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Realistic simulation of quantum computation using unitary and measurement channels
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The implementation and practicality of quantum algorithms hinge largely on the quality of operations within
a quantum processor. Therefore, including realistic error models in quantum computing simulation platforms is
crucial for testing these algorithms. Existing classical simulation techniques of quantum information processing
devices exhibit a tradeoff between scalability (the number of qubits that can be simulated) and accuracy (how
close the simulation is to the target error model). In this paper, we introduce a simulation approach that relies on
approximating the density matrix evolution with a stochastic sum of unitary and measurement channels within a
pure-state simulation environment. This model shows an improvement of at least one order of magnitude in terms
of accuracy compared to the best known stochastic approaches while allowing us to simulate a larger number
of qubits compared to the exact density matrix simulation. Furthermore, we used this approach to realistically
simulate Grover’s algorithm and the surface code 17 using a gate set tomography characterization of quantum
operations as a noise model.
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I. INTRODUCTION

Quantum computing relies on exploiting quantum phe-
nomena such as superposition and entanglement to solve some
complex computational tasks that are intractable for classical
computers. To this purpose, quantum algorithms are imple-
mented on systems of qubits in which a universal set of
quantum operations is available. However, due to the unavoid-
able coupling with the environment and imperfect control,
both qubits and operations are inherently noisy. Consequently,
we are now entering the noisy intermediate scale quantum
(NISQ) era [1], in which quantum processing units (QPUs)
consisting of a few tens of noisy qubits are being demonstrated
[2–4]. Recently, quantum supremacy was achieved [5], that
is, solving problems that no classical counterpart can solve.
Before having such large chips widely available, there is a
need for quantum platforms in which to test the functionality
of quantum algorithms and their robustness against noise. To
respond to this need, a small number of QPUs are available in
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the cloud [6–8]. However, their limited accessibility and still
relatively low number of qubits motivated the development of
quantum computing simulation environments that incorporate
realistic noise models based on the characteristics of real
devices.

When including realistic error models in quantum comput-
ing simulation platforms, there is a tradeoff between accuracy,
i.e., the closeness of the simulation to the real physical noise
model, and scalability, i.e., the largeness of the quantum sys-
tem that can be simulated. As a matter of fact, the exact
simulation of density matrices using the superoperator rep-
resentation has a major drawback of scalability in terms of
the number of qubits possible to simulate [9,10]. This lim-
itation in scalability was circumvented by designing tensor
networks that are a compact incorporation of states produced
by a specific QEC (surface codes) under specific noise models
[11], and by simulating multiple levels of concatenations of
small QEC codes where each level is simulated as a quantum
map. These maps take as input single-qubit density matrices
corresponding to the qubits of the previous layer of concate-
nation, and they produce as output single-qubit state density
matrices that represent the logical qubits of the next layer
[12,13]. Although these approaches allow the simulation of
a larger number of qubits, they suffer from both a lack of
flexibility in the quantum circuits that can be implemented,
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and the simplicity of the noise models that can be integrated.
Alternatively, there exist many stochastic approaches that ap-
proximate error channels by injecting errors from a set of
quantum channels that is cheaper to implement, and therefore
allowing the simulation of a larger number of qubits. These
approaches include the depolarizing channel [14], the Pauli
channel [15], the Pauli twirling approximation (PTA) [16–18],
the Pauli measurement channel (PMC), and the Clifford mea-
surement channel (CMC) approximation [19]. Some of these
approximations were endowed by honesty constraints [20,21].
These approaches have limited accuracy when used to simu-
late reasonably large circuits, which we refer to as the channel
composition problem [22]. To overcome this lack of accuracy,
a quasistochastic version of the CMC was proposed [22],
where negative probabilities of injecting errors were allowed.
However, the stochastic noise models that can be incorporated
in pure-state simulation platforms are still poorly investigated.

To have a more scalable simulation approach compared to
the exact density matrix simulation while limiting the loss in
terms of accuracy, we propose a simulation technique, which
is based on the stochastic approximation of quantum channels
by (i) unitary channels and (ii) measurements in arbitrary
bases followed by conditional unitary gates depending on
the measurement outcome. As a noise model, we use the
gate set tomography (GST) characterization of real devices.
Our simulation includes single-qubit gates, two-qubit gates,
and state preparation and measurement (SPAM) operations
[23,24]. The main contributions of this work are as follows:

(i) To improve the accuracy of the stochastic approaches,
we approximate gate channels by convex sums of unitary and
measurement channels (UMCs).

(ii) We introduce a stochastic approximation to realistically
simulate SPAM operators.

(iii) We propose to adjust the fidelity of the operations by
linearly tuning the Lindbladian of errors.

(iv) The UMC approximation is integrated in the QX sim-
ulator, a pure-state simulation platform Ref. [26].

(v) As a proof of concept, we simulate the two-qubit
Grover’s algorithm and the surface code 17 under various
mean fidelities.

This paper is structured as follows. In Sec. II, an overview
of QPU characterization protocols and simulation techniques
is presented. In Sec. III, we introduce our simulation tech-
nique. In Sec. IV, we describe the integration of error models
in QX. Finally, our results and conclusion are shown in
Secs. V and VI, respectively.

II. QUANTUM DEVICE CHARACTERIZATION
AND SIMULATION: AN OVERVIEW

A QPU can be modeled as a quantum system defined
by its quantum state, a set of quantum gates, and quantum
measurements. Several approaches have been adopted to im-
plement simulators for such systems with different tradeoffs
in terms of accuracy, simulation efficiency (including required
computing power and memory requirements), and scalability
to large qubit systems. Stabilizer-based simulations can be
performed very efficiently on classical computers due to low
memory and computing power requirements. However, this

comes at the cost of restricting the supported quantum gates to
the Clifford group and not supporting arbitrary qubit rotations.
Examples of such simulators are CHP [25] and one of the
backends of QX [26] and LIQUi |〉 [27]. The lack of arbitrary
quantum gate support in stabilizer-based simulators limits the
number of algorithms that can be executed and the accuracy
of implementable error models that is often reduced to simple
Pauli errors.

Universal quantum computer simulators include arbitrary
quantum gates and operate on a pure quantum state |ψ〉 mod-
eled by a state vector in the Hilbert space H with unit norm.
Each quantum gate is implemented as a unitary operator U :
H → H , mapping a state to another one with UU † = 1. In ad-
dition, measuring a quantum state corresponds to a projection
on a well-defined axis. Examples of such universal simula-
tors are the QX simulator [26], qHipster [28], ProjectQ [29],
QuEST [10], and CGPU [30]. They allow simulating arbitrary
quantum circuits but on a limited number of qubits com-
pared to stabilizer-based simulators. Since universal quantum
computer simulators can implement arbitrary qubit rotations,
they also offer the opportunity to include more accurate error
models that are no longer limited to basic Pauli errors. There-
fore, they provide a better accuracy-scalability tradeoff than
much heavier simulation techniques such as the full density
matrix approach. The latter operates on mixed quantum states
and has significantly higher memory and computing power
requirements that limit the simulation to a relatively small
number of qubits.

When simulating an error-free QPU, operators describing
state preparation, quantum gates, and measurements are well-
known since when they are assumed perfect, each operation
corresponds by default to the desired one. However, it is
known that isolating quantum systems from the environment
is a major challenge for building a scalable QPU. This cou-
pling with the environment causes qubits in any quantum
technology to be in mixed states. Accordingly, the output of a
state preparation is a mixed state composed of the target state
with a portion of other unwanted states, and therefore it can
be described by its corresponding density matrix in a given
QPU. Density matrices can be estimated using quantum state
tomography (QST) [31,32], in which a number of copies of a
given state are measured in a tomographically complete basis
to approximate its corresponding density matrix.

Furthermore, by representing quantum states as density
matrices, noisy quantum gates should be regarded as quan-
tum channels, which are completely positive trace preserving
(CPTP) maps that map valid quantum states (unit trace Her-
mitian) to other valid quantum states. Quantum channels are
commonly described by their Krauss representation, and ac-
cording to the Stinespring dilation theorem [33], they come
from the joint unitary evolution of qubits with their envi-
ronment. This interaction with the environment together with
imperfect control introduce errors during the implementation
of quantum gates. To acquire some knowledge about oper-
ational errors [14], standard quantum process tomography
(SQPT) [34] was proposed [35]. It is based on estimating
a quantum process by implementing the QST protocol on
quantum states that are usually generated by applying the
target process on a tomographically complete set of states.
A more inclusive approach called linear gate set tomography
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(LGST) was introduced to characterize gate errors together
with SPAM errors [23,36]. In this work, we simulate QPUs
given their extended gate set tomography (EGST) characteri-
zation. EGST is performed by sampling large sets of quantum
circuits built as sequences taken from a target gate set. These
sequences ensure (i) initializations and measurements in an
informationally overcomplete set of initializations and mea-
surements, and (ii) the amplification of errors as the length
of circuits increases. The target gate set is constructed via
maximum likelihood estimation (MLE), that is, estimating the
set of operations that will most likely provide the measured
frequencies. The EGST protocol certainly owes its accuracy
to the use of a large number of sequences and the separation
of SPAM errors from gates errors [23,24]. In short, the EGST
protocol takes as input the measurements observed via the
implementation of a predefined set of circuits run on the target
QPU, and, as output, it provides the following:

(i) Prepared states described as density matrices.
(ii) Quantum gates described as quantum channels.
(iii) Quantum measurements described as measurement

operators that act on density matrices.
Based on such a description, noisy quantum computation

can be simulated accurately as quantum channels and mea-
surements acting on density matrices. To this end, it is optimal
to use the superoperator representation of quantum channels
[9]. However, since the density matrix is stored on a 22×n

vector, n being the number of qubits, this approach has a
major drawback of scalability due to the amount of memory
required. Therefore, the depolarizing channel is commonly
used as a noise model. This model introduces Pauli errors
with homogeneous probability to each qubit at each step of the
circuit. If the circuit is restricted to only include Clifford gates,
this kind of computation can be efficiently simulated using
the stabilizer formalism, which is highly scalable, thanks to
the Gottesman-Knill theorem [37]. Error rates in this noise
model are related to the randomized benchmarking protocol,
which in most cases gives a weak interpretation of errors faced
in reality [38]. To provide a more realistic approximation of
errors, the Pauli twirl approximation was introduced [16–18].
The PTA consists in simulating the erroneous parts of each
operation by Pauli gates with probabilities equal to the diago-
nal elements of the process matrix of the error channel. That is
equivalent to replacing the error channel with another whose
process matrix has only diagonal elements. Being oblivious
to nondiagonal elements, PTA was updated to include the set
of all possible operations that can be implemented using the
stabilizer formalism, which is Clifford gates and measurement
followed by conditional gates channels (CMCs) [19–21]. It
takes advantage of the convexity propriety; that is, given a
set of n quantum channels {�i}n

i=1, and an n-entry proba-
bility vector {pi}n

i=1 such that �n
i=1 pi = 1, the convex sum

�n
i=1�i pi is also a quantum channel. The CMC approximation

is done by injecting CMC channels according to the proba-
bility vector {pi}n

i=1 that minimizes ||∑n
i=1 pi�i − E ||�, where

�i’s are CMC channels and E is the target realistic error chan-
nel. Furthermore, these channels were endowed with honesty
constraints so the CMC channel does not underestimate the
effect of noise. But it turns out that this approximation has
a drawback of channel composition [39], and the restriction
on Clifford operations imposed by the use of the stabilizer

FIG. 1. The process diagram of our simulation approach.

formalism prevents the simulation of universal quantum com-
putation.

In summary, some of the simulation approaches such as us-
ing density matrices are precise but not very scalable in terms
of the number of qubits that can be simulated. Others, such
as the CMC approximation, allow simulating a large number
of qubits but with less accuracy. To overcome all these limi-
tations and have a noise model that is more accurate than the
CMC approximation while being more scalable than the exact
density matrix simulation approach, we propose a stochastic
approach based on extending the CMC to include more gen-
eral forms of channels �i. It has the advantage of using a
universal pure-state simulation backend where the states are
stored in 2n complex vectors, and hence it requires the square
root of memory compared to the exact density matrix simula-
tion. Furthermore, we will show that it provides higher accu-
racy than the existing stochastic approaches since it uses more
varied elements to approximate the targeted noisy operations.

III. UMC APPROXIMATION OF QUANTUM OPERATIONS

After running the EGST protocol on the target QPU, this
work, as illustrated by the dashed box in Fig. 1, aims at
introducing a method to make a pure-state simulation plat-
form, the QX simulator, mimic the behavior of a QPU given
its EGST characterization. To define the specifications of the
noisy operations that are implementable in QX, this section
explains how to approximate quantum operations using UMC
channels. We also introduce methods to simulate more reliable
operations by linearly tuning the Lindbladian of errors.

A. UMC approximation of quantum channels

We address the problem of the approximation of a noisy
operation channel E by a convex sum of pure-state operations,
i.e., unitary channels and measurement channels correspond-
ing to measurements followed by unitary gates conditioned
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on the measurement outcome. In the absence of an algebraic
decomposition, this is equivalent to solving the following
constrained optimization problem:

Given the form of a finite set of channels {�i}n
i=1 and the

channel E , minimize

f (p, θ,β) =
∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

pi�i(p, θ,β) − E
∣∣∣∣∣

∣∣∣∣∣
�

(1)

with the following linear constraints:
n∑

i=1

pi = 1, pi � 0 and 0 � θ j < 2π ∀i, j, (2)

where the metric || · · · ||� refers to the diamond distance [40],
p is a probability vector [41], E is the target channel, and �i’s
are unitary and measurement channels. θ and β are matrices
containing the angles that specify unitary U and M measure-
ment channels, respectively. By testing many combinations on
various single-qubit channels, we found a sweet spot in using
a convex sum of four unitary channels and two measurement
channels [42]. Therefore, our approximate channel is speci-
fied by pi’s, θi’s, and βi’s as follows:

n∑

i=1

pi�i =
4∑

i=1

piU (θi,1, θi,2, θi,3)

+
2∑

i=1

pi+4M(βi,1, . . . , βi,9). (3)

Explicitly, M(βi,1, . . . , βi,9) are specified by the two
Krauss operators | f1〉 〈 f | and | f2〉 〈 f̄ |, corresponding to | f1〉 =
U (βi,1, βi,2, βi,3) |0〉, | f2〉 = U (βi,4, βi,5, βi,6) |0〉, and 〈 f | =
〈0|U (βi,7, βi,8, βi,9). As we include four unitary channels and
two measurement channels in the single-qubit channel decom-
position, p is a 6-entry probability vector, θ is a 4-by-3 angle
matrix, and β is a 2-by-9 angle matrix. The entries of p, θ , and
β are the freedom degrees of our optimization problem.

For two-qubit channels, we use the following decomposi-
tion:

n∑

i=1

pi�i =
5∑

i=1

piU (θi,1, . . . , θi,15)

+ p6M(θ6,1, . . . , θ6,9) ⊗ I

+ p7I ⊗ M(θ7,1, . . . , θ7,9)

+ p8M(θ8,1, . . . , θ8,9) ⊗ M(θ9,1, . . . , θ9,9). (4)

This decomposition includes five unitary channels, two
uncorrelated measurement channels, and a pair of correlated
measurement channels.

B. SPAM errors simulation

Furthermore, SPAM errors are characterized by vectorized
operators corresponding to a prepared state ||ρ0〉〉 and a mea-
surement generator 〈〈E ||. However, in most of the quantum
computing simulation platforms, qubits are usually initialized
in the ground state ||ρperfect〉〉 = ||1/

√
2, 0, 0, 1/

√
2〉〉t

, and
measured in the Pauli Z basis 〈〈E || = 〈〈1/

√
2, 0, 0,−1/

√
2||.

Therefore, we use the channel �prep that maps a pure ground

state ||ρperfect〉〉 to the noisy prepared state ||ρ0〉〉, and a chan-
nel �meas that maps states to be measured via the faulty
measurement 〈〈E || to states having the same expectation val-
ues under a perfect measurement 〈〈E0||. Hence,

||ρ0〉〉 = �prep ||ρperfect〉〉 , (5)

〈〈E0|| = 〈〈Eperfect|| �meas. (6)

We obtain �prep and �meas by maximizing the following
function:

fprep(p, θ,β) = fidelity(�prep(ρperfect ) , ρ0), (7)

fmeas(p, θ,β) = fidelity(E�prep() , E0), (8)

where (p, θ,β) are the parameters of �prep and �meas as a
UMC convex sum, and E�() stands for measuring the opera-
tor E after the application of a channel �. Note that the notion
of fidelity holds also for the measurement operators. Note that
fprep and fmeas are a measure of the discrepancy between the
approximate and the target noisy SPAM operators. In these
approximations, we achieved 100% fidelity in both fprep and
fmeas using the SQP algorithm from the MATLAB optimization
toolbox. Solving these optimization problems is faster and
more precise compared to the UMC decomposition of quan-
tum maps, as it has to satisfy a smaller system of equations.
For instance, fprep can be solved by maximizing the fidelity
between the upper left block of the Choi-Jamiolkowski repre-
sentation [43] of �prep and ρ0. Therefore, a system of three
equations should be satisfied, which makes it simpler than
UMC decomposition single-qubit channels, where a system of
twelve equations should be satisfied. The number of equations
scales as 22n − 1 for SPAM operators and 24n − 22n for gate
superoperators, with n being the number of qubits.

C. Tuning the fidelity of operations

Having SPAM channels together with single- and two-
qubit gate channels allows us realistically to simulate noisy
quantum computations. These noisy operations have fixed
fidelities often lower than the threshold of many QEC codes.
Thus, in order to be able to evaluate a given QEC code or
quantum circuit under different fidelities, we exploit the fact
that a noisy gate’s channel G̃ can be expressed as a perfect gate
Gp followed by an erroneous part Ẽ , and hence, G = GpẼ .
However, it is more convenient to use the Lindbladian rep-
resentation of error generators such that G = GpeL, where
Gp is a perfect channel (no errors) and L is the Lindbla-
dian of errors. This convenience comes from the fact that
the entries of the Lindbladian get close to zero when the
channel is closer to the perfect one, and they get larger
absolute values when the gate is noisier. For gates with fi-
delities within the studied range (L → 0), we can use the
Taylor expansion eL 	 I + L, where I is the identity op-
erator, and we can express G as G 	 I + A, where A =
GpL. Therefore, as the transformation from the superopera-
tor to the process matrix representation is linear, the fidelity
defined by F (G, Gp) = [Tr(

√
χ(G)

√
χ(Gp) )]2 [44,45] can be

expressed as F (G, Gp) 	 [Tr(√χ(Gp)
√

(χ(Gp) + χ(A) ))]2, χ(X )

being the process matrix corresponding to the superoperator
X . Using the fact that L → 0 implies A → 0, we can intro-
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FIG. 2. QX simulator architecture and error model integration.

duce the expansion
√

χ(GP )
√

(χ(GP ) + χ(A) ) 	 χ(GP ) + 1
2χ(A)

into the expression of the fidelity, and state that F (G, Gp) 	
[Tr(χ(GP ) ) + Tr( 1

2χA)]2 	 1 + Tr(χ(A) ), where we used the
linearity of the trace and the fact that CPTP maps have unit
trace process matrices. We can similarly prove that the gate
G′ = GpenL has a fidelity f 	 1 + n Tr(χA), and therefore
that if a given gate G = GpeL has infidelity f̄ , the gate
G′ = GpeL×n has an infidelity f̄ ′ 	 n × f̄ . Thus, in this work,
we take advantage of this propriety to simulate gates with
different fidelities by tuning the parameter n.

As illustrated in the upper part of the dashed box in Fig. 1,
by using the approximations introduced in this section and
taking density matrices, quantum channels, and measurement
operators characterizing the target QPU as inputs, we can
provide probabilities and angles that specify pure-state op-
erations. These probabilities and angles are fed to the QX
simulator, as will be described in the next section.

IV. ERROR MODEL INTEGRATION IN QX

The QX simulator, as shown in Fig. 2, provides an ab-
stract interface for implementing various error models and
using them for injecting noise in arbitrary quantum circuits.
The error model interface exposes an abstract noise injection
function that can be implemented and customized for each
new error model, allowing the extension and the integration
of new error models in QX. Previously, several error models
such as the depolarizing channel or the Pauli twirling approx-
imation have been implemented. Those implementations use
the user-provided Pauli error parameters to inject noise in a
perfect quantum circuit loaded in the QX simulator based on
the specified error probabilities.

The simulation of the circuit can be executed efficiently
compared to density matrix simulations due to lower require-
ments in terms of memory and computing power. However,
if the circuit is composed of stochastic sums of pure-state
operations, a pure-state simulation platform provides, up to
sampling errors, the same results as the density matrix sim-
ulation. In other words, the measurement expectation values
of the resulting density matrix can be reconstructed through
the sampling of a large number of pure-state simulation runs.
The circuit of each run is constructed by picking from each
operation’s convex sum a pure-state operation according to its
corresponding probability.

As a first step, the CMC approximation has been intro-
duced in QX as a new error model that injects the errors
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FIG. 3. The diamond norm for various single-qubit gates using
the CMC approximation (blue bars on the left) and the UMC ap-
proximation (red bars on the right).

from weighted combinations of the 24 single-qubit Clifford
gates and the 6 Pauli resets. The probabilities of the different
errors for a given quantum operation are computed from its
GST characterization and expressed as a 30-entry probability
vector where each entry corresponds to a specific error type.
A perfect circuit expressed in QX using the C++ API or
the cQASM representation [46] is transformed into a noisy
circuit through injecting errors based on that error probability
vector. The measurement expectation values are obtained by
sampling noisy circuits.

Similarly, the UMC approximation has been implemented
using the same interface to maintain the same plug-and-play
error model interface and allow us to compare different error
models using the same target quantum circuit. The UMC
stores its parameters as a vector of error probabilities with
their respective operators. Those operators are modeled as a
set of arbitrary unitary gates and measurements in arbitrary
bases followed by gates conditioned on the measurement out-
come. Each of these operations is defined by a set of angles.
These angles and the probabilities of injections are obtained
via the optimization algorithm described in Sec. III. The UMC
model is used to replace perfect gates by noisy ones when
sampling a quantum circuit.

V. RESULTS

To evaluate our UMC error model, we first compare it to
the CMC error model. Then, we use it to simulate the two-
qubit Grover’s algorithm using our model and the full density
matrix simulation. In addition, to demonstrate the scalability
potential of our approach, we simulate the 17 qubits distance
3 surface code using operations with tuned fidelities, and we
infer the fidelity value beyond which the use of this code is
beneficial.

A. UMC versus CMC

To compare our UMC approach with the CMC approx-
imation, we have approximated the GST-derived channels
of five single-qubit gates corresponding to Rx(90), Rx(180),
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|0〉 Ry(90)

O

Ry(90)
cU00

Ry(90)

|0〉 Ry(90) Ry(90) Ry(90)

FIG. 4. Circuit of the two-qubit Grover’s algorithm. The operator
O is the oracle operator and it inverses the amplitude of the target
state. cU00 is the inversion operator of the amplitude of the |00〉
component.

Ry(90), Ry(180), and the idling gate. In Fig. 3, the diamond
norm between the target and the approximate channels us-
ing the UMC and CMC approaches are shown. Overall, our
UMC allows a 2.73% diamond distance closer approximation,
which means 36.6 times higher accuracy with similar running
times. Furthermore, we have achieved a diamond norm of
0.0225 between the UMC approximate and the target noisy
Cphase gate. Note that our approach uses a smaller number
of parameters to approximate two-qubit gates compared to
CMC, which is generally impractical for two-qubit channels
due to the largeness of the search space (number of two-qubit
Cliffords). In addition, the achieved infidelities between the
target and the approximate SPAM operators are of the order
of 10−11.

These results were obtained using the SQP algorithm from
the MATLAB optimization toolbox. To compute the diamond
norm, we used QETLAB [45] and the CVX package [47,48].

B. UMC versus a full density matrix simulation
of the two-qubit Grover’s algorithm

To test the accuracy of our model, we have simulated the
two-qubit Grover’s algorithm using the UMC approximation
and the exact density matrix simulation. As shown in Fig. 4,
the two-qubit Grover’s algorithm is a special case since its
corresponding circuit lies in the two-qubit Clifford group and
its theoretical success probability is 100% (deterministic so-
lution). Therefore, a failure of the algorithm is purely due
to operational errors. Table I shows the success rate of the
algorithm using the mentioned approaches. In this case, the
algorithm’s success rate provided by our approach has an
inaccuracy in the order of 10−3 compared to exact density
matrix simulations.

In our simulations, the Oracle operator O and the inversion
operator cU00 are implemented by a Cphase gate, and when
needed also single-qubit Rx(180) ∗ Ry(180) are applied. For
instance, the cU00 can be implemented as Rx(180)Ṙy(180)
acting on both qubits followed by a Cphase gate. Note that,
although the diamond norm of the UMC approximation of the
CPhase gate, which is the main source of mismatch, is about
10−2 (0.0225), the gap between the fidelities of the Grover’s

TABLE I. Success rate of the Grover’s algorithm using the exact
density matrix simulation and the stochastic approximate channels
UMC.

Noise model f00 f01 f10 f11

Exact 0.7365 0.7490 0.7474 0.7661
UMC 0.7411 0.7473 0.7442 0.7652

0.9992 0.9993 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 1
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FIG. 5. The fidelity of the target gate vs the UMC approximation
achieved distance of (solid red line) the controlled-phase gate and
(dashed blue line) single-qubit operations (average over the used
single-qubit channels).

algorithm using the two simulation approaches is on the order
of 10−3.

C. The pseudothreshold of the surface code 17

The fidelity of single-qubit gates in the original gate set
we are using is 0.9996, which, as we will show, is around
the threshold of the surface code. However, the fidelities of
the controlled-phase (CPhase) gate (0.9266), state preparation
(0.9296), and measurement (0.9603) are far below the thresh-
old for this code. Therefore, we target gates that have higher
fidelities by linearly decreasing the Lindbladian of errors as
explained in Sec. II. The diamond norm of the approximation
improves as the fidelity of the target gate increases. Figure 5
shows the variation of the diamond norm of our approxima-
tion for single and two-qubit channels. It can be seen that for

(a)

(b) (c)

FIG. 6. (a) Surface code 17 lattice. Black dots correspond to data
qubits, white (black) plackets are ancilla qubits used to measure Z
(X ) syndromes. (b) Parity-check circuit for measuring X syndromes.
(c) Parity-check circuit for measuring the Z syndromes. Note that −
and + correspond, respectively, to Ry(−90) and Ry(90).
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FIG. 7. The logical error rate of the surface code 17 vs the aver-
age fidelity of physical operations.

fidelities between 0.9992 and 0.9999, the diamond norm of
the approximation of single-qubit gates and the controlled-
phase gate goes from 1.15×10−4 to 1.44×10−5 and from
2.08×10−3 to 2.96×10−4, respectively.

Using these approximations, we implemented the tiled ver-
sion of the surface code 17 [18] with various fidelities. As
shown in Fig. 6, the implementation is done using single-qubit
Ry(±90) rotations and the CPhase gate as a two-qubit entan-
gling gate, which are supported by superconducting transmon
qubits [49]. We used the minimum-weight perfect matching
decoder [50]. For the sake of optimality, we did not include
idling errors to have a lower threshold, which requires less
sampling for higher accuracy. Figure 7 shows the logical
error rate obtained for various mean fidelities of the physical
operations. It can be observed that when using our proposed
noise model, the pseudothreshold for the surface code 17 re-
sides within operations having mean fidelities around 0.9997
(crossing point, dashed red and blue lines).

VI. CONCLUSION

This work bridges the gap between the stochastic channel
approximations using the stabilizer formalism and the exact
density matrix simulation. It tackles the channel composition

problem in the former approach by approximating the density
matrix evolution by stochastic sums of unitary and measure-
ment channels within a pure-state simulation environment.
This error model reduces considerably the diamond norm
between the target and approximate channels. For instance,
our UMC approximation of single-qubit gate channels derived
via the GST protocol resulted in a diamond distance of ∼10−4

compared to ∼10−3 provided by the best known stochastic
approaches. We also introduced an accurate simulation of
SPAM operators with an infidelity of ∼10−11.

Furthermore, to test the accuracy of our UMC model, we
simulated Grover’s algorithm using our approach and com-
pared it with the exact density matrix simulation. We have
shown that our approach provides an inaccuracy of 10−3. We
have also shown that by linearly increasing/decreasing the
Lindbladian of errors we can tune the fidelity of the quantum
operations, and the higher the fidelities are, the more accurate
is our approximation. Therefore, we were able to simulate the
surface code 17 using the QX simulator under various oper-
ation fidelities. This allowed us to estimate that this quantum
error correction code would be effective if gate fidelities are
beyond 0.9997. The surface code simulations were performed
on a cluster node with 2 × Xeon E5-2683 v3 CPU’s (@
2.00 GHz = 28 cores/56 threads) and 24×16 GB DDR4 =
384 GB memory. As the qubit register size is only 17, we
could perform over 50 simulations simultaneously. Further-
more, using more nodes of our distributed system can increase
significantly our sampling speed and therefore speed up the
overall simulation time. Although the distance 3 surface code
is used as a use case to illustrate quantum circuit simulation
using the UMC error model, larger circuits on larger qubit
registers can be simulated: each node of our simulation plat-
form allows the simulation of up to 34 fully entangled qubits
in QX and therefore enables the simulation of a considerably
larger number of qubits compared to exact density matrix sim-
ulations. This work was done under the assumption of static
noise in the absence of leakage errors, spatial “crosstalk,” and
temporal correlations. Therefore, including such noise models
will be a step toward realism in the simulation of quantum
computation.
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