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Augmented fidelities for single-qubit gates
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An average gate fidelity is a standard performance metric to quantify deviation between an ideal unitary
gate transformation and its realistic experimental implementation. The average is taken with respect to states
uniformly distributed over the full Hilbert space. We analytically (single qubit) and numerically (two qubit)
show how this average changes if the uniform distribution condition is relaxed, replaced by parametrized
distributions—polar cap and von Mises–Fisher distributions—and how the resulting fidelities can differentiate
certain noise models. In particular, we demonstrate that Pauli channels with different noise rates along the three
axes can be faithfully distinguished using these augmented fidelities.
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I. INTRODUCTION

Impressive progress in quantum technologies has taken
quantum computing from a theoretical framework to an exper-
imental playground, where basic proof-of-principle concepts
can be tested and verified. The most prominent recent example
of the latter is the demonstration of quantum advantage [1]:
that even the imperfect currently available quantum hardware
can perform tasks intractable for the most powerful super-
computers. Further advances toward more capable and robust
quantum hardware depend on gaining a better understanding
of underlying physical effects, including the characterization
of noise in actual quantum hardware.

In theory, quantum process tomography (QPT) [2] can be
used to exhaustively benchmark a quantum device, identifying
all of its imperfections. QPT reconstructs the full process
matrix χ (of size 2n × 2n, where n is the number of qubits),
a matrix that encodes complete information about underlying
quantum transformation (including unwanted effects caused
by noise). Unfortunately, QPT scales exponentially with sys-
tem size, becoming impractical for systems larger than a few
qubits [3]. Intuitively it seems plausible that well-controlled
systems will have only few dominating error sources, i.e.,
the χ matrix will be sparse up to some accuracy. Therefore,
lower parameter approximations and associated metrics and
protocols that could assess the performance of quantum de-
vices, and identify the crucial elements of χ , are promising
approaches to noise characterization and quantum hardware
benchmarking. Currently, the most common figures of merit
considered are diamond norm [4], minimum fidelity [5], or
average fidelity [6–8]. All three techniques yield a single value
that characterizes deviations from the ideal transformation. A
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parameter count shows that all three methods provide only
limited information about the process matrix for a device.
Nevertheless, they are all valuable benchmarking tools that
allow researchers to capture and quantify some of the most
relevant aspects of the behavior of quantum devices and their
building blocks—qubits and gates.

Special attention should be given to the average fidelity—
currently the figure of merit of performance metric. It
describes an error between an ideal and experimental real-
ization of a gate, and is averaged over all possible states
uniformly distributed in the Hilbert space (according to the
Haar measure). Unlike the diamond norm and the min fidelity,
the average gate fidelity can be efficiently estimated through
protocols such as randomized benchmarking (RB) [9–12],
cross-entropy benchmark [1,13], or direct fidelity estimation
[14–16]. However, being only a single parameter the metric
cannot distinguish various noise models; it reports only a
single element of the process matrix, the χ00 element, which
is associated with the depolarizing rate. That is, it effectively
identifies all channels as depolarizing channels.

In this article, we propose to relax the uniform distri-
bution condition and introduce augmented fidelity metrics
via parametrized distributions. In particular, we analyti-
cally investigate what information about noise processes can
be extracted from average fidelity with respect to a von
Mises–Fisher distribution (a normal distribution in direc-
tional statistics) and a polar cap distribution, i.e., a uniform
distribution over a subset of states parametrized by polar
angle (colatitude). This approach augments standard uniform-
average fidelity by adding extra tunable parameters to the
metric, that depend on distribution properties. This work pro-
vides a partial solution to the problem posed by Nielsen in
[7] regarding gate fidelities over nonuniform distributions.
Additionally, we derive the maximal spread in fidelity values
(the difference between minimum and maximum attainable
values) and provide error bars (based on the standard deviation
derived from the considered distributions) for processes that
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share the same depolarizing rate. In particular, we show how
to identify noise biases [17,18] in Pauli channels. Our analysis
focuses mainly on single-qubit gates, where analytical formu-
las are derived, but we also open the discussion for similar
approaches for multiqubit gates; in particular, we numerically
show local distribution for two-qubit gates and how they differ
from the uniform-average fidelity.

II. AVERAGE GATE FIDELITY

Consider the fidelity between a state transformed according
to a given unitary (gate) transformation (ideal action) U and
the same state transformed with noisy realization of U , which
is a completely positive and trace preserving (CPTP) map EU .
The average fidelity of the noisy realization is the average of
this fidelity over all initial (pure) states distributed uniformly
in the entire Hilbert space. Bowdrey et al. [6] introduced a
simple formula for calculating average gate fidelity for single-
qubit gates, which was later generalized to multi-qubit gates
and connected with entanglement fidelity [7,8]. The average
gate fidelity (from now on referred to as “uniform-average
fidelity”) for n-qubit gates is therefore given by

F̄ (U, EU )= F̄ (U† ◦ EU )=
∑22n−1

k=0 Tr[UV †
k U †EU (Vk )] + 22n

22n(2n + 1)
,

(1)

where Vk are traceless unitary matrices forming an orthonor-
mal basis with respect to the Hilbert-Schmidt inner product
([Tr(VkV

†
j ) = 2nδk j , Tr(Vk ) = 0 for k = 1, . . . , 22n − 1, and

V0 = 1]. By writing the composed map

E (ρ) ≡ U† ◦ EU (ρ) =
22n−1∑
k,l=0

χklVkρV †
l , (2)

where the χ matrix is called the process matrix for E , it can
be demonstrated that the average fidelity only depends on the
χ00 element corresponding to a “depolarizing” rate, a unitary
invariant element, i.e.,

F̄ (U† ◦ EU ) = 2nχ00 + 1

2n + 1
. (3)

The above formula demonstrates the inability to distinguish
different noise processes that differ in other χ parameters,
and this limitation stems from the averaging procedure and
properties of the Haar measure. In order to have a more
sensitive metric, we propose to use several different initial
state distributions. In addition to averaging over all pure
states distributed uniformly, we explore two models: (i) uni-
form distribution parametrized by a polar angle � ∈ [0, π ],
which we call polar cap distribution (e.g., for � = π/2 we
have a distribution over the northern hemisphere, while for
� = π we recover the entire space distribution), and (ii) von
Mises–Fisher distribution around a state |ψ〉 (without loss of
generality we can fix it to |0〉) parametrized by “variance”
parameter κ . From now on we will focus only on single-qubit
gates, and will refer to the investigated fidelities as augmented
fidelities, leaving extensions to multiqubit systems to later
work.

A. Polar cap distribution

First let us define a single state gate fidelity as

F|ψ〉〈ψ |(U, EU ) = Tr[U |ψ〉〈ψ |U †EU (|ψ〉〈ψ |)], (4)

where U is the investigated gate, EU its CPTP (imperfect)
realization, and |ψ〉 is a state upon which the gate acts. Since
measuring and computing Eq. (4) for all possible states is in-
feasible, one usually reports the average fidelity value, which
is taken over |ψ〉 distributed uniformly in the entire Hilbert
space.

Following derivation from [6] we define the restricted av-
erage gate fidelity F̄�(U, EU ) ≡ F̄� as

F̄� =
∫

F|ψ〉〈ψ |(U, EU )d	

= 1

S(�)

∫ �

θ=0

∫ 2π

φ=0
Tr

(
U

[
3∑

j=0

c j (θ, φ)
σ j

2

]
U †

× EU

[
3∑

k=0

ck (θ, φ)
σk

2

])
sin θ dφ dθ, (5)

where S(�) := 2π (1 − cos �) is the solid angle for
normalization of the distribution, and c j (θ, φ) are the pure
state’s Bloch vector coefficients: c0(θ, φ) = 1, c1(θ, φ) =
sin θ cos φ, c2(θ, φ) = sin θ sin φ, and c3(θ, φ) = cos θ .
These correspond, respectively, to the identity matrix σ0,
and the three x, y, z Pauli matrices σ1,2,3. Note that Eq. (4)
assumes a coordinate system where θ = 0 corresponds to the
|0〉 state, and the polar cap distribution is centered around
it. However, transformation to an arbitrary central state is
straightforward via rotation |ψ̃〉 = UR |ψ〉. Now performing
the integration leaves us with

F̄� = 1

2
+ (2 + cos �) sin2 �

2

12

2∑
k=1

Tr(UσkU
†EU [σk])

+ 1 + cos � + cos2 �

12
Tr(Uσ3U

†EU [σ3])

+ 1 + cos �

8
Tr(Uσ3U

†EU [σ0]). (6)

It is transparent that for � = π one recovers result Eq. (1) for
uniform distribution over the entire Hilbert space. Expressing
the composed gate-noisy-gate map E = U† ◦ EU in the form
Eq. (2), one can show that

1

4

2∑
k=1

Tr(σkE[σk]) = χ0,0 − χ3,3, (7)

1

2
Tr(σ3E[σ3]) = χ0,0 − χ1,1 − χ2,2 + χ3,3, (8)

1

8
Tr(σ3E[σ0]) = Re(χ0,3), (9)

where we used the properties of the χ matrix that guarantee
the CPTP condition, in particular Re(χ0,3) = −Im(χ1,2). The
above equations (6)–(9) are correct for distributions centered
around the North Pole (i.e., state |0〉). However, if the center
is selected to be one of σ1 or σ2 eigenstates, then Eqs. (6)–(9)
will experience a permutation 3 ↔ 1 or 3 ↔ 2, respectively.
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FIG. 1. Visualization of von Mises–Fisher distributions. Top:
50 000 random states selected according to von Mises–Fisher distri-
bution around the |0〉 state (red point) with (left) κ = 10 and (right)
κ = 100. Bottom: Fidelity between the |0〉 state and states |ψ〉 that
are drawn from von Mises–Fisher distribution (i.e., between the “red
point” state and states represented by “blue points”) expressed in the
form of histograms (orange: κ = 10; red (and inset): κ = 100).

For more generic central state the polar cap average fidelity F̄�

will in principle depend nontrivially on all χ matrix entries,
apart from the imaginary parts of χ0,k for k = 1, 2, 3.

B. von Mises–Fisher distribution

In directional statistics [19] von Mises–Fisher distribu-
tion [20] is a continuous probability distribution on the
N-dimensional sphere (see Fig. 1), and plays a similar role
to a normal distribution on a flat manifold. Since pure states
of qubits live on a Bloch sphere, it is more natural to exploit
directional statistics and use von Mises–Fisher distribution as
a distribution for initial state preparation than standard normal
distribution. For a 2-sphere the probability density function is
given by

p(�x, �μ, κ ) = κ

4π sinh κ
eκ �μ·�x, (10)

where �μ, �x are normalized vectors, and κ is similar to the
inverse of the variance—for κ → 0 it converges to a uniform
distribution, while for κ → +∞ it is localized around �μ,
which resembles mean value in the standard normal distribu-
tion. Note that Eq. (10) is a special case of Kent distribution
[21].

If we fix �μ = (0, 0, 1) (see Fig. 1), which corresponds
to the distribution around the North Pole, i.e., around the
|0〉 state, the averaging of the fidelity is with respect to the

following normalized surface element d	:∫
d	 =

∫ π

θ=0

∫ 2π

φ=0

κ sin θ

4π sinh κ
eκ cos θdθ dφ = 1. (11)

Integrating Tr[U |ψ〉 〈ψ |U †EU (|ψ〉 〈ψ |)] with respect to the
von Mises–Fisher surface element one arrives at

F̄κ = 1

2
+ κ coth κ − 1

4κ2

2∑
k=1

Tr(UσkU
†EU [σk])

+ 2 − 2κ coth κ + κ2

4κ2
Tr(Uσ3U

†EU [σ3])

+ κ coth κ − 1

4κ
Tr(Uσ3U

†EU [σ0]), (12)

which depends on the same χ matrix elements as in the polar
cap case, i.e., contribution as in Eqs. (7)–(9). Moreover, the
same reasoning holds for distributions around different central
states (e.g., |+〉).

III. RESULTS

Now we demonstrate through our analytic expressions how
certain noise channels that are indistinguishable under the
standard average fidelity, Eq. (1), can be distinguished via
augmented fidelities, Eqs. (6) and (12). Additionally, we ana-
lytically derive the spread between the maximal and minimal
value of fidelity attainable for these processes, and obtain error
bars based on the standard deviation.

The uniform-average fidelity Eq. (3) depends purely on
a single element of the χ (process) matrix of the composed
noisy process E = U† ◦ EU . Since the two augmented fideli-
ties, Eqs. (6) and (12), are influenced by χ matrix elements
present in Eqs. (7)–(9) (for distributions centered around |0〉)
it suffices to consider a matrix of the following form:

χ =

⎛
⎜⎝

χ00 · · χ03

· χ11 −iχ03 ·
· iχ03 χ22 ·

χ03 · · χ33

⎞
⎟⎠, (13)

where the χi j elements are real by hermiticity. The dots in
Eq. (13) indicate these elements are arbitrary for our purposes,
as they are absent in Eqs. (6) and (12) (up to χ being a
genuine process matrix). For simplicity, we set these elements
to zero. With this, constraints to impose CPTP conditions are∑

k χkk = 1, and χ � 0 which translates into χ00χ33 � χ2
03

and χ11χ22 � χ2
03.

In order to investigate the spread of fidelities, we need
to minimize (maximize) the average fidelity, according to
Eqs. (6) and (12). First let us introduce p = (1 − √

χ00)2.
We can analytically determine the minimal (maximal) value,
which is achieved for χ33 = p, χ11 = χ22 = √

p − p, and
χ03 = −χ11 (respectively, χ03 = χ11). A similar analysis can
be performed for a Pauli channel, i.e., with diagonal χ matrix.
In that case, the minimal fidelity values are achieved for χ11 =
1 − χ00 (or χ22 = 1 − χ00) and maximal for χ33 = 1 − χ00.

The spread between minimal and maximal fidelities for
noise models with the uniform-average fidelity of 99% (cor-
responding to χ00 = 0.985) is depicted in Fig. 2. In the limit
of κ → 0 and � = π we recover results for average over all

052612-3



WUDARSKI, MARSHALL, PETUKHOV, AND RIEFFEL PHYSICAL REVIEW A 102, 052612 (2020)

FIG. 2. Analytical augmented fidelities for processes that share
the same χ00 = 0.985 element (depolarizing rate) corresponding to
99% fidelity. Red (dashed) and blue (dotted) curves bound the region
between the minimal and maximal fidelities of a noisy process. Green
region (inside) corresponds to diagonal χ matrices (i.e., Pauli chan-
nels). Top: augmented fidelity over polar cap distribution, Eq. (6),
parametrized by polar angle �. Bottom: augmented fidelity, Eq. (12),
with respect to von Mises–Fisher distribution (normal distribution in
directional statistics) as a function of κ parameters (corresponding to
the inverse of variance in standard statistics for normal distribution).
Error bars indicate standard deviation of fidelities (color coded) for
minimal and maximal values. Black (dashed) line represents the
depolarizing channel that would be identified through RB.

states. Note, that in that case spread completely disappears
and it is impossible to differentiate between various noise
models (i.e., sharing the same χ00 element, but otherwise
having distinct elements of the χ matrix) solely based on
fidelity Eq. (1). On the other end, when κ → ∞ and � → 0,
both distributions tend to a localized state |0〉 and fidelities
display the largest spread. Moreover, the spread increases
with decreasing χ00, i.e., higher uniform-average infidelity
allows for larger spread. Therefore this analysis provides a
trade-off between faithful state preparation (more localized
distribution) and sensitivity to noise manifested by fidelities.

As we have emphasized, while standard benchmarking
techniques (such as RB [9]) probe the uniform-average fi-
delity, identifying the χ00 element, but do not detect properties
of noise presence encoded elsewhere in the χ matrix. Ad-
ditionally, it is well known that a twirling protocol (see, for

TABLE I. Two Pauli channel coefficients with equal noise bias ηZ

ID χ11 χ22 χ33 ηZ

PC1 0.012 0.002 0.001 1
14

PC2 0.010 0.004 0.001 1
14

example, [9,16], and references therein), which is a mathemat-
ical justification for RB methods, is insensitive to initial state
distribution; since it averages over the entire unitary group, it
transforms each channel into a depolarizing one. Thus, after
performing a twirling protocol, one is left with a contribution
stemming only from the χ00 element (i.e., depolarizing rate).
It is attractive, yet incorrect, to equate every noise process with
depolarizing noise, simplifying the entire noise analysis to this
averaged case.

For each distribution one can also determine variance
σ 2(F ) of the fidelity

σ 2(F ) =
∫

F|ψ〉〈ψ |(U, EU )2d	 −
(∫

F|ψ〉〈ψ |(U, EU )d	

)2

,

(14)

where F|ψ〉〈ψ |(U, EU ) is given by Eq. (4) and d	 is a surface
element related to the underlying distribution of initial states
|ψ〉. In [22] the formula for the uniform distribution over
the entire space was provided. It is also straightforward to
calculate this in the case of polar cap and von Mises–Fisher
distributions (see Appendix), which depends not only on the
θ and κ parameters, but in general on all χ matrix elements.
The variance becomes smaller for more localized distributions
(i.e., as κ → ∞ and � → 0) and reaches its largest value for
distributions close to uniform over all states.

In Fig. 2 we report standard deviation error bars [i.e., from
Eq. (14)] for the minimal (blue) and maximal (red) channels.
This corresponds to the spread in fidelity values over the pure
states of the distributions, for these extreme channels, and
depends on all elements of Eq. (13).

Our analysis shows that we have two independent sources
of fidelity deviations. One related to a statistical distribution,
and the second one to noise process. In principle they can
either benefit (increase fidelity) or hamper (decrease) the per-
formance. It is important to properly identify their impact and
origins.

A. Noise bias

Recently the problem of noise bias in Pauli channels, i.e.,
having diagonal χ matrix, has attracted considerable atten-
tion, especially in the field of error correction [17,18,23]. The
noise bias (in Z direction) is defined for Pauli channels, as
ηZ = χ33/(χ11 + χ22), and informs us which Pauli error is
more prominent. Here, we propose to identify Pauli errors by
looking at the average gate fidelity either with polar cap or
von Mises–Fisher distribution centered around eigenstates of
X, Y , and Z to the eigenvalue +1. In Table I we report values
of χkk elements for two different Pauli channels (which we
call PC1 and PC2) that take the same value of χ00 = 0.985,
i.e., corresponding to uniform-average fidelity of 99%, and
the same noise bias ηZ = 1/14. The results for these channels
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FIG. 3. Augmented fidelity of Pauli channels. Different channels
(line styles) characterized by values in Table I with polar cap (top
panel) and von Mises–Fisher (bottom) distributions. Black dashed
line corresponds to the depolarizing channel with fidelity 99%. Color
coded are distributions centered around different initial states: (red)
|+〉 state, (blue) |y+〉 (eigenvector of Pauli Y to eigenvalue +1), and
(green) |0〉.

are displayed in Fig. 3. Note, that for distributions centered
around |0〉 (green color in Fig. 3) we see only a single line
style. This is due to the fact that augmented fidelity fails to
discriminate Z bias in this protocol. However, if one changes
the center of the distribution, the difference becomes clear and
two Pauli channels yield distinct values. Note that changing
the center is due to a special type of single-qubit rotation trans-
formation, and therefore could be also used as a benchmark
for single-qubit rotation gates (the profiles of the curves are
qualitatively the same as in Fig. 3).

B. Two-qubit case

We consider a special class of two-qubit fidelities with

F (U, EU ) = Tr[U |ψ1〉 〈ψ1| ⊗ |ψ2〉 〈ψ2|U †EU

× (|ψ1〉 〈ψ1| ⊗ |ψ2〉 〈ψ2|)], (15)

FIG. 4. Heatmaps of two-qubit augmented fidelities for local
polar cap distribution (top panel) and von Mises–Fisher distribution
(bottom). The left (right) panel(s) show the minimum (maximum)
augmented fidelity envelope with all process matrices considered.
Note, that in the limit �1,2 → π and κ1,2 → 0, the augmented fidelity
fails to reach 99% fidelity, which is related to Eq. (17) and the
additional contribution of other diagonal elements.

and now taking the average only over the local distributions

F̄ (U, EU ) =
∫

F (U, EU )d	1d	2, (16)

where d	k corresponds to the surface element associated with
qubit k. If both |ψ1〉 and |ψ2〉 are uniformly distributed over
the entire space, then Eq. (16) yields

F̄ = 1
9 [1 + 8χ00,00 + 2(χ01,01 + χ02,02 + χ03,03

+ χ10,10 + χ20,20 + χ30,30)], (17)

where we use map in the form

U† ◦ EU (ρ) =
3∑

k,l,m,n=0

χkl,mn(σk ⊗ σl )ρ(σm ⊗ σn). (18)

Note that Eq. (17) depends not only on the χ00,00 element as
in the case of full space uniform distribution, but also on the
other (diagonal) elements of the χ matrix.

For local distributions of polar cap and von Mises–Fisher
type we perform a numerical analysis based on 1673 random
process matrices [24] with the same unitarily invariant ele-
ment χ00,00 = 0.985 (corresponding to 99% uniform-average
fidelity). The results are displayed in Fig. 4, which show
variations in the augmented fidelities through changing the
distribution parameters (here two angles �1,2, or von Mises–
Fisher inverse variance κ1,2).
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IV. CONCLUSIONS

In this article we examined and calculated augmented
fidelities of noisy single-qubit gates by averaging over dif-
ferent initial state distributions. In particular, we focused on
two models, polar cap and von Mises–Fisher distributions,
parametrized by a polar angle � and variance-related pa-
rameter κ , respectively. The introduced methods augment the
uniform-average fidelity (strongly based on Haar invariance
property), and carry additional information about underlying
noise process. This information is manifested in a larger possi-
ble spread in observed fidelities that also allows one to identify
noise biases in Pauli channels. Because the uniform-average
fidelity and associated protocols probe only the depolarizing
character of the noise, they can under- or overestimate the
deteriorating effect of a device’s miscalibration. Therefore, it
is imperative to have additional tools for assessing the per-
formance of quantum devices. In particular, efficient methods
that reliably infer more χ matrix elements could improve the
functionality of next generations of quantum hardware.

Since it is impossible to perfectly prepare an arbitrary
pure state, this method may also lend itself to probing state
preparation errors.

Any reasonably effective pure state preparation will likely
resemble some possibly skewed distribution centered around
the target state. This means that computing the fidelity for a
particular state is similar to using our nonuniform distribution
fidelity metrics. Note that the Kent distribution (which gen-
eralizes von Mises–Fisher) could in principle also be used to
achieve a greater agreement between theory and experiment,
especially in the case when the underlying distribution dis-
plays anisotropic properties.

As demonstrated in Figs. 2 and 3, the greatest spread and
smallest error bars in our augmented fidelity metrics between
noise channels occurs for a point distribution (i.e., at � = 0 =
κ−1). As discussed in the previous paragraph, this is not a
realistic scenario to probe, and this effectively sets a lower
bound on � and κ−1 based on experimental capabilities. As
� and κ−1 are increased, however, the ability to discriminate
channels decreases. Therefore it is important to be able to
determine in experiment what reasonable lower bounds are
on these quantities.

Lastly we mention that the introduced figures of merit
can be measured experimentally with current technology as
a slight modification to current techniques. Indeed, similar
to the uniform-average fidelity (see [6]), one may restrict to
performing state tomography along six initial states, i.e., in
the ±x,±y,±z directions on the Bloch sphere. This would of

course mean that state preparation and measurement errors are
included in EU , though certain techniques may allow one to
mitigate these effects (see, e.g., [25,26]). However, the num-
ber of measurements required in this case is larger than the
number of measurements for process tomography [6 (states)
× 3 (measurements per state) =18 for the first method and 12
for QPT]. Therefore, we leave construction of a more efficient
protocol in the single qubit and higher dimensional cases to
future work.

One promising research direction is to explore metrics cor-
responding to nonuniform distributions in higher dimensions,
investigating their capabilities to discriminate different noise
channels. In this work, we restricted to distribution defined on
the product states, where even local uniform distribution can
provide additional insight about the noise process. Addition-
ally, we explored (numerically) von Mises–Fisher and polar
cap distributions for product states, demonstrating that conju-
gation of these techniques with other benchmarking methods
can improve our understanding of the device imperfections.
The generalization to the nonlocal case is not straightforward,
and would need to take into account the nontrivial geometrical
structure of higher-dimensional pure quantum states [27]. The
goal would be an efficient (in number of measurements) and
scalable (in number of qubits) protocol that can reliably probe
the proposed metrics. An auspicious direction is to examine
protocols inspired by the RB technique for local distributions,
which would be sampled independently, hence offering scal-
ing similar to the single-qubit case. This we leave as an open
problem for future research. Another aspect worth exploring
is to use these types of distributions over a subspace of the full
Hilbert space, such as is done in Refs. [28,29] for the standard
uniform-average fidelity metric. This is of particular interest
as it is known higher system levels can play a dominant role in
the projected two-level dynamics of a qubit system [30], and
could in principle help us to identify leakage errors with bet-
ter accuracy. Therefore having methods to better distinguish
noise processes acting on the full d-level (qudit) system could
have immediate implications for hardware design.
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APPENDIX: VARIANCE

The variance of a fidelity is computed with respect to its distribution as

Var(F ) =
∫

F|ψ〉〈ψ |(U, EU )2d	 −
[∫

F|ψ〉〈ψ |(U, EU )d	

]2

, (A1)

where

F|ψ〉〈ψ |(U, EU ) = Tr[U |ψ〉 〈ψ |U †EU (|ψ〉 〈ψ |], (A2)
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and d	 is a surface element related to the underlying distribution of initial states |ψ〉. Taking an arbitrary representation of a
noise process [i.e., characterized by a χ matrix; see Eq. (2)] results in a formula that depends nontrivially on all elements of the
χ matrix. For our purposes it suffices to consider noise processes that minimize (maximize) fidelities, which means of the form
Eq. (13). In that case the polar cap distribution variance for minimal fidelity is

Var(F�) = 1

5760
(−40{−12χ0,3[cos(�) + 1] + (χ1,1 + χ2,2 − 2χ3,3)[2 cos(�) + cos(2�)] − 6χ0,0 + 3(χ1,1 + χ2,2 − 2)}2

− 3

cos(�) − 1

(
−1920χ0,1χ1,3 sin4(�) + 1920χ2

0,0[cos(�) − 1]

− 120[2χ0,2χ2,3 + χ0,3(χ1,1 + χ2,2 − 2χ3,3)] cos(4�)

+ 3
{
3χ2

1,1 + 2χ2,2χ1,1 + 3χ2
2,2 + 8χ2

3,3 + 4
[
χ2

1,2 − 4
(
χ2

1,3 + χ2
2,3

)] − 8(χ1,1 + χ2,2)χ3,3
}

cos(5�)

+ 30
[
96χ2

0,2 + 64χ2
0,3 + 20χ2

1,2 + 8χ2
3,3 + 5

[
3χ2

1,1 + 2χ2,2χ1,1 + 3χ2
2,2

) + 16
(
χ2

1,3 + χ2
2,3

)
+ 8(χ1,1 + χ2,2)χ3,3

]
cos(�) + 5

[ − 64χ2
0,2 + 128χ2

0,3 − 20χ2
1,2 + 24χ2

3,3 − 5
(
3χ2

1,1 + 2χ2,2χ1,1 + 3χ2
2,2

)
+ 16

(
χ2

1,3 + χ2
2,3

) + 8(χ1,1 + χ2,2)χ3,3
]

cos(3�) + 480[2χ0,2χ2,3 + χ0,3(χ1,1 + χ2,2 + 2χ3,3)] cos(2�)

− 5120χ2
0,1 sin4

(
�

2

)
[cos(�) + 2] + 160χ0,0{−24χ0,3 sin2(�) + (χ1,1 + χ2,2)[9 cos(�) − cos(3�) − 8]

+ 2χ3,3[3 cos(�) + cos(3�) − 4]} − 384χ2
3,3 − 8

{
320χ2

0,2 + 90χ2,3χ0,2 + 320χ2
0,3 + 45χ0,3(χ1,1 + χ2,2)

+ 16
[
3χ2
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2,2 + 4

(
χ2

1,2 + χ2
1,3 + χ2

2,3

)]} − 16[75χ0,3 + 16(χ1,1 + χ2,2)]χ3,3
})

,

and for von Mises–Fisher distribution

Var(Fκ ) = 1

4κ4

(
3χ2

0,0κ
4 − χ2

1,1κ
4 − χ2

2,2κ
4 + 3χ2

3,3κ
4 + 2χ1,1κ

4 − 2χ1,1χ2,2κ
4 + 2χ2,2κ

4 + 2χ1,1χ3,3κ
4 + 2χ2,2χ3,3κ

4

− 2χ3,3κ
4 − κ4 + 8χ0,3κ
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2,2κ
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2,3κ

2 − 4csch2(κ )
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2 + 4χ1,1κ
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2 + 4χ2,2κ
2 − 12χ1,1χ3,3κ

2

− 12χ2,2χ3,3κ
2 − 8χ3,3κ

2 + 2χ0,0(−κ2 + {4[κ coth(κ ) − 1]χ0,3 + [κ + 2 coth(κ )](χ1,1 + χ2,2)

+ [3κ − 4 coth(κ )]χ3,3}κ − 2χ1,1 − 2χ2,2 + 4χ3,3
)
κ2 + 32χ0,3χ1,1κ + 32[κ2 − 3 coth(κ )κ + 3]χ0,1χ1,3κ

+ 32χ0,3χ2,2κ + 96χ0,2χ2,3κ − 64χ0,3χ3,3κ + 4 coth(κ )
{
4χ2

0,2κ
2 + χ2

1,1κ
2 + 4χ2

1,3κ
2 + χ2

2,2κ
2 + 4χ2

2,3κ
2 − χ1,1κ

2

+ 2χ1,1χ2,2κ
2 − χ2,2κ

2 − 24χ0,2χ2,3κ + 2χ0,3[−κ2 + (κ2 − 2)χ1,1 + (κ2 − 2)χ2,2 + (κ2 + 4)χ3,3]κ − 7χ2
1,1
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3,3 − 2χ1,1χ2,2 − 12
[
χ2

1,2 − 4
(
χ2

1,3 + χ2
2,3

)] + [2κ2 − (κ2 − 16)χ1,1 − (κ2 − 16)χ2,2]χ3,3
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κ

+ 32χ2
1,1 + 48χ2

1,2 − 192χ2
1,3 + 32χ2

2,2 − 192χ2
2,3 + 80χ2

3,3 + 16χ1,1χ2,2 − 80χ1,1χ3,3 − 80χ2,2χ3,3
)
.

In both formula χi, j for i = j correspond to real part of the χ matrix, the imaginary part that is distinct from the real elements
(only present in the first row and column) has no contribution to the variance.
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