtain via quantum annealing, but the
√

lnnshots
2Natoms

dependence

is arguably a purely statistical property; it is therefore not a
feature of the sole uniform distribution.

We thus assume that the (nshots, Natoms) dependence of the
maximum approximation ratio obtained numerically can be
fitted and extrapolated by the following function:

α(Natoms, nshots, γ ) = α(γ ) + β(γ )

√
lnnshots

2Natoms
, (19)

with α(γ ) being given by the saturation value computed for
the one-shot case using the N∗ extrapolation explained in the
previous paragraphs.

We then use the numerical data we obtained for Natoms = 6
to 26 to find the value of the remaining parameter, β(γ ),
using a least-squares minimization. With this parameter, we
can extrapolate the approximation ratio after several shots
to larger numbers of atoms (see the dotted lines in Fig. 4,
left panel), and compute the corresponding 95% prediction
interval.

B. Results of the classical approach

1. Identification of an efficient locality-based heuristic

In order to provide a meaningful classical refer-
ence benchmark, we reviewed several approximation algo-
rithms [26,27,30,31,38,39] for UD-MIS, and more specifi-
cally Polynomial-Time Approximation Schemes (PTAS; see
Sec. II B above).

We experimented in particular with a simplified version
of Ref. [26], namely, a locality-based approach that solves
the MIS problems exactly within a certain distance d around
randomly chosen points. Whereas the algorithm presented in
Ref. [26] chooses this distance adaptively to ensure a specified
approximation ratio, our simplified method takes a specific
value as input and uses it everywhere (see Sec. III B for more
details)

We see this classical locality-based heuristic as loosely
“quantum-similar,” the finite solving distance d playing a
similar role to that of the quantum correlation length ξ , as
characterized experimentally in Rydberg systems in, e.g.,
Ref. [22] and estimated numerically from our simulations (see
Appendix F).

2. Classically attainable approximation ratios

The approximation ratio achieved by our locality-based
approach, as a function of the number of vertices, and for
several values of the fixed “correlation distance” d , is plotted
in the right panel of Fig. 4. Curves stop when even one run of
the algorithm exceeds the time limit. Note that, for the range
of atoms considered in Fig. 4, this happens only with d = 15.

For other values of d , the approach may run within the
specified time budget well up to a several thousand vertices,
as one can see in the lower right inset of Fig. 4, showing the
maximum attainable graph size as a function of d . In all cases,
the approximation ratio appears to stabilize to an asymptotic
value for large number of vertices. These asymptotic values
are therefore accessible up to very large graph sizes (�5000).

The evolution of the approximation ratio’s asymptotic
value with respect to d is rather intuitive: as the solving dis-
tance d increases, the quality of approximation to the optimal
improves. This makes sense within the analogy to the quan-
tum correlation distance that we drew above: as vertices are
allowed to “interact” across larger distances, global behavior
improves.

On all curves (whether corresponding to the average ap-
proximation ratio or average maximum approximation ratio;
see Sec. IV for details on these definitions), the approximation
seems to start close to ∼1 for small sizes. This makes sense,
as a small graph is quite likely to be covered entirely by a
BFS sphere Sd (u), no matter the random choice of the initial
vertex u.

Note that, in order to compute the approximation ratio
achieved by an approach on a given graph, one needs to de-
termine the size of a maximum independent set for this graph,
i.e., to solve the problem optimally. This was carried out using
the algorithm presented in Ref. [40] for graphs containing up
to 550 vertices to compute the results of the right panel of
Fig. 4. For our class of random graphs (see Appendix D for
details), instances with �200 vertices are optimally solved
in �0.05 s, while the “exponential explosion” of the solver
happens around ∼300–400 vertices. (See Fig. 16 for more
precise benchmark results.)

3. Execution time

The largest attainable graph size given a value of d within
the specified time budget displays a much more counterin-
tuitive behavior, namely, the bell-shaped curve we see on
the lower-right inset of Fig. 4 and in Fig. 5. This behavior
comes from the fact that the execution time of the locality-
based heuristic is determined by a subtle interplay between
the number of subinstances to solve and their sizes, and does
not necessarily increase with d . (See Appendix B, in particular
Figs. 14 and 19 for more details.)

This explains why, for instance, the heuristic may be run
with d = 5 up to larger graph sizes than d = 2 within the
prescribed time budget (7000 compared to 3000), even though
d = 5 involves solving larger subinstances and achieves better
approximation ratios.

Asymptotic values of the approximation ratio, plotted
against the highest number of vertices reachable within 2 s,
are reported in Fig. 5. These values can be found in Fig. 4 for
d = 0, 5, 10, 15 (and Fig. 18 for other values of d).

A striking fact concerning our locality-based approxima-
tion heuristic is therefore that one can run it with d = 8 for up
to ∼8000 atoms (see Fig. 13) while staying within our time
budget of 2 s, and achieving an asymptotic approximation
ratio value of ∼0.95.

Note that our benchmarks were carried out with a single-
core implementation of our locality-based heuristic. If the
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FIG. 5. Break-even diagram. Black dots (resp. gray squares): av-
erage classical approximation ratio reached for the maximum graph
size reachable in 2 s (resp. 0.2 s) (asymptotic approximation ratio
extrapolation from Figs. 4 and 18, and maximum reachable graph
size estimation from Figs. 4 and 19). Dash-dotted lines: lower bound
to quantum approximation ratio reached for decoherence levels of
γ = 3.0 (red) and γ = 0.3 (blue), assuming constant repetition rate
with system size. Black (resp. gray) dashed line: break-even line for
a time budget of 2 s (resp. 0.2 s).

heuristic itself is not parallelizable (the state of the graph at
some point of the execution depends on the result of previous
iterations, because of line 7 of Algorithm 1), one could of
course launch several runs of the algorithms in parallel.

With a serial implementation, the value of the “maximum
average approximation ratio” coincides with the basic average
approximation ratio at the time limit (as only one run can be
carried out; see Fig. 4). Launching several independent runs in
parallel could allow keep on achieving approximation ratios
higher than the average baseline at the time limit.

However, based on the statistical arguments developed in
the previous subsection, and detailed in Appendix G, it is
reasonable to believe that the gain on approximation ratio will

scale as
√

lnnshots
2×Natoms

, and therefore be of limited magnitude.

In addition, importantly, parallelism does not affect the
maximum attainable graph sizes within a given time budget.
As the heuristic itself is not parallelizable, several independent
runs will still need the incompressible time of one run (i.e., the
values reported in Figs. 13 and 19) to execute.

As the run time of the heuristic is dominated by the optimal
solving of subinstances (see above, Fig. 14, and Appendix B),
and as we neglect the “input-output” overhead of the solver
we use [40], it is reasonable to say that improvements upon
the classical benchmark results we report here may only either
come from pure algorithmic improvements on Ref. [40] or
from running the algorithm on more modern CPU chips.

C. Discussion of the break-even point

The comparison of the quantum and classical approaches
we just described allows us to discuss the conditions that
must be satisfied for the quantum approach to become more
competitive than the classical approach. The approximation
ratio as a raw metric must be put in perspective with the

time-to-solution and the system size, as we stressed in the
beginning of this section.

The classical frontier can readily be mapped for the classi-
cal approximation heuristic we have investigated. It is shown
as the black (resp. gray) dashed line of Fig. 5, that we con-
structed by computing the maximum size and approximation
ratio that could be reached within a 2 s (resp. 0.2 s) time
budget. The orange (resp. yellow) region above and right of
this black (resp. gray) dashed line is the parameter area that
the quantum algorithm should reach to become advantageous
compared to the classical one.

We superimposed in Fig. 5 the extrapolated average ap-
proximation ratios obtained through the quantum approach
(i.e., corresponding to one repetition, or a budget of 0.2 s;
we did not show the average maximum approximation ratio
that could be reached within 2 s, which would be slightly, yet
not substantially, higher).

In extrapolating these two lines to very large atom num-
bers, we made the important assumption that the experimental
repetition rate will remain constant up to these large numbers
of atoms. While a naive individual rearrangement of atoms
would lead to a repetition rate roughly scaling with the in-
verse atom count, more advanced techniques could lead to
a mitigation of this dependence (see, e.g., Ref. [41], Supp.
Mat. 3.3), for an example of a more collective rearrangement,
with a O(1/

√
Natoms) scaling of the repetition rate). Further

improvements at the level of image acquisition are also pos-
sible, so that increases of the repetition rate by one order of
magnitude are claimed to be realistic [42].

Working at a fixed time budget, there are two nonexclu-
sive ways a quantum algorithm can outperform a classical
algorithm: either it reaches larger system sizes (with possibly
the same approximation ratio), or it reaches higher approx-
imation ratios. There are thus two possible hardware-related
conditions for quantum advantage: (1) an increase in the quan-
tum system size to several thousands of atoms (>8000 for a
2 s time budget, according to our estimates) and (2) an im-
provement of the coherence properties of the quantum system
(to be able to reach approximation ratios above �0.95). We
note that meeting both conditions would not be necessary to
demonstrate practical quantum advantage, although it defi-
nitely appears as a desirable goal.

We emphasize that higher quantum approximation ratios
could also be reached by purely algorithmic improvements,
i.e., by going beyond the simple quantum annealing-based
approach we adopted in this study. In particular, adapting
digital approaches like QAOA to an analog setting (via, e.g.,
the VQS approach [11]) seems a promising route, given the
enhanced success probabilities of QAOA compared to quan-
tum annealing in a noiseless setting [8].

These quantitative estimates are, by nature, tied to the
predefined time budget. For instance, a budget of 0.2 s would
allow to perform exactly one shot of the quantum approach,
making the maximum average approximation ratio equal to
the average (single-shot) approximation ratio. Importantly,
this would not change the approximation ratio limit for large
number of atoms, since (see Fig. 4) the relative influence
of the selection of the best outcome out of nshots candidate

solutions decreases for large system sizes (as
√

lnnshots
2Natoms

). The
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asymptotic limit of the single-shot average approximation ra-
tio is indeed already, in the case of a 2 s time budget, the value
onto which we base our extrapolation of the approximation
ratio to large numbers of atoms. On the classical side, how-
ever, for our locality-based heuristic, a time budget of 0.2 s
would allow one to reach graph sizes of only 1000–1200 (see
Fig. 13), bringing the quantum advantage boundary far closer
than a budget of 2 s (which corresponds to Fig. 5). Regarding
the quality of approximation, the asymptotic values that we
used on Fig. 5 are already reached for 1000–1100 atoms (see
Fig. 4, right panel), and therefore would not change when
switching to a time budget of 0.2 s.

V. CONCLUSIONS

In this work, we compared the approximation ratios
reachable in a finite computational run time using state-of-
the-art, yet realistically implementable, quantum and classical
approximation algorithms to the UD-MIS combinatorial opti-
mization problem.

We set up a precise comparison methodology based on
the computation of the average maximum approximation ratio
reachable within a fixed time budget, as opposed to the more
usual average approximation ratio used for characterizing
randomized algorithms. We studied the dependence of both
metrics with respect to system size and run time, under a
realistic hardware model of the Rydberg quantum platform
where this quantum algorithm could be executed because of
the specific form of its interparticle interactions.

Based on simulations with up to 26 atoms, and on es-
timations of the spin correlation lengths, we predicted the
large-size limit of the quantum average approximation ratio.
We also inferred, from statistical arguments, the asymptotics
of the quantum maximal approximation ratio. We found av-
erage approximation ratios of ≈0.72 for the noise levels
corresponding to recently published data, and of ≈0.84 for
near-future noise levels. We found that two key aspects for
reaching quantum advantage with respect to classical algo-
rithms are the coherence level and the repetition rate. Keeping
a fixed time budget of 2 s, if the coherence level is substan-
tially improved, or if the repetition rate is maintained while
scaling to larger atom counts, Rydberg platforms could reach
quantum advantage if approximation ratios above ≈95%, or
atom counts of about 8000, can be attained.

These quite drastic size requirements point to the impor-
tance of developing and implementing quantum algorithms
with better success probabilities and better suited for actual
hardware.

Such algorithms would effectively lower the quantum ad-
vantage bar. In this study, we deliberately simulated a rather
simple quantum annealing-based algorithm that can be im-
plemented on today’s Rydberg platforms. Including more
sophisticated existing and forthcoming algorithmic improve-
ments will likely bring the quantum advantage frontier closer,
provided the hardware specificities are duly taken into ac-
count: we did not seek, as it is done in optimal control (see,
e.g., Ref. [34]), to optimize the classical control parameters of
the quantum algorithm; nor did we try to use improved opti-
mization costs such as the Conditional Value at Risk (CVaR;
[15,43]). Other possible routes towards improved approxi-

mation ratios could include algorithmic refinements of the
annealing procedure (see, e.g., Ref. [44]), attempts to better
tailor the resource Hamiltonian to the target Hamiltonian (like
optimizing the placement of atoms to mitigate unwanted tail
interactions), or even a parallel implementation of the algo-
rithm on multiple Rydberg platforms.
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APPENDIX A: SUPPORTING DATA FOR
THE QUANTUM APPROACH

In this section, we address the question of the maximum
approximation ratio one can reach using a Rydberg platform
as a function of the run time and the number of atoms. In
the context of the hybrid quantum-classical algorithm we
described in the Methods section, the run time of the algo-
rithm is dominated by the physical setup of the Rydberg atom
platform.

The results we show are averaged over a certain number
of random unit-disk graphs (the detailed graph generation
procedure is described in Appendix D). The main metric for
describing such graphs is the vertex density ν. Small (ν � 1)
and large (ν � 1) densities result in easy optimization tasks
(see, e.g., Ref. [15]). We thus choose an intermediate density
ν = 2 to tackle a hard optimization regime.

The numerical methods used to obtain the results below are
described in Appendix E.

1. Determination of the noise model

The experimental results of Ref. [22] can be reproduced
by adjusting γ = 3.0 in the noise model described above
(Sec. III A 4). [This corresponds to γ /2π = 0.48 MHz when
reinstating dimensions].

In Fig. 6 we show the temporal evolution of the Néel
structure factor measured experimentally and compared to
noisy simulations with and without readout errors, for a square
lattice geometry (as opposed to the rest of the text, where we
consider unit-disk graphs).

A value of γ = 3.0 gives an accurate agreement between
the noisy simulation and the experimental data. As for the
readout error, we take ε = ε′ = 3% to reflect typical readout
errors: Ref. [35] estimates ε ≈ 1%–2%, ε′ < 5%.

2. Annealing time optimization

Here we focus on the optimization of the annealing time for
reaching the lowest target energy (see Appendix C for more
details about the construction of Htarget).

We first show numerical evidence that in the presence of
noise, there exists an optimal annealing time t∗

f .
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FIG. 6. Néel structure factor as a function of time. Same param-
eters as Fig. 4.a of Ref. [22]: 4 × 4 square lattice of atoms, γ = 3.0.
Solid lines: with readout error ε = ε ′ = 0.03. Dashed lines: without
readout error. Crosses: experimental data, reproduced from Ref. [22].

Figure 7 shows the dependence of the target energy on
the annealing time. We observe that in the absence of noise,
the larger the annealing time, the lower the target energy, as
expected from the theory of adiabatic computing. By contrast,
in the presence of noise, there is an optimal annealing time.
Indeed, an increased annealing time entails a larger suscep-
tibility to decoherence, and thus an increase in the minimal
energy reached by the system (we note that for large noise
values and large annealing times one obtains a target energy
that gets closer to the energy of the maximally mixed state,
as expected). Contrary to the noiseless case, there is thus a
balance to be found between increasing the success probabil-
ity of annealing by slowing down the annealing process, and
fighting against decoherence by completing the computation
as quickly as possible.

In the following, we thus use a classical optimizer
(COBYLA) to find the annealing time that accommodates
both constraints. In Fig. 8 we show the dependence of the

FIG. 7. Target energy as a function of the annealing time (in μs)
for various noise levels. Solid lines: full Hilbert space. Dashed lines:
keeping only IS states in Hilbert space (see Appendix E 1). Dashed
green line: energy of the maximally mixed state. Dotted black line:
energy of the optimal (MIS) solution.

FIG. 8. Approximation ratio as a function of the number of an-
nealing time optimization steps. Solid lines and square symbols: full
Hilbert space. Dashed lines and circles: IS-Hilbert space.

approximation ratio on the number of optimization steps for
different numbers of atoms and various noise levels.

For small numbers of atoms Natoms � 12, we use the full
Hilbert space to carry out the simulation. For larger atom num-
bers (Natoms � 12), we use a restriction of the Hilbert space to
independent sets, as described in Appendix E 1. We observe
that convergence is reached after a couple of iterations.

In Fig. 9 we show the obtained optimized annealing times
as a function of the number of atoms. We observe that in the
presence of noise, the optimal time is roughly independent
of the atom number. In the noiseless case, it shows a slight
increase with respect to system size, possibly indicating a
decreasing value of the minimum gap.

Because of this weak, or absence of, dependence of
the annealing time on the system size, the computation of
the optimal annealing time can essentially be neglected in the
computation of the total run time. It can indeed be regarded as
a heuristic parameter that can be determined once and for all

FIG. 9. Optimal annealing time t∗
f (in μs) as a function of the

number of atoms for various noise levels.
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by studying small (and therefore negligibly quick to simulate
numerically) instances of the problem.

We thus do not take this optimization step into account in
the total run time estimations shown in this work.

3. Impact of the number of repetitions

Once the annealing time is fixed, the system can be evolved
in time until its final state �0(tf ) (or ρ(tf )) is projected by a
fluorescence measurement. The outcome of the measurement
is a string of bits i ≡ (b1, . . . , bn) indicating whether the
kth atom is in its Rydberg state (bk = 1) or its ground state
(bk = 0). The probability for this particular bitstring to be
measured is given by Born’s rule pi = |〈i|�0〉|2 = [ρ(tf )]ii.
This bitstring can be mapped to a target energy Etarget (i) to
evaluate its proximity to the optimal solution.

The value for the target energy that is obtained on average
by performing one measurement is thus given by

E[Etarget] =
∑

i

piEtarget (i). (A1)

One can repeat this measurement process nshots times and
keep the maximum value obtained over these nshots repetitions.
The average value of this maximum over nshots repetitions
can be readily computed using pi. For this, we define the
cumulative energy density function as

F (x) ≡
d−1∑
i=0

pi θ (x − Etarget (i)/Emin), (A2)

with d the dimension of the space (number of IS states if we
restrict the dynamics to IS states), Etarget (i) the target energy
of state i, and θ the Heaviside function. We note that due to
the restriction to the IS states, the support of F is x ∈ [0, 1].

As shown in Appendix G, F can be used to compute the
average maximum approximation ratio after nshots shots:

α(nshots ) = 1 −
∫ 1

0
[F (x)]nshots dx. (A3)

The overall run time of the quantum part of the computa-
tion can thus be evaluated as the number of repetitions times
the repetition rate. This rate is in the range 3–5 Hz [36,37] in
the current experimental setups.

We show the corresponding results in Fig. 10. As expected,
the average approximation ratio increases with the number of
repetitions, and decreases with increasing noise and in the
presence of readout errors. For the latter, we assume that
those ε′ errors (erroneous measurement of a |1〉) that lead to
a non-IS state can be corrected (by detecting the fact that the
solution is non IS) at the price of increasing the number of
repetitions used to compute the maximum expectation ratio so
as to compensate for the discarded solutions. The data shown
in Fig 10 take into account this correction and compensation
mechanism.

We can also fix the maximum run time to a set value
and show the evolution of the average approximation ratio
obtained for this run time as a function of the number of
atoms. The corresponding results are shown in Fig. 11.

FIG. 10. Approximation ratio as a function of the run time (com-
puted as the number of repetitions nshots times the repetition rate,
f = 5 Hz here), after optimization of the annealing time tf . Solid
lines: without readout noise. Dashed lines: with readout noise ε =
ε ′ = 3%. Black, blue and red curves: approximation ratio for the final
state distribution obtained with noise parameters γ = 0.0, 0.3, and
3.0, respectively. Green curves: for a uniform distribution over the IS
states. State space restricted to IS-Hilbert space.

4. Extrapolation to larger number of atoms: The role of the
coherence length

The numerical simulations presented in the previous sub-
sections are limited to a number of atoms (26) that is small
compared to the graph sizes that can be reached in reasonable
compute times by classical algorithms.

Yet the numerical data for the higher noise level (γ = 3.0;
see Fig. 4) display an apparent saturation of the approxi-
mation ratio. This saturation occurs already for quite small
atom counts. Such an observation can be accounted for by
considering the correlation length associated with the MIS
ordered state. By conducting an analysis of the spin-spin
correlation function (see Appendix F for details), we extract a
graph-averaged correlation length and study its dependence
on the graph size and noise level. As shown in Fig. 12,
this correlation length is roughly independent of the graph
size, and gets shorter as the intensity of decoherence (γ )
increases. This physically expected behavior can explain the
saturation observed for γ = 3.0 and the onset of a saturation
for γ = 0.3. Indeed, the value of the approximation ratio can
be intuitively related to the correlation distance observed in
the system: on average, the first “defects” in the MIS state
will occur when perfect correlation is lost between two atoms.
This happens at a length scale ξ . Increasing the system size
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FIG. 11. Approximation ratio as a function of the number of
atoms in quantum annealing for various fixed run times (same data
as Fig. 10). Solid lines: without readout noise. Dashed lines: with
readout noise ε = ε ′ = 3%. Dash-dotted lines: fit function Eq. (19).
Black, blue and red curves: approximation ratio for the final state
distribution obtained with noise parameters γ = 0.0, 0.3, and 3.0,
respectively, averaged over 20 random graphs (except for Natoms =
24, 26: 10 graphs). Green dash-dotted lines: average approximation
ratio for a uniform probability over IS states.

beyond the number N∗(ξ ) of atoms contained in a volume
of size ξ will therefore not increase the approximation ratio.
Consequently, the numerically computed approximation ratio
will saturate beyond system sizes of the order of N∗(ξ ).

We can estimate N∗(ξ ) based on our numerical estimates of
ξ : by counting the number of atoms in a square of length ξ , we
find N∗(γ = 3.0) = 4 and N∗(γ = 0.3) = 30. This explains

FIG. 12. Spin-spin correlation length ξ extracted by fitting the
spin-spin correlation function for various noise levels (black: γ =
0.0, blue: γ = 0.3, red: γ = 3.0). (See Fig. 22 for fitting details.)

FIG. 13. Top: Run time of locality-based approximation heuris-
tic as a function of the number of atoms. Bottom: corresponding
number of allowed shots within a 2 s time window.

the observed saturation for γ = 3.0. For γ = 0.3, it is likely
that the saturation is not entirely reached, although the maxi-
mum atom number of 26 is in the same range as 30, allowing
us to use, as a rough estimate of the approximation ratio at
large atom numbers, the value that we obtained numerically
for Natoms = 26.

Interestingly, the ratio of correlation length to the optimal
annealing time (see Sec. A 2 above) seems to be independent
of γ (its value is close to 1). This behavior deserves further
investigation.

APPENDIX B: SUPPORTING DATA FOR
THE CLASSICAL APPROACH

1. Approximation ratio

Figure 4 (right panel) shows the approximation ratio
achieved by our locality-based heuristic (Algorithm 1) on a
class of random unit-disk graphs with constant density (see
Appendix D for more details on our graph generation proce-
dure) for several values of the resolution distance d .

As the time to perform a single run of Algorithm 1 in-
creases with graph size (see Fig. 13, the number k of allowed
runs within the time budget of 2 s (Fig. 13, bottom) decreases.
Therefore, because the average maximum approximation ratio
describes the average ratio obtained when running k runs and
selecting the best outcome, its value is bound to converge
to the “single-run” approximation ratio, equaling it when the
time to carry out a single run is �2 s.

2. Run time and classical limit

Figure 14 shows the execution time of our locality-based
approach along with a numerical lower bound solely taking
into account the time to exactly solve MIS on subinstances.
Their agreement show that Breadth-First Search and other
graph manipulations in Algorithm 1 are negligible compared
to MIS-solving, and that the run time of the heuristic can be
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FIG. 14. Run time of locality-based heuristic from Algorithm 1.
Solid lines: run time including graph manipulations (such as BFS)
and solving, not taking file I/O overhead inherent to the execution
of [40]. Dashed lines: solving time only, disregarding BFS and other
graph manipulation. Overall, run time is governed by the number and
sizes of graph instances to solve.

expressed as

run_time ≡
∑

u∈seeds

exact_solving_time[Sd (u)]. (B1)

The exact-solving time of a unit-disk graph is, as one can
expect from the NP-hard nature of UD-MIS, exponential in
the graph size. Figure 16 shows the average exact-solving
time of our random graph class (see Appendix D for details)
using a state-of-the-art solver, freely available on the Internet
[40]. One can see the exponential “taking off” around 300-400
vertices with graphs of up to �200 vertices routinely solved
in �0.05 s.

This can explain why, although providing a better approxi-
mation ratio and involving the solving of larger instances, the
heuristic with d = 5 is not slower than d = 2, as one can see
in Fig. 14. Indeed, as one can see in Fig. 15, reporting the 0.9th
quantile of the sizes of subgraphs to solve, d = 5 involves
solving graphs largely falling under 200 vertices, which is
below the “exponential explosion” of the exact solving run
time at 300–400. Therefore, it involves fewer instances than,
say, d = 2 that are bigger but not significantly longer to solve.

Figure 13 shows the run time (top) and corresponding
number of allowed shots (bottom) within the time budget we
chose (2 s). The d = 15 curve fairly resembles the optimal
solving run-time curve of Fig. 16, going over time budget at
around 300-400 vertices. This can be explained by the size of
subinstances to solve being roughly equal to the entire system
size up to 300–400 vertices, as exemplified by Fig. 15.

Other curves involve instances whose sizes largely fall be-
low the “exponential explosion threshold” of optimal solving.
Therefore, they are able to stay within time budget for much
longer, timing out at ∼4000, ∼5000, and ∼8500 for d = 10,
0, and 5, respectively.

3. Benchmark and implementation

Algorithm 1 involves, given a graph, producing subin-
stances that will be solved and removed from the graph, until
it is empty.

These subinstances are solved with Ref. [40] (see next
subsection). It comes as an executable, which is called onto
a graph-describing text file. In our implementation, such text
files are created, filled, and erased automatically when execut-
ing Algorithm 1.

In our reported execution times, in Figs. 13 or 14, for in-
stance, we neglect the time taken by these file manipulations.
We consider that it does not represent actual “computa-
tion time”; see subsection below and Fig. 16 for further
discussion.

The parametrization integer d governs the degree of ap-
proximation to the optimal solution. A larger value of d
involves solving larger instances, as one can see in Fig. 15.

4. Run times of exact branch-and-bound solver

In Fig. 16 we show the average run times of the optimal
branch-and-bound solver, as a function of the number of ver-
tices, for our class of random graphs (see Appendix D).

We used a state-of-the-art MIS solver [40] freely available
on the web. It is a generic solver, not restricted nor specifically
optimized for unit-disk graphs.

It is a legitimate question to ask whether, given the specific
geometric structure of unit-disk graphs, a specialized solver
would not fare better in practice. We tested this hypothesis
by implementing a dynamic programming technique directly
derivable from Ref. [25]. In algorithmic terms, it exploits
the fixed-parameter tractability [45] of UD-MIS, with the
thickness of input graphs taken as a parameter. Figure 17
compares the execution times of the specialized dynamic-
programming and the generic branch-and-bound approaches,
largely in favor of the latter, namely, Ref. [40], whose ex-
ponential explosion happens around 300–400 vertices (see
Fig. 16) and not ∼30 as in Fig. 17.

FIG. 15. 0.9th quantile of sizes (i.e., 90% of the sizes fall below
this threshold) of subinstances to solve exactly when running the
locality-based heuristic Algorithm 1.
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FIG. 16. Run time of exact branch-and-bound solver [40] as a
function of the number of vertices, for the class of random graphs we
considered (described in Appendix D).

In estimating the run time (“reported” run time in Fig. 16),
we remove the input-output overhead specific to the solver
of [40] so as to measure only the actual computational time
(Ref. [40] works as an executable that reads and writes graphs
from files). We report both run times (with and without I/O)
as “wall-clock” time and “reported” run time, respectively. We
observe that the I/O does represents a large part of the run
time for small graphs.

5. Supplementary data

Figure 18 shows the average approximation ratio achieved
by locality-based approximation heuristic for different values
of the parameter d . For all values, the approximation ratio is
observed to stabilize to an asymptotic value, which increases
with d .

FIG. 17. Comparison of execution times of generic state-of-
the-art branch-and-bound MIS solver (bb-generic) [40] and an
implementation of a specialized UD-MIS solver, based on dynamic
programming [29], as can be readily derived from Ref. [25] (specific-
dp-based).

FIG. 18. Single-shot average (over 100 random graphs) ap-
proximation ratio achieved by classical locality-based heuristic
(Algorithm 1) on random unit-disk graphs (see Sec. D).

Figure 19 documents the execution time of our locality-
based approximation heuristic for values of d not shown in
Fig. 13, and the corresponding number of allowed shots.
These data are used in Fig. 5 to estimate the largest graph size
attainable within a time budget of 2 s.

APPENDIX C: REFORMULATION OF THE UDMIS
PROBLEM AS A MINIMIZATION PROBLEM

To be amenable to a resolution using a quantum proces-
sor, the problem has to be reformulated as an unconstrained
minimization problem, ultimately in the form of an Ising
Hamiltonian.

FIG. 19. Top: execution time of classical locality-based approx-
imation heuristic, as a function of the number of atoms. Bottom:
corresponding allowed number of shots in 2 s.
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1. Boolean reformulation

Let us reformulate the UD-MIS problem defined in Sec. II
entirely in terms of Boolean functions by defining

f (S) ≡
∑
i∈V

n(S)
i = |S|, (C1)

h(S) ≡
∑
i, j∈E

n(S)
i n(S)

j (C2)

with S = (n1, . . . , nNatoms ) a given bitstring.
Let us note that S ∈ I.S iff h(S) = 0, so that the problem

described in Eq. (1) can be reformulated as

max
S∈B

f (S) (C3)

s.t. h(S) = 0

Let us then denote S∗ the solution of this optimization
problem, called (UD)MIS, and p∗ its optimum:

p∗ ≡ f (S∗). (C4)

2. Lagrangian relaxation of UD-MIS

We want to transform the above constrained optimization
problem, Eq. (C3), into an unconstrained optimization prob-
lem, while requiring that the optimal solution of this new
optimization problem is still a Maximum Independent Set.

One way to achieve this is to construct a Lagrangian relax-
ation (see, e.g., Ref. [46]) of the problem by introducing the
Lagrangian

�(S, u) ≡ f (S) − uh(S) (C5)

with the Lagrange multiplier u. Since h(S) � 0 for any S,
we see that whenever u > 0, the second term penalizes non
feasible solutions (i.e., non-IS states). Let us also define the
Lagrangian dual function:

g(u) ≡ max
S∈B

�(S, u). (C6)

At this point, we cannot ensure yet that the maximum S∗
u of

the maximization problem Eq. (C6) is an IS. To impose this
condition, one can prove (see Sec. C 4 below) that it is enough
to require u > 1. Thus, we are going to solve the following
maximization problem:

max
u∈R

max
S∈B

�(S, u) (C7)

s.t. u > 1.

Since we have proven that the solution S∗
u is IS, we have

�(S∗
u , u) = f (S∗

u ). As in addition, among all IS solutions, the
ones that maximize f are the Maximum Independent Sets,
we have that S∗

u is indeed a Maximum Independent Set of
the graph, and that the optimal solutions to both optimization
problems are the same.

3. Reformulation as a minimization problem

Our goal is to use a quantum algorithm to solve the inner
optimization problem, defined by Eq. (C6). As described in
the main text, our quantum algorithm is going to perform a
minimization task. Therefore, we first reformulate the above
maximization problem as a minimization problem. This is

FIG. 20. Hybrid quantum-classical algorithm for the approxi-
mate solution of the UD-MIS problem. Box (a): outer minimization.
Box (b): inner minimization. Box (c): quantum part of the algo-
rithm, performed with a Rydberg platform. Red labels in brackets:
simplified variational parameters used in this work. All variational
parameters are lumped into a single parameter �θ . u is set to u = 1.35
for all shown results.

achieved by redefining the objective function as − f instead
of f . Thus, we want to solve

p∗ = min
S∈B

{− f (S)}

s.t. h(S) = 0

with the following Lagrangian relaxation:

q∗ = min
u∈R

min
S∈B

{− f (S) + uh(S)}

s.t. u > 1. (C8)

Following the reasoning of the previous subsection, we
have the guarantee that the optimal solution is indeed an
optimal Maximum Independent Set. One can now solve the
double-minimization problem of Eq. (C8) in two steps:

(1) The inner minimization

g(u) = min
S∈B

{− f (S) + uh(S)}, u > 1 (C9)

can be performed using a quantum algorithm; since this
quantum algorithm itself comes with parameters that can be
optimized (like the annealing time), the inner minimization
will itself be a quantum-classical algorithm; this inner min-
imization is represented as the light gray box [box (b)] in
Fig. 20.

(2) The outer minimization

min
u>1

g(u)

can be performed using a classical minimization algorithm.
This outer minimization is represented by the outermost box
(box (a)) in Fig. 20. In this work, we do not study the influence
of this outer minimization, and instead consider the Lagrange
multiplier to be set to a fixed value u = 1.35.

4. Lagrangian relaxation: Proof of bound on u

Here we prove the condition u > 1 that ensures that the
cost function is maximal for a feasible solution (independent
set).

Let us suppose that u > 1, and that we have a solution
(bitstring) S̃∗

u of the maximization problem (C6) that is not
an IS.
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Since it is a solution, we have

f (S̃∗
u ) − uh(S̃∗

u ) � f (S) − uh(S), ∀S ∈ 
.

In particular, for IS states,

f (S̃∗
u ) − uh(S̃∗

u ) � f (S), ∀S ∈ I.S. (C10)

Let us call S∗
u the IS one finds when removing (some) edge-

sharing vertices from S̃∗
u (one can always construct such a

state: a possible (but non optimal) procedure is, for instance,
to consider every conflict, i.e., every edge (i, j) such that both
ends are in the set S̃∗

u , and remove one of the two vertices from
S̃∗

u ). Let us call k > 0 this number of vertices.
Then,

f (S∗
u ) = f (S̃∗

u ) − k, h(S∗
u ) = 0, h(S̃∗

u ) � k.

The last inequality comes from the fact that a new occupied
vertex can create more than one edge. Thus,

f (S̃∗
u ) − uh(S̃∗

u ) � [ f (S∗
u ) + k] − uk

= f (S∗
u ) − (u − 1)k.

Since u > 1,

f (S̃∗
u ) − uh(S̃∗

u ) < f (S∗
u ),

which contradicts Eq. (C10).

APPENDIX D: RANDOM GRAPH GENERATION
PROCEDURE

We use the following procedure to generate random
graphs:

.

The parameter ν is the vertex density, i.e., the average
number of atoms per unit square, while r plays the role of
an exclusion radius.

We choose a density ν = 2 that corresponds to a hard com-
putational regime, i.e., it is above the percolation threshold
of νp ≈ 1.4, so that the generated graphs are connected on
average, and not too high to be compatible with our exclusion
radius, r = 0.3. This exclusion radius is chosen to be above
the minimum distance between two atoms, and below the
blockade radius of 0.5 (our condition for two vertices to be
connected is that their distance should be �1, which means
that disks of radius 0.5 around them should intersect).

APPENDIX E: NUMERICAL METHODS

1. Restriction to independent sets subspace

The Rydberg interaction [Eq. (7)] favors configurations
where neighboring atoms have a different internal state. These
configurations correspond to the independent sets (IS) of the
underlying graph.

In our simulations, we therefore assume that the temporal
dynamics are limited to the vector space spanned by such
configurations.

We check that this approximation, which becomes exact
only in the hard-sphere limit with V → ∞, has little quantita-
tive impact on the final results: see, e.g., Fig. 7 (the solid lines
show a computation within the full Hilbert space, the dashed
lines with our restriction to the IS subspace) or Fig. 8 (see
the panel for Natoms = 12). As can be expected, the difference
is largest for high noise levels and unoptimized anneal times,
both of which may favor non-IS states.

2. Quantum trajectories approach

The Lindblad master equation is solved using the quantum
trajectories or quantum jump approach [47] as implemented
in Qutip [48]. We take 100 trajectories per run.

3. Classical optimization

For the classical optimization of the annealing time,
we choose the COBYLA optimizer as implemented in
scipy.optimize [49].

APPENDIX F: DEPENDENCE OF THE CORRELATION
LENGTH ON THE NOISE LEVEL AND

THE NUMBER OF ATOMS

In this section, we give data supporting the claim that the
correlation length is roughly independent of the graph size and
depends on the noise level γ .

At the end of the optimization procedure for tf , we compute
the correlation functions

〈ziz j〉ρ ≡ Tr
[
ρσ z

i σ z
j

]
, (F1)

with i, j = 1, . . . , Natoms. We do not choose connected corre-
lation functions because the sought-after solution is a classical
state in general, which would entail a vanishing connected
correlation function.

Such a correlation function displays oscillations corre-
sponding to the alternation of correlations (1) and anticorre-
lations (−1) between the occupancy of site i and that of site j,
as shown in Fig. 21. These oscillations appear to be damped
as the (Euclidean) intersite distance di j = |ri − r j | increases,
with a damping that increases as the decoherence level γ

increases. Our goal is to extract the envelope of these curves
to compute a corresponding spin-spin correlation length ξ .

To this aim, we then compute the following binned corre-
lation function:

g(2)(r) = max
G ∈ G

i, j
|ri − r j | ≈ r

|〈ziz j〉ρG |. (F2)
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FIG. 21. Spin-spin correlation function 〈ziz j〉� (see text) as a function of the Euclidean distance for one graph instance and for various
noise levels (black: γ = 0.0, blue: γ = 0.3, red: γ = 3.0) and graph sizes (clockwise from top left: Natoms = 10, 12, 16, 14).

We thus extract the envelope by finding, for each bin
around r, the maximum over several (here five) random graph
instances, and over all pairs such that |ri − r j | is in the vicinity
δr of r (here we choose δr = 0.04, but the results do not
depend on this value provided each bin δr around r con-
tains enough points). Similar (although quantitatively slightly
different) results can be obtained by averaging over the bin,
instead of maximizing.

We plot the corresponding curves in Fig. 22. An expo-
nential fit exp[−r/ξ (γ , Natoms)] turns out to be an accurate
description of the data. We extract the corresponding correla-
tion length ξ , which we plot in Fig. 12.

We observe that for γ > 0.0, the correlation length is
reasonably constant with respect to the number of atoms,
and decreases substantially with increasing noise level γ . For
γ = 0.0, the extracted correlation lengths are larger than those

FIG. 22. Spin-spin correlation function g(2)(r) (see text) as a function of the distance for various noise levels (black: γ = 0.0, blue: γ = 0.3,
red: γ = 3.0) and various graph sizes (clockwise from top left: Natoms = 10, 12, 16, 14). The dashed lines show the result of a fit with the
exponential decay function e−r/ξ (γ ,Natoms ).
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obtained in the noiseless case, but they do not appear to be
constant with respect to the graph size.

We henceforth consider the value of ξ to be constant with
respect to the number of atoms: taking the average over the
largest three atom counts (12, 14, 16), we get the estimates
ξ (γ = 0.3) = 3.9 and ξ (γ = 3.0) = 1.4 [and ξ (γ = 0.0) ≈
33 if we average despite the variations].

We can roughly estimate the size (in terms of number of
atoms) of the system beyond which the approximation ratio
is going to get stable because the spatial extent of the atoms
gets larger than the correlation length. For this, we estimate
the number N∗ of atoms contained in a square of length ξ .
It is given by N∗ = νξ 2. For the density under consideration
(ν = 2.0), and the above estimates for the correlation length,
we obtain N∗(γ = 0.3) = 30, N∗(γ = 3.0) = 4 [and N∗(γ =
0.0) ≈ 2000].

In practice, N∗ also gives us the atom number beyond
which it is legitimate to extrapolate the numerical values ob-
tained for lower atom counts.

APPENDIX G: EXPECTATION VALUE OF THE MAXIMUM
OVER A SERIES OF RUNS

In this section, we rationalize the asymptotic behavior of
the maximum approximation ratio with respect to the number
of repetitions (shots) and system size.

1. Definitions

Let us denote by pi = |〈i|�〉|2, i = 0, . . . , d − 1 (d is di-
mension of the space, d = 2Natoms if all states are kept), the
probabilities of the computational basis states in the final state
� at the end of the annealing and

Ei = −[Ĥtarget]ii

the corresponding target energies (we put a minus sign be-
cause due to the definition of Ĥtarget, the minimum target
energy, which measures the size of the maximum independent
set, is negative). Let us further define the expectation value

〈E〉p ≡ 〈ψ | − Ĥtarget|ψ〉 =
2n−1∑
i=0

piEi.

We want to compute the expectation value M(N ) of the
maximum of the value of −Htarget over N repetitions of the
preparation and measurement of � (N = nshots in the main
text). It is given by

M(N ) ≡ EP
[

max
(
Ei1 , . . . , EiN

)]
(G1)

=
∑
i1...iN

max
(
Ei1 , . . . , EiN

)
P
(
i1, i2, . . . , iN

)
, (G2)

where P(i1, i2 . . . iN ) is the probability of observing the states
i1, . . . , iN as the N outcomes of the readouts. Since the repeti-
tions are independent, P(i1, i2, . . . , iN ) = pi1 · · · piN and thus

M(N ) =
∑

i1,...,iN

max
(
Ei1 , . . . , EiN

)
pi1 · · · piN (G3)

We note that

M(N = 1) = 〈E〉p.

Furthermore, denoting by Emax the maximum target energy,
we expect that, if the support of p contains the state with
maximum energy (the MIS),

M(N = ∞) = Emax.

2. Computation using the density of states

We now define the following “target” density of states:

D(ε) ≡
2n−1∑
i=0

piδ(ε − Ei ). (G4)

It gives the probability of observing a given target energy over
one repetition. Starting from Eq. (G3), we can then rewrite
M(N ) as

M(N ) =
∑
i1...iN

∫
dε1· · ·

∫
dεNδ(ε1 − Ei1 ) · · · δ(εN − EiN )

× max (Ei1 , . . . , EiN )pi1 · · · piN

=
∫

dε1 · · ·
∫

dεN

×
∑

i1

pi1δ(ε1 − Ei1 ) · · ·
∑

iN

piN δ(εN − EiN )

× max (E1, . . . , EN ),

i.e.,

M(N ) =
∫

dε1 · · ·
∫

dεN D(ε1) · · · D(εN ) max (ε1, . . . , εN )

(G5)

≡ ERN [max (ε1, . . . , εN )] (G6)

with RN (ε1, . . . , εN ) = D(ε1) · · · D(εN ).
Let us define the random variable

EN ≡ max (ε1, . . . , εN ).

Let us call FN the cumulative distribution function (CDF)
of EN . Then,

M(N ) = ERN

=
∫ Emax

Emin

εF ′
N (ε) dε

= [εFN (ε)]Emax
Emin

−
∫ Emax

Emin

FN (ε) dε, (G7)

where we have used integration by parts to obtain the last
line.

We can now simplify the expression for FN . Let us denote
by F the CDF corresponding to the probability distribution
function D, i.e., D = F ′. Then

FN (ε) = P(max (ε1, . . . , εN ) � ε)

= P(ε1 � ε, . . . , εN � ε)

= P(ε1 � ε) · · · P(εN � ε)

= [F (ε)]N .
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FIG. 23. Comparison of approximation ratio with its upper
bound in the uniform case. Solid lines: S(α(N, S) − 1/2)2, with
α(N, S) = E[maxp=1,...,N {Ei(S; p)}]/S. Dashed black line: lnN/2.

We thus obtain the final expression:

M(N ) = Emax −
∫ Emax

Emin

[F (ε)]N dε. (G8)

Since F (ε) < 1(∀ε ∈]Emin, Emax[), we have, as expected:

M(N = ∞) = Emax.

APPENDIX H: APPROXIMATE UPPER BOUND FOR THE
APPROXIMATION RATIO CORRESPONDING TO A

UNIFORM STATE DISTRIBUTION

In this section, we derive an approximate upper bound for
the expectation value of the maximum of the approximation
ratio computed over N samples of a uniform distribution of
states,

pi = 1

d
, ∀i = 0, . . . , d − 1 (H1)

with d = 2S , and S denotes the system size (S = Natoms and
N = nshots in the main text).

The cost function we consider for a solution (bitstring) i =
(ni

1, . . . , ni
S ) is its Hamming weight (sum of bits):

Ei(S) =
S∑

k=1

ni
k . (H2)

It corresponds to a simplification of the target energy of
the main text that corresponds to taking U = 0 (and inverting
the sign). The approximation ratio is then αi = Ei(S)/S as the
maximum Hamming weight is S.

To study the expectation value of the maximum of αi

over N repetitions, we first notice that Ei is a random vari-
able with binomial distribution law, Ei ∼ B(p = 1/2, S). For
large enough S, it is well approximated by a Gaussian-
distributed random variable, Ei ≈ EG

i , with EG
i ∼ N (μ =

S/2, σ 2 = S/4). The expectation value of the maximum of N
Gaussian samples obeys the inequality

E

[
max

p=1,...,N

{
EG

i (S; p)
}]

� μ(S) + σ (S)
√

2lnN . (H3)

(Indeed, using Jensen’s inequality to obtain the first line, we
have, ∀κ > 0,

eκE[MN ] � E
[
eκMN

] = E

[
max

p=1,...,N
eκEG

p

]

�
N∑

p=1

E
[
eκEG

p
] = Ne

κ2σ2

2 .

Taking the logarithm of this expression and picking κ =√
2ln(N )
σ

yields the σ
√

2ln(N ) upper bound.]
Approximating Ei ≈ EG

i in inequality (H3), and dividing
by S, we obtain the final approximate upper bound on the
approximation ratio:

α(N, S) � 1

2
+

√
lnN

2S
. (H4)

In Fig. 23 we check numerically that α(N, S) follows the same
(N, S) dependence as its upper bound, i.e., that α(N, S) ≈
1/2 + β

√
lnN
2S , motivating the fitting function that is used in

the main text.
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