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Geometric aspects of analog quantum search evolutions
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We use geometric concepts originally proposed by Anandan and Aharonov [Phys. Rev. Lett. 65, 1697 (1990)]
to show that the Farhi-Gutmann time-optimal analog quantum search evolution between two orthogonal quantum
states is characterized by unit efficiency dynamical trajectories traced on a projective Hilbert space. In particular,
we prove that these optimal dynamical trajectories are the shortest geodesic paths joining the initial and the final
states of the quantum evolution. In addition, we verify they describe minimum uncertainty evolutions specified
by an uncertainty inequality that is tighter than the ordinary time-energy uncertainty relation. We also study the
effects of deviations from the time-optimality condition from our proposed Riemannian geometric perspective.
Furthermore, after pointing out some physically intuitive aspects offered by our geometric approach to quantum
searching, we mention some practically relevant physical insights that could emerge from the application of
our geometric analysis to more realistic time-dependent quantum search evolutions. Finally, we briefly discuss
possible extensions of our paper to the geometric analysis of the efficiency of thermal trajectories of relevance
in quantum computing tasks.
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I. INTRODUCTION

From a quantum-mechanical perspective, one can modify a
given state into another state by acting upon the system with a
convenient Hamiltonian. In quantum computing, in particular,
it is generally beneficial to know the path connecting the two
states in the shortest time with the maximum speed of quan-
tum evolution. Clearly, if the evolution occurs always at the
maximum speed, one achieve time optimality by transitioning
from the initial to the final state in the shortest time by taking
the shortest route. Thus, the problem of connecting these
quantum states can be recast in the very convenient form of
a geodesic problem. From a more practical thermodynamical
perspective, high-speed values are not beneficial when dealing
with practical devices that operate in finite time. Given the
universal character of thermodynamics laws, this latter fact re-
mains valid also for actual realizations of quantum computers.
More specifically, high speeds lead to high frictional losses
which, in turn, hamper the thermal efficiency of these physical
systems similar to heat engines. Unfortunately, as a popular
proverb says, nothing comes for free: Time optimality and
thermal efficiency occur in conflicting favorable conditions.
The former recommends high speeds in order to shorten the
duration of the physical process. The latter, instead, welcomes
low speeds to mitigate possible dissipative effects present
in the system. Achieving both time optimality and thermal
efficiency is a very relevant and challenging unresolved issue
in quantum algorithm design [1]. Given our awareness of the
importance that geometric ideas play in physics, acknowl-
edging the power of regarding time-optimality problems as
geodesics problems, and given this apparently unavoidable
trade-off between speed and thermal efficiency in the design
of quantum algorithms, we are motivated here to study in

geometric terms the efficiency of quantum evolutions of rele-
vance in continuous-time quantum searching [2] with the hope
of also providing some helpful insights into the rather com-
plicated speed-efficiency trade-off quantification in quantum
science. In what follows, we will introduce in more detail
the problem that we discuss, its motivation, and its relevance
irrespective of our broader underlying interest represented by
the speed-efficiency trade-off in quantum algorithms design.

In the framework of quantum search algorithms [3,4], a
geodesic path with respect to the Fubini-Study metric in

the projective Hilbert space CPN−1 with N
def= 2n being the

dimensionality of the complex Hilbert space Hn
2 of n-qubit

quantum states, emerges as a curve traced by the output quan-
tum state specifying Grover’s original quantum search scheme
[5–7]. In exploring for efficient quantum circuits, Riemannian
geometric techniques have been exploited to reformulate the
problem of finding optimal circuits into the geometric prob-
lem of finding the shortest geodesic path between two points
in the curved geometry of the special unitary group SU(N )
[8,9]. In the search for time-optimal quantum control proto-
cols, differential geometry techniques have been employed
to recast the quantum brachistochrone problem (for instance,
see Ref. [10]) of finding a control protocol capable of taking
the minimum time to achieve a desired task (for instance, the
generation of a desired unitary gate) into a problem of finding
a shortest geodesic path on the special unitary group SU(N )
[11]. Interestingly, a transition from a quantum state to an
orthogonal one can be regarded as the elementary step of a
computational process [12,13]. Moreover, from an intuitive
Riemannian geometric viewpoint, the optimal way of finding
a solution to an arbitrary computational problem appears to
happen by “free falling” along the shortest geodesic curve
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connecting the (chosen) initial and (desired) final states on
the appropriate curved manifold that characterizes the specific
problem being analyzed [8].

The work that we present in this article takes into account
three key ideas: (i) The reformulation of a time-optimal prob-
lem into a geodesic problem [11]; (ii) the consideration that
the most elementary step of a computational process can be
described in terms of a quantum-mechanical transition be-
tween two orthogonal states [12,13]; (iii) the intuition that
optimal solutions of computational tasks can be geometri-
cally described in terms of shortest geodesic paths [8]. In
particular, we are motivated here by the following questions:
Can we geometrically characterize the efficiency of quantum
search schemes? Can we geometrically quantify the effect
of experimentally tunable parameters on the performance of
quantum search algorithms? Can we generate some fresh
physical insight leading to a (currently nonexisting) geomet-
ric measure of thermal efficiency given the fact that good
quantum algorithms need to be both fast and thermodynam-
ically efficient? More specifically, we wish to enhance in
this article our understanding of the time optimality of the
original Farhi-Gutmann quantum search Hamiltonian evolu-
tion [2] between the generally nonorthogonal source and the
target states by gaining new insights with the use of Rie-
mannian geometric tools as originally proposed by Anandan
and Aharonov in Ref. [14]. In their work, Anandan and
Aharonov introduced the efficiency of a quantum evolution

as η
def= s0/s with s0 being the length of the geodesic path

connecting the initial and final quantum states of the system,
whereas s denotes the length of the path generated by the
actual Hamiltonian evolution. To our knowledge, there are
currently no explicit applications of η in the literature, which
obscures both its physical meaning and its potential practical
usefulness.

In this article, we present an application of the geometric
efficiency of quantum evolutions using the Farhi-Gutmann
quantum search Hamiltonian [2] as an example. Given our
previously mentioned considerations in (i)–(iii), we want to
study the geometry of this quantum search evolution between
two orthogonal quantum states. In particular, we wish to
determine whether or not to a time-optimal quantum search
scheme, whose analysis is based upon the concept of tran-
sition probability, there corresponds a maximally efficient
quantum search evolution achieving the ideal unit efficiency
value. Such a determination will be performed in the scenario
wherein the output quantum state originating from the quan-
tum search scheme traces a shortest geodesic path connecting
the suitably chosen initial and final orthogonal states on the
projective space (that is, the Bloch sphere CP1 in the case of
single-qubit quantum states) equipped with the Fubini-Study
metric. Furthermore, we wish to understand how deviations
(see Ref. [15]) from optimal quantum search schemes can be
described within the proposed Riemannian geometric frame-
work and discuss any physical insight that may arise from
this theoretical description. Finally, we wish to determine
whether or not there exists any possibility of extending this
geometric characterization of quantum evolutions to the Rie-
mannian geometric study of thermal trajectories [16–18]. The
pursuit of such an extension is undertaken with the hope of

proposing a good geometric measure of thermal efficiency
for thermodynamical processes of interest in quantum infor-
mation science [1] by improving upon our recent results in
Refs. [19,20].

The layout of the remainder of this article is as follows.
In Sec. II, we briefly present the essential features of both
the original and the modified Farhi-Gutmann quantum search
Hamiltonians. In particular, for each scheme, we highlight
both transition probabilities from the source to the target
states and the minimum search times yielding the maximum
success probabilities. In Sec. III, we introduce the essential
features of the geometric structure of quantum evolutions.
More specifically, we describe the concept of a geodesic line
on the Bloch sphere and explain how to quantify a departure
from a geodesic evolution. In Sec. IV, we discuss a geomet-
ric measure of efficiency for a quantum evolution together
with its connection with a form of time-energy uncertainty
inequality to be satisfied during the physical evolution at all
times. In Sec. V, we study the geodesicity, the efficiency, and
the uncertainty inequality for both the original and modified
Farhi-Gutmann quantum search algorithms. We present our
concluding remarks in Sec. VI. Finally, some technical details
can be found in Appendices A and B.

II. QUANTUM SEARCH HAMILTONIANS

In this section, we briefly discuss the main properties of
both the original [2] and the modified [2,15] Farhi-Gutmann
quantum search algorithms. In particular, for each scheme,
we emphasize both transition probabilities from the source to
the target states and the minimum search times leading to the
maximum success probabilities.

A. The original scenario

Quantum search algorithms, including Grover’s original
quantum search scheme [3], were originally proposed in a
digital quantum computation framework in terms of a discrete
sequence of unitary logic gates. By contrast, Farhi and Gut-
mann used an analog quantum computation setting to present
an analog version of Grover’s original quantum search algo-
rithm in which the state of the quantum register undergoes a
continuous-time evolution under the action of a conveniently
selected driving Hamiltonian [2]. The essential idea of the
continuous-time search algorithm proposed by Farhi and Gut-
mann can be summarized as follows. Given an Hamiltonian
acting on a N-dimensional (with N

def= 2n) complex vector
space Hn

2 with a single nonvanishing eigenvalue E �= 0 and
all others being zero, find the eigenvector |w〉 that has an
eigenvalue equal to E . The search is completed when the
quantum system is known to be in state |w〉. Working with
time-independent Hamiltonian evolutions, Farhi and Gutmann
proved that their algorithm required a minimum search time
of the order of

√
N , thus, being characterized by the same

complexity as Grover’s original quantum search algorithm.
The full original Farhi-Gutmann quantum search Hamiltonian
is given by [2]

HFG
def= Hw + Hd = E |w〉〈w| + E |s〉〈s|, (1)
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with Hw
def= E |w〉〈w| and Hd

def= E |s〉〈s| being the oracle and
driving Hamiltonians, respectively. The normalized states |s〉
and |w〉 are the source (initial) and target (final) states, respec-
tively. The target state |w〉 is a randomly chosen (unknown)
state from the unit sphere in Hn

2, whereas the source state
|s〉 is some suitably selected normalized vector that does not
depend on |w〉. The source state |s〉 evolves according to
Schrödinger’s quantum-mechanical evolution law [21],

|s〉 �→ |ψ (t )〉 def= e−(i/h̄)HFGt |s〉. (2)

Moreover, without loss of generality, the quantum overlap

x
def= 〈w|s〉 �= 0 can be taken to be real and positive because

any phase factor in the inner product between these two states
can be eventually incorporated in |s〉. Moreover, given that
it is sufficient to focus our attention to the two-dimensional
subspace of Hn

2 spanned by |s〉 and |w〉, it is convenient

to introduce the orthonormal basis {|w〉, |r〉} with |r〉 def=
(1 − x2)−1/2(|s〉 − x|w〉) and |s〉 def= x|w〉 + √

1 − x2|r〉, re-
spectively. Working with the basis {|w〉, |r〉}, it is possible to
show that the probability PFG(t ) of finding state |w〉 at time
time t is given by [2]

PFG(t )
def= |〈w|e−(i/h̄)HFGt |s〉|2

= sin2

(
Ex

h̄
t

)
+ x2 cos2

(
Ex

h̄
t

)
. (3)

In particular, the (smallest) instant tFG at which the transition
probability PFG(t ) assumes its maximum value Pmax

FG = 1 is
as follows:

tFG
def= π h̄

2Ex
. (4)

When the target state |w〉 is assumed to be an element of a set
of mutually orthonormal quantum states {|a〉} with 1 � a � N
of Hn

2, the source state |s〉 can be conveniently chosen as
an equal superposition of the N quantum states {|a〉}. Then,
x = 1/

√
N and from Eq. (4) we note that tFG ∝ √

N . Thus,
in analogy to Grover’s search, the Farhi-Gutmann algorithm
requires a minimum search time on the order of

√
N . Ad-

ditionally, by assuming that the target state is an unknown
element of a given orthonormal basis {|a〉} with 1 � a � N
of Hn

2 that is produced with absolute certainty, Farhi and
Gutmann proved that their algorithm is optimally short.

B. The modified scenario

Before considering their optimality proof, Farhi and Gut-
mann pointed out in Ref. [2] that one may be driven by
intuition to believe that by using a different driving Hamil-

tonian H ′
d

def= E ′|s〉〈s| with E ′ 
 E , one could shorten the
search time by speeding up the procedure for finding the
target state |w〉. More explicitly, consider the full modified
Farhi-Gutmann quantum search Hamiltonian given by [2,15]

HMFG
def= Hw + H ′

d = E |w〉〈w| + E ′|s〉〈s|, (5)

where Hw
def= E |w〉〈w| and H ′

d
def= E ′|s〉〈s| with E ′ 
 E . Fol-

lowing the analysis performed in the original scenario, it can
be shown that the probability PMFG(t ) of finding the state |w〉

at time time t is given by [15]

PMFG(t )
def= x2(E ′ + E )2

4x2E ′E + (E ′ − E )2
sin2

×
(

1

2h̄

√
4x2EE ′ + (E ′ − E )2t

)

+ x2 cos2

(
1

2h̄

√
4x2EE ′ + (E ′ − E )2t

)
. (6)

Observe that for E = E ′, we recover from Eq. (6) the expres-
sion of PFG(t ) in Eq. (3). Moreover, the (smallest) instant
tMFG at which the transition probability PMFG(t ) assumes its
maximum value of Pmax

MFG = [x2(E ′ + E )2]/[4x2E ′E + (E ′ −
E )2] < 1 is as follows:

tMFG
def= π h̄√

4x2E ′E + (E ′ − E )2
. (7)

As expected, when E ′ = E , tMFG in Eq. (7) reduces to tFG in
Eq. (4). Clearly, by comparing the transition probabilities in
Eqs. (3) and (6), we are able to conclude in a transparent man-

ner that using a modified driving Hamiltonian H ′
d

def= E ′|s〉〈s|
with E ′ 
 E does not speed up the procedure for producing
the target state |w〉 with certainty. Indeed, although tMFG in
Eq. (7) is smaller than tFG in Eq. (4), we note that Pmax

MFG <

Pmax
FG = 1. Therefore, although the Hamiltonian HMFG may

have some merit in nearly optimal quantum search schemes
as pointed out in Ref. [15], it appears to be less efficient than
HFG and, consequently, does not lead to any advantage in the
context of quantum search with certainty as one may have
thought from a classically intuitive point of view. Despite
the Farhi-Gutmann formal optimality proof and the Cafaro-
Alsing brute force transition probability analysis, it remains
interesting to consider whether or not the different efficiency
of the quantum search schemes specified by the Hamiltonians
HFG and HMFG can be understood in neat geometric terms
that might be closer to our intuition. Motivated by this main
thought, we propose in what follows a geometric perspective
on the efficiency of these two analog quantum search schemes.

III. GEODESICS IN RAY SPACE

In this section, we introduce basic geometric concepts of
quantum evolutions with emphasis on the unitary Schrödinger
evolution.

Let Hn
2 denote an (N

def= 2n)-dimensional complex Hilbert
space of n-qubit (normalized) quantum states {|ψ〉}. Since the
global phase of a vector state is not observable, a physical
state is represented by a so-called ray of the Hilbert space.
The set of rays of Hn

2 is called the (complex) projective Hilbert
space CPN−1. Formally speaking, CPN−1 is the quotient set
of Hn

2 by the equivalence relation |ψ〉 ∼ eiβ |ψ〉 with β ∈ R.
The space CPN−1 can be equipped with a mathematically
correct and physically meaningful metric structure. Indeed,
consider a family {|ψ (ξ )〉} of normalized quantum states of

Hn
2 that smoothly depend on a m-dimensional parameter ξ

def=
(ξ 1, . . . , ξm) ∈ Rm. Then, the ordinary Hermitian scalar prod-
uct on Hn

2 induces a metric tensor gab(ξ ) with 1 � a, b � m
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on the manifold of quantum states defined as [22]

gab(ξ )
def= 4 Re[〈∂aψ (ξ )|∂bψ (ξ )〉

− 〈∂aψ (ξ )|ψ (ξ )〉〈ψ (ξ )|∂bψ (ξ )〉], (8)

with ∂a
def= ∂/∂ξ a. The quantity gab(ξ ) in Eq. (8) is the so-

called Fubini-Study metric tensor. In particular, we note that
the metric is positive definite as is evident by considering
the distance element ds2

FS between two nearby points with
associated vector states |ψ (ξ + dξ )〉 and |ψ (ξ )〉 [23],

ds2
FS

def= gab(ξ )dξ adξ b = 4[〈dψ |dψ〉 − |〈ψ |dψ〉|2], (9)

where |dψ〉 def= |ψ (ξ + dξ )〉 − |ψ (ξ )〉. The distance element
in Eq. (9) leads naturally to the concept of geodesic paths
in CPN−1. Indeed, by using variational calculus arguments,
geodesic paths in CPN−1 can be obtained by minimizing the
distance integral S [24],

S
def=

∫
dsFS = 2

∫
[〈dψ |dψ〉 − |〈ψ |dψ〉|2]1/2 =

∫
L dτ,

(10)

with L def= 2[〈ψ̇ |ψ̇〉 − |〈ψ |ψ̇〉|2]1/2, |ψ̇〉 def= ∂τ |ψ〉 and τ be-
ing a parameter along the curve γ (τ ): τ �→ |ψ (τ )〉 that we
assume to be equal to the natural parameter sFS = s. We recall
that if sFS = s is a geodesic, then the phase-transformed vector

|ψ̄ (s)〉 def= eiβ(s)|ψ (s)〉 with arbitrary β(s) is also a geodesic
[24]. In particular, by conveniently choosing β(s) such that

〈ψ̄ (s)|ψ̄ ′(s)〉 = 0 with |ψ̄ ′(s)〉 def= ∂s|ψ̄ (s)〉 [that is, |ψ̄ (s)〉 is
the horizontal lift of |ψ (s)〉 satisfying the parallel transport
rule], it can be shown after some straightforward but tedious
variational calculus computations that a geodesic |ψ̄ (s)〉 sat-
isfies a simple harmonic-oscillator equation [25,26],

|ψ̄ ′′(s)〉 + |ψ̄ (s)〉 = 0. (11)

Assuming 〈ψ̄ (0)|ψ̄ (0)〉 = 1, 〈ψ̄ (0)|ψ̄ ′(0)〉 = 0, and
〈ψ̄ ′(0)|ψ̄ ′(0)〉 = ω2 with ω being a constant in R, the
solution of Eq. (11) can be written as

|ψ̄ (s)〉 = cos(ωs)|ψ̄ (0)〉 + sin(ωs)

ω
|ψ̄ ′(0)〉. (12)

Equation (12) represents the most general geodesic in hori-
zontal and affinely parametrized form in CPN−1 [25]. More
generally, it can be shown that any two arbitrary unit vectors
|ψA〉 and |ψB〉 in the projective Hilbert space can be connected
by a geodesic line |ψgeo(λ)〉 parametrized by a real parameter
0 � λ � 1 [25,27],

|ψgeo(λ)〉 def= (1 − λ)|ψA〉 + eiφλ|ψB〉√
1 − 2λ(1 − λ)[1 − |〈ψB|ψA〉|] , (13)

where |ψgeo(0)〉 = |ψA〉, |ψgeo(1)〉 = |ψB〉, and φ ∈ R with
〈ψB|ψA〉 = |〈ψB|ψA〉|eiφ . For the sake of completeness, we
emphasize that a simple explicit way to check that |ψgeo(λ)〉
does indeed represent a geodesic line is to show that the
length of the curve connecting |ψA〉 and |ψB〉 measured with
the Fubini-Study metric equals the minimal possible length
of the curve on the Bloch sphere connecting these two states.

Upon recasting Eq. (13) as

|ψgeo(θ )〉 def= cos
(

θ
2

)|ψA〉 + eiφ sin
(

θ
2

)|ψB〉√
1 + sin(θ )|〈ψB|ψA〉| , (14)

with λ = λ(θ )
def= tan(θ/2)/[1 + tan(θ/2)] being a strictly

monotonic function of θ where 0 � θ � π , it can be

shown that the length s
def= ∫ π

0

√
ds2

FS of this curve equals
2 cos−1[|〈ψB|ψA〉|]. This, in turn, coincides with the Wootters
distance or, equivalently, the angle between the two states
|ψA〉 and |ψB〉 [28]. Thus, |ψgeo(λ)〉 and |ψgeo(θ )〉 in Eqs. (13)
and (14), respectively, are indeed geodesic arcs. We point
out that in Eqs. (13) and (14), it is assumed that |ψA〉 and
|ψB〉 are nonorthogonal. When |ψA〉 ⊥ |ψB〉, geodesic lines
can be obtained from Eqs. (13) and (14) by taking φ = 0
and, clearly, 〈ψB|ψA〉 = 0. One way to determine whether or
not Schrödinger’s solution |ψ (t )〉 specifies a geodesic path
is to verify that the geodesic curvature of its corresponding
dynamical trajectory on the Bloch sphere is identically zero.
Alternatively, a more convenient approach available to us is
to check whether there exists a reversible mapping λ: (0, t∗) �
t �→ λ(t ) ∈ (0, 1) with λ(0) = 0 and λ(t∗) = 1 such that the
distance d2(t, λ) between |ψ (t )〉 and |ψgeo(λ)〉 in Eq. (14),

d2(t, λ)
def= 4[1 − |〈ψ (t )|ψgeo(λ)〉|2], (15)

is identically zero. As a final remark of geometric flavor, we
point out that horizontal affinely parametrized geodesics on
the Bloch sphere are great circles traced by state vectors as in
Eq. (12) [22,29,30].

The quantum material presented in Sec. II together with
the geometric material covered in Sec. III will be helpful in
putting the concepts of efficiency and uncertainty of search
evolutions to be introduced in the next section in the proper
geometric formulation of quantum evolutions as originally
proposed by Anandan and Aharonov in Ref. [14].

IV. EFFICIENCY AND UNCERTAINTY
OF QUANTUM EVOLUTIONS

In this section, following the work by Anandan and
Aharonov in Ref. [14], we discuss a geometric measure of
efficiency for a quantum search evolution together with its
connection to a form of time-energy uncertainty inequality,
with the latter being fulfilled at all times during the physical
evolution of the system under consideration.

A. Efficiency

Consider a quantum-mechanical evolution of a state vector
|ψ (t )〉 described by the Schrödinger equation,

ih̄ ∂t |ψ (t )〉 = H (t )|ψ (t )〉, (16)

with 0 � t � t∗. Following the work by Anandan and
Aharonov, a geometric measure of efficiency for such a quan-
tum evolution can be formally defined as [14]

η
def= 1 − �s

s
= 2 cos−1[|〈ψ (0)|ψ (t∗)〉|]

2
∫ t∗

0
�E (t ′ )

h̄ dt ′ , (17)
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where �s
def= s − s0, s0 denotes the distance along the short-

est geodesic path joining the distinct initial |ψ (0)〉 and final
|ψ (t∗)〉 states on the projective Hilbert space CPN−1 and
finally, s is the distance along the actual dynamical trajectory
traced by the state vector |ψ (t )〉 with 0 � t � t∗. Observe that
the numerator in Eq. (17) is the angle between the state vectors
|ψ (0)〉 and |ψ (t∗)〉 and equals the Wootters distance dsWootters

[28],

dsWootters(|ψ (t1)〉, |ψ (t2)〉)
def= 2 cos−1[|〈ψ (t1)|ψ (t2)〉|].

(18)

The denominator in Eq. (17), instead, is the integral of the
infinitesimal distance ds along the evolution curve (that is,
the actual dynamical trajectory) in the projective Hilbert
space [14],

ds
def= 2

�E (t )

h̄
dt, (19)

with �E being the square root of the dispersion (or, equiva-
lently, the variance) of the Hamiltonian operator H (t ),

�E (t )
def= [〈ψ |H2(t )|ψ〉 − 〈ψ |H (t )|ψ〉2]1/2. (20)

Interestingly, Anandan and Aharonov showed that the in-
finitesimal distance ds in Eq. (19) is related to the Fubini-
Study infinitesimal distance dsFubini−Study by the following
relation:

ds2
Fubini−Study[|ψ (t )〉, |ψ (t + dt )〉]
def= 4[1 − |〈ψ (t )|ψ (t + dt )〉|2]

= 4
�E2(t )

h̄2 dt2 + O(dt3), (21)

with O(dt3) denoting an infinitesimal quantity equal or higher
than dt3. From Eqs. (19) and (21), it follows that s is propor-
tional to the time integral of the uncertainty in energy �E
of the system and represents the distance along the quantum
evolution of the physical system in CPN−1 as measured by
the Fubini-Study metric. We point out that when the actual
dynamical curve coincides with the shortest geodesic path
connecting the initial and final states, �s equals zero, and
the efficiency η in Eq. (17) becomes one. Clearly, the short-
est possible distance between two orthogonal quantum states
on CPN−1 is π whereas, in general, s � π for such a pair
of orthogonal pure states. These considerations will become
especially useful in Sec. V. For the interested readers, we
confine a brief discussion on possible generalizations of η in
Eq. (17) to geometric evolutions of mixed quantum states not
limited to temporal unitary propagators in Appendix A. In the
next subsection, we elaborate on the concept of uncertainty of
a quantum search evolution.

B. Uncertainty

In quantum theory [21], the standard quantum-mechanical
uncertainty relation given by

�x �p � h̄/2 (22)

reflects the intrinsic randomness of the outcomes of quantum
experiments. Specifically, if one repeats many times the same

state preparation scheme and then measures the operators x
or p, the variety of observations recorded for x and p are
characterized by standard deviations �x and �p whose prod-
uct �x �p is greater than h̄/2. In particular, Gaussian wave
packets (for instance, the ground state of a shifted harmonic
oscillator) are specified by a minimum position-momentum
uncertainty with �x �p = h̄/2.

In the geometry of quantum evolutions, there exists an
analog of Eq. (22) on the one hand, whereas on the other,
Gaussian wave packets are replaced by geodesic paths in the
projective Hilbert space. Indeed, consider the time-averaged
uncertainty in energy 〈�E〉 during a time interval �t⊥ defined
as [14]

〈�E〉 def= 1

�t⊥

∫ �t⊥

0
E (t ′)dt ′. (23)

The quantity �t⊥ in Eq. (23) represents the orthogonalization
time, that is, the time interval during which the system passes

from an initial state |ψA〉 def= |ψ (0)〉 to a final-state |ψB〉 def=
|ψ (�t⊥)〉 where 〈ψB|ψA〉 = δAB. Using Eqs. (19) and (23)
and recalling that the shortest possible distance between two
orthogonal quantum states on CPN−1 is π , we get

�
def= 〈�E〉�t⊥ � h/4. (24)

In particular, it is only when the quantum evolution is
a geodesic evolution that the equality in Eq. (24) holds.
Thus, just as Gaussian wave packets are minimum position-
momentum uncertainty wave packets, geodesic paths are
minimum time-averaged energy uncertainty trajectories. To
summarize, unit efficiency η = 1 is achieved when a quan-
tum evolution has minimum uncertainty 〈�E〉�t⊥ = h/4.
This, in turn, happens only if the physical systems moves
along a geodesic path in CPN−1. Interestingly, the Anandan-
Aharonov time-energy uncertainty relation in Eq. (24) can be
linked to the statistical speed of evolution dsFS/dt of the phys-
ical system with ds2

FS being the Fubini-Study infinitesimal
line element squared. Specifically, since dsFS/dt = �E (t )/h̄,
the physical system moves expeditiously wherever the uncer-
tainty in energy is large.

The concept of geodesic line mentioned in Sec. III together
with the concepts of efficiency and uncertainty presented in
this section will be used in the next section in order to ge-
ometrically analyze the quantum search evolutions described
in Sec. II.

V. GEODESICITY, EFFICIENCY, AND UNCERTAINTY
OF QUANTUM SEARCH EVOLUTIONS

In this section, we aim to study the geodesicity condi-
tion d2(t, λ) = 0 with d2(t, λ) in Eq. (15), the efficiency in
Eq. (17), and the uncertainty inequality in Eq. (24) for both
the original and the modified Farhi-Gutmann quantum search
algorithms presented in Sec. II.

A. The original scenario

Considering the original Farhi-Gutmann scenario, the state
vector |ψ (t )〉 that solves the Schrödinger evolution relation in
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Eq. (16) with H = HFG in Eq. (1) such that |ψA〉 = |ψ (0)〉, |ψB〉 = |ψ (t∗)〉, 〈ψB|ψA〉 x→0−→ δAB with x
def= 〈w|s〉, and t∗ = �t⊥ =

tFG with tFG defined in Eq. (4) is given by

|ψ (t )〉 = 1√
2

e−(i/h̄)Et√
1 − √

1 − x2

(
(1 − √

1 − x2) cos
(

Ex
h̄ t
) − ix sin

(
Ex
h̄ t
)

x cos
(

Ex
h̄ t
) + i(1 − √

1 − x2) sin
(

Ex
h̄ t
)
)

. (25)

Substituting Eqs. (13) and (25) into d2(t, λ) in Eq. (15), we obtain

d2
FG(t, λ) = 4

{
1 −

[
(1 − λ)2 cos2

(
Ex
h̄ t
)

1 − 2λ(1 − λ)
+ λ2 sin2

(
Ex
h̄ t
)

1 − 2λ(1 − λ)
+ λ(1 − λ) sin

(
2Ex

h̄ t
)

cos
(

π
2x

)
1 − 2λ(1 − λ)

]}
. (26)

Finally, we impose d2(t, λ) equal to zero so as to find possible roots {λ(t )}. Then, in order to obtain a well-defined reversible

mapping λ: (0, t∗) � t �→ λ(t ) ∈ (0, 1) with λ(0) = 0 and λ(t∗) = 1, we find it is necessary to have t∗ = tFG(x)
def= π h̄/(2Ex)

with x ∈ (0, 1) such that
π

2x
= 2nπ, (27)

with n ∈ N. Finally, given that Eq. (27) is clearly solvable, we find that a suitable reversible mapping λ(t ) is given by

λ(t )
def= sin2

(
E
4h̄ t

) + 1
2 sin

(
E
2h̄ t

)
1 + sin

(
E
2h̄ t

) . (28)

Indeed, it is straightforward to check that d2
FG(t, λ) = 0 by substituting Eqs. (27) and (28) into Eq. (26). Interestingly, observe

that λ(t ) in Eq. (28) is a strictly monotonic increasing function of t with 0 � t � t∗ and is such that λ(t∗/2) = 1/2. We remark
that we have shown that the Farhi-Gutmann Hamiltonian evolution trajectory between the two orthogonal quantum states |ψA〉
and |ψB〉 is formally a geodesic in the limiting scenario in which the quantum overlap x approaches zero, that is, the duration of
the evolution tFG approaches infinity (long-time limit). This limit requires formally selecting a very large value of n in Eq. (27)
when defining our reversible mapping λ = λ(t ). This requirement is physically consistent with the fact that tFG, being inversely
proportional to x, tends to diverge when the Farhi-Gutmann Hamiltonian evolution occurs between the nearly orthogonal source
and the target quantum states. It is in this regime that we conduct our analysis of Farhi-Gutmann and modified Farhi-Gutmann
trajectories in this paper. For additional comments on this point, we refer to Appendix B. Finally, by substituting Eq. (25) into
the efficiency η given in Eq. (17) and the time-energy uncertainty inequality presented in Eq. (24), we obtain

ηFG = 1 and �FG
def= [〈�E〉�t⊥]FG = h/4, (29)

respectively. Thus, by investigating the geometry of the original Farhi-Gutmann quantum evolution, we are able to conclude that
it describes a geodesic motion on the Bloch sphere specified by unit efficiency ηFG and a minimum uncertainty �FG that reaches
the minimum achievable value of h/4.

B. The modified scenario

Within the context of the modified Farhi-Gutmann scenario, the state vector |ψ (t )〉 that solves the Schrödinger evolution

relation in Eq. (16) with H = HMFG in Eq. (5) such that, |ψB〉 = |, i(t∗)〉, 〈ψB|ψA〉 x→0−→ δAB with x
def= 〈w|s〉, and t∗ = �t⊥ =

tMFG with tMFG defined in Eq. (7) is given by

|ψ (t )〉 = e−(i/h̄)[(E ′+E )/2]t

(
cos

(
λ
h̄ t
) + i A+B

A−B sin
(

λ
h̄ t
) −2i AB

A−B sin
(

λ
h̄ t
)

2i
A−B sin

(
λ
h̄ t
)

cos
(

λ
h̄ t
) − i A+B

A−B sin
(

λ
h̄ t
)
)

|ψ (0)〉. (30)

Initial-state |ψ (0)〉 in Eq. (30) is defined as

|ψ (0)〉 def=

⎛
⎜⎝

√
(1−AB)2+(A+B)2−(1−AB)√

(A+B)2+[
√

(1−AB)2+(A+B)2−(1−AB)]2

A+B√
(A+B)2+[

√
(1−AB)2+(A+B)2−(1−AB)]2

⎞
⎟⎠, (31)

where the quantities A = A(x, E ′, E ) and B = B(x, E ′, E ) are explicitly given by

A(x, E ′, E )
def= 1

2xE ′√1 − x2
[E − E ′ + 2x2E ′ −

√
4x2EE ′ + (E ′ − E )2], (32)

and

B(, E ′, E )
def= 1

2xE ′√1 − x2
[E − E ′ + 2x2E ′ +

√
4x2EE ′ + (E ′ − E )2], (33)
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FIG. 1. (a) Efficiency η versus the quantum overlap x in the case of γ = 1 (dashed line), γ = 1.1 (thin solid line), and γ = 2 (thick solid
line). (b) Uncertainty � versus the quantum overlap x in the case of γ = 1 (dashed line), γ = 1.1 (thin solid line), and γ = 2 (thick solid line).

The original and modified Farhi-Gutmann scenarios are specified by γ
def= E ′/E = 1 and γ > 1, respectively.

respectively. Finally, the quantity λ = λ(x, E ′E ) in Eq. (30) is
defined as

λ(x, E ′, E )
def= 1

2

√
4x2E ′E + (E ′ − E )2. (34)

We recall that the states in Eqs. (25) and (30) are expressed in
terms of the orthonormal basis {|w〉, |r〉} introduced in Sec. II.
Substituting Eqs. (13) and (30) into d2(t, λ) in Eq. (15), leads
to

d2
MFG(t, λ)

4

=
⎧⎨
⎩1 −

⎡
⎣ (1 − λ)2 cos2

(
λ
h̄ t
)

1 − 2λ(1 − λ)
+ λ2 sin2

(
λ
h̄ t
)

1 − 2λ(1 − λ)

+
λ(1 − λ) sin

(
2λ
h̄ t
)

cos
(

π
2

E ′+E√
4x2E ′E+(E ′−E )2

)
1 − 2λ(1 − λ)

⎤
⎦
⎫⎬
⎭. (35)

Finally, proceeding as before, we impose d2(t, λ) equal to
zero so as to find possible roots {λ(t )}. Then, in order to ob-
tain a well-defined reversible mapping λ: (0, t∗) � t �→ λ(t ) ∈
(0, 1)with λ(0) = 0 and λ(t∗) = 1, we observe that it is nec-

essary to have t∗ = tMFG(x)
def= π h̄/[

√
4x2E ′E + (E ′ − E )2]

with x ∈ (0, 1) such that

π

2

E ′ + E√
4x2E ′E + (E ′ − E )2

= 2nπ, (36)

with arbitrary n ∈ N. Unlike Eq. (27) however, there does not
exist any real value x ∈ (0, 1) in the modified physical sce-

nario of interest with E ′ 
 E (that is, γ 
 1 with E ′ def= γ E )
presented in Sec. II and originally proposed by Farhi and Gut-
mann. Indeed, assuming such a working condition, Eq. (36)

yields x2 E ′
E≈ [(1 − 16n2)/64n2](E ′/E ). Thus, Eq. (36) has
no solutions for x belonging to the interval of interest that
yields d2(t, λ) identically equal to zero. For a discussion on
the low-energy difference regime, we refer to Appendix B. To
summarize, given the impossibility of finding a well-defined
reversible mapping between the geodesic line in Eq. (13) and
the dynamical trajectory traced by the state vector in Eq. (30),
we conclude that the modified Farhi-Gutmann quantum evo-
lution is not described by a geodesic path on the Bloch sphere.

Finally, by substituting Eq. (30) into the efficiency η given
in Eq. (17) and the time-energy uncertainty inequality pre-
sented in Eq. (24), we obtain

ηMFG(x, E ′, E ) = 1√
2

[
(E ′ − E )2 + 4x2E ′E
(E ′ − E )2 + 2x2E ′E

]1/2

< 1, (37)

and

�MFG(x, E ′, E )
def= [〈�E〉�t⊥]MFG

= h

2
√

2

[
(E ′ − E )2 + 2x2E ′E
(E ′ − E )2 + 4x2E ′E

]1/2

> h/4,

(38)

respectively, for any E ′ > E . Thus, by studying the geometry
of the modified Farhi-Gutmann quantum evolution, we arrive
at the conclusion that it does not describe a geodesic motion
on the Bloch sphere, is specified by a nonmaximal efficiency
ηMFG(x, E ′, E ) and the minimum uncertainty �MFG(x, E ′, E )
is greater than the minimum achievable value of h/4. For the
sake of simplicity, we set the Planck constant h equal to one.
Finally, for the sake of clarity, we plot the efficiency η and the
uncertainty � as a function of the quantum overlap x ∈ (0, 1)

for a number of fixed values of the ratio γ
def= E ′/E � 1 in

Fig. 1.

VI. CONCLUDING REMARKS

In this article, we employed Riemannian geometric con-
cepts to show that time-optimal analog quantum search
evolutions between two orthogonal quantum states are charac-
terized by unit efficiency [see Eq. (29)] dynamical trajectories
traced on a projective Hilbert space. In particular, we proved
that these optimal dynamical trajectories are the shortest
geodesic paths joining the initial and the final states of
the quantum evolution [see Eqs. (26), (27), and (28)]. In
addition, we verified that they describe minimum uncer-
tainty evolutions specified by an uncertainty inequality that is
tighter than the ordinary time-energy uncertainty relation [see
Eq. (29)]. Furthermore, we studied the effects of deviations
from the time-optimality condition from our proposed Rie-
mannian geometric perspective. In particular, by geometric
means we found that deviations from the original Farhi-
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TABLE I. Illustrative representation of the type of motion on the Bloch sphere, uncertainty of evolution, and efficiency of evolution
corresponding to both the original and the modified Farhi-Gutmann quantum search Hamiltonian evolutions.

Quantum evolution Motion on the Bloch sphere Uncertainty of evolution Efficiency of evolution

Original Farhi-Gutmann Geodesic � = h/4, minimal η = 1, maximal
Modified Farhi-Gutmann Nongeodesic � > h/4, nonminimal η < 1, nonmaximal

Gutmann Hamiltonian evolution lead to nongeodesic motion
on the Bloch sphere [see Eqs. (35) and (36)], to nonmaximal
efficiency [see Eq. (37)] and, finally, to nonminimal uncer-
tainty of the evolution [see Eq. (38)]. A summary of our
main results can be visualized in Fig. 1 and are reported in
Table I.

We believe that despite its simplicity, the relevance of our
paper is threefold. First, our Riemannian geometric analysis
of quantum search evolutions offers an alternate theoreti-
cal perspective on the concept of optimality with intuitive
physical insights arising from familiar concepts, such as short-
est path, maximal efficiency, and minimal uncertainty. In
this respect, it becomes especially relevant when taken into
consideration together with Refs. [2,15]. Second, it could
potentially help providing a practical and systematic way
of constructing efficient search schemes. Indeed, this con-
struction could occur by ranking the maximal achievable
efficiencies of the various search schemes whereas tuning pa-
rameters of physical relevance that specify the more realistic
time-dependent Hamiltonian at hand [31,32]. For instance, it
would be of interest to extend the simple analysis presented
here to time-dependent quantum search Hamiltonians yield-
ing either on-resonance or off-resonance scenarios [20,33].
In such a case, the set of experimentally tunable parameters
would include, for instance, the energy gap between two
quantum states, the frequency of the external drive field,
and the strength of the external drive field as discussed in
Ref. [32]. Third, given that realistic quantum algorithms are
expected to be both fast and thermodynamically efficient [1],
our paper can be regarded as a model to emulate in order
to find a good geometric measure of efficiency for thermo-
dynamic processes. Our preliminary results along these lines
have recently appeared in Refs. [19,20]. Roughly speaking,
the main idea is to replace the geometry of quantum evolu-
tions with the geometry of thermodynamic processes [16,17],
Schrödinger’s quantum trajectories with thermal trajectories
[18] and, finally, shortest paths on the Bloch sphere with
coolest paths on the manifold of thermal states [34–36].
Clearly, one may wonder how to introduce a notion of thermo-
dynamical efficiency in this quantum searching context. We
remark that in the modified scenario with E ′ 
 E , the system
moves along a nongeodesic path connecting the initial and
final orthogonal states with a speed vMGF = (2/h̄)�EMFG >

π/�t (MFG)
⊥ . However, despite exhibiting a speed higher than

the one that would specify an evolution of geodesic type,
the modified scenario is not energetically favorable since
the minimal Anandan-Aharonov minimum time-energy un-
certainty condition is violated (that is, �MFG > h/4) with
the consequence that the efficiency as defined in Eq. (17) of
this particular quantum-mechanical evolution is suboptimal.
These considerations, emerging from this specific physical

scenario considered within the framework of quantum
search Hamiltonian evolutions, are reminiscent of the speed-
efficiency trade-off mentioned in our Introduction. At this
stage, however, we can only speculate on the issue of defining
a good measure of thermodynamic efficiency in the context
of quantum searching. To be more specific, our next set
of explorative steps in this direction includes the following
points: (i) a better understanding of the analogies between
quantum-mechanical and thermodynamical relations [18,37];
(ii) a deeper comprehension of the methods of thermodynamic
geometry employed to identify optimal driving protocols that
minimize the dissipative losses of the underlying thermal pro-
cesses [36]; (iii) an extensive understanding of the geometry
of evolutions of open quantum systems with particular empha-
sis on the determination of time-optimal evolutions of impure
quantum states [37]; (iv) a quantitative understanding of the
possible beneficial effects of dissipation in quantum searching
with the inclusion of thermodynamical arguments [38]. We
believe, for instance, that one of the relevant outcomes of
this cross fertilization among geometry, quantum, and thermal
physics will be a more systematic hybrid method of identi-
fying constructive use of dissipation in quantum searching.
In particular, we expect that the identification tool will be a
measure of efficiency to get to the target state from a given
initial state that is geometrically characterized by a suitable
cost function that ideally maximizes quantum speed and min-
imizes thermal dissipation at the same time. Of course, these
are mere conjectures at this point, and we will keep pursuing
these fascinating avenues of investigations in our future scien-
tific efforts.
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APPENDIX A: GEOMETRIC EFFICIENCY BEYOND PURE
STATES AND TIME PROPAGATORS

In this Appendix, we emphasize several technical details
concerning the manner in which our measure of efficiency η

in Eq. (17) can be readily extended to more general physical
processes.
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Our expression for the efficiency Eq. (17) can be written
and interpreted in several forms as shown below

η
def= s0

s
=

∫
geo dsWootters∫

H dsFS
= 2 cos−1[|〈ψ (0)|ψ (t∗)〉|]

2
∫ t∗

0
�E (t ′ )

h̄ dt ′

= 2θB

2
∫ t∗

0
�E (t ′ )

h̄ dt ′ . (A1)

The first equality in Eq. (A1) defines the efficiency η as the
ratio of two lengths, which by the second equality shows is
the ratio of the Wootters distance along the geodesic connect-
ing the initial and final states |ψ (0)〉 and |ψ (t∗)〉 to the the
integrated Fubini-Study distance along the path generated by
the Hamiltonian H . This later ratio is given by the third equal-
ity. As interpreted in the main text, the last inequality uses
the fact that for pure states, the numerator defines the Bures
angle θB [30] via cos(θB) = √

F where for pure states
√

F =
|〈ψ (0)|ψ (t∗)〉| is the Uhlmann fidelity between the initial-
and the final-state |ψ (0)〉 and |ψ (t∗)〉. The Bures angle is
related to the Bures distance dB [30] via d2

B = 2 (1 − √
F ) =

4 sin2(θB/2) so that we could have also written the numerator
of Eq. (A1) in terms of this length as 2θB = 4 sin−1(dB/2).
For infinitesimally close states this gives θB ≈ dB. Thus, we
see that our efficiency considered as a ratio of geometric
lengths is intimately related to the quantum-mechanical con-
cept of the fidelity between the initial and the final states.

The concept of fidelity is generalized from pure
to mixed states via the Ulhmann-Jozsa [30,39] fidelity

F [ρ(0), ρ(t∗)]
def= {tr[√ρ(0)ρ(t∗)

√
ρ(0)]}2 which arises from

the overlap of the pure state |ψρ (0)〉 and |ψρ (t∗)〉 purifications
of the initial and final states ρ(0) and ρ(t∗), maximized over
an arbitrary unitary in the higher-dimensional purification
Hilbert space. [Note that: trR[|ψρ〉〈ψρ |] = ρ, where the puri-
fied state |ψρ〉 lives in the composite Hilbert space HR ⊗ HS

of system-S (ρ) and reservoir R]. The Bures angle and Bu-
res distance retain their pure-state form [30], i.e., cos(θB) =√

F [ρ(0), ρ(t∗)] and d2
B = 2{1 − √

F [ρ(0), ρ(t∗)]}. Note that
the fidelity is a total distance in the sense that its computation
only relies upon the knowledge of the state at either end of
the geodesic that connects the initial and final states. One
might ask if there is some differential quantity for which the fi-
delity is the integrated version along the geodesic. The answer
is yes, and this quantity is the quantum Fisher information
(QFI). This leads to a new interpretation of the denominator
in Eq. (A1).

Let us note that FQ(t )
def= tr[ρ(t )L2(t )] denotes the quan-

tum Fisher information for time estimation along the tra-
jectory specified by the system evolution, and L(t ) is the
so-called symmetric logarithmic derivative operator defined
in an implicit fashion by the equation dρ/dt[ρ(t )L(t ) +
L(t )ρ(t )]/2 [23]. Moreover, the connection between FQ(t ) in
the denominator of η in Eq. (A1) and the dispersion �E (t )
of the Hamiltonian operator H in the denominator of η in
Eq. (17) can be made transparent by observing that the analog
of |〈ψ (t )|ψ (t + dt )〉|2 = 1 − [�E2(t )/h̄2]dt2 + O(dt3) is
F (t, t + dt ) = 1 − [FQ(t )/4]dt2 + O(dt3) for mixed quan-
tum states [40]. Therefore, the square root

√
FQ(t ) of the

quantum Fisher information replaces 2[�E (t )/h̄] for pure
states and is generally proportional to the instantaneous speed

of separation between two infinitesimally closed mixed quan-
tum states. This allows us to write the efficiency in terms of
the fidelities as

η
def= s0

s
= 2 cos−1{√F [ρ(0), ρ(t∗)]}∫ t∗

0

√
FQ(t ′)dt ′ , (A2)

which now holds in general for mixed states.
Second, the Hamiltonian operator H and the temporal pa-

rameter t can be replaced by any other Hermitian operator Aξ

(for instance, the number operator, the momentum operator, or
the angular momentum along the quantization axis) and any
arbitrary parameter ξ (for instance, the phase of a clock or the
strength of an external field), respectively. The parameter ξ

describes the evolution of the physical system by the action

of the unitary operator UAξ
(ξ )

def= e(i/h̄)ξAξ which replaces the
usual Schrödinger time propagator. As a consequence, the
usual Anandan-Aharonov time-energy uncertainty inequal-
ity, 〈�E〉�t⊥ � h/4, can be generalized to assume the form
�Aξ δξ � h/4 with δξ being essentially the precision with
which ξ can be determined [41]. In addition, we remark that
for pure states the quantum Fisher information is a multiple
of the variance of Aξ . For mixed states, instead, the variance
provides only an upper bound on the Fisher information [42].
Therefore, given this intimate connection between the quan-
tum Fisher information and the variance of the Hermitian
generator Aξ of the displacements in ξ , the usual Anandan-
Aharonov time-energy uncertainty inequality can be regarded
as being replaced by a generalized uncertainty relation δξ �
(h/2)F−1/2

ξ (t ) that derives from the Cramer-Rao bound that
appears in precision quantum metrology [43–45].

Lastly, it should be noted that along the geodesic, i.e., the
shortest distance connecting the initial and final states, we
have

∫ t∗

0,geo

√
FQ(t ′)dt ′ = √

F [ρ(0), ρ(t∗)] so that the QFI is
the infinitesimal version of the quantum fidelity. Furthermore,
along any longer (nongeodesic) path (s > s0) generated by a
Hamiltonian H , we have

∫ t∗

0,H

√
FQ(t ′)dt ′ �

√
F [ρ(0), ρ(t∗)].

This allows us to generalize the concept of efficiency 0 �
η → η̃ � 1 to a quantity involving the only ratio of fidelities
and/or of integrated QFIs along the optimal geodesic (s0) and
the evolved (under H path (s > s0),

η = s0

s
←→ η̃

def=
∫ t∗

0,H

√
FQ(t ′)dt ′

√
F [ρ(0), ρ(t∗)]geo

=
∫ t∗

0,H

√
FQ(t ′)dt ′∫ t∗

0,geo

√
FQ(t ′)dt ′ .

(A3)
Both measures of efficiencies η and η̃ quantify the same
concepts, in terms of inverse ratios, relating the initial and
final states of the system: (i) the geometric point of view:
η = s0/s � 1, i.e., the length along the path generated by
H is greater than the optimal (shortest) geodesic path, and
(ii) the fidelity/QFI point of view: η̃ � 1, i.e., the fidelity, or
integrated QFI, along the path generated by H is less than that
of along the optimal path.

The study of various geometric characteristics along evolu-
tion of density operators is becoming increasingly important
and deserves special care [37]. For this reason, we leave the
quantitative analysis of the physical usefulness of the effi-
ciency measures η and η̃ in Eq. (A1) [and Eq. (A2)] and

052607-9



CAFARO, RAY, AND ALSING PHYSICAL REVIEW A 102, 052607 (2020)

Eq. (A3) in analog quantum searching and precision metrol-
ogy to forthcoming efforts.

APPENDIX B: LOW-ENERGY DIFFERENCE REGIME

In this Appendix, we comment for the sake of math-
ematical completeness on the geodesic constraint equation
d2(t, λ) = 0 in the case of the low-energy difference regime,
although our main focus in the paper is devoted to the high-
energy difference regime specified by E ′ 
 E .

When we relax the working condition E ′ 
 E and con-

sider the low-energy difference scenario where E ′ def= γ E and
E are sufficiently close with E ′ > E , imposing d2(t, λ) in
Eq. (35) to be equal to zero requires that the quantum overlap
x satisfies the condition x2 = x2(n, γ ) where,

x2(n, γ )
def= 1

64γ n2
[(1−16n2)γ 2+(2+32n2)γ +(1 − 16n2)],

(B1)

with n ∈ N and γ > 1. A simple calculation shows that

x2 in Eq. (B1) assumes positive values on the set In
def=

[i−(n), i+(n)] with i±(n)
def= (32n2 ± 16n + 2)/(32n2 − 2).

However, In is a set whose measure vanishes asymptot-

ically since μ(In)
def= 16n/(16n2 − 1)

n
1≈ 1/n → 0 when n
approaches infinity. To summarize, the set In tends to shrink

and eventually, vanishes. Moreover, the set In contains ele-
ments that violate the condition γ > 1. Indeed, i−(n) > 1 if
and only if n < 1/4. Clearly, this is impossible since n ∈ N. In

particular, for any γ > i+(1)
def= 5/3 with 5/3 being the upper

bound of the set In with the largest measure, that is I1 with
μ(I1) = 16/15, x2 in Eq. (B1) becomes negative. Thus, we
can conclude that Eq. (36) has no solution x that belongs to the
interval (0, 1) for any real γ > i+(1). Interestingly, the limit
of large n values can also be physically motivated. Indeed,
from a physics standpoint, we expect tMFG to become very
large when E ′ � E in the study of the quantum-mechanical
evolution between nearly orthogonal quantum states with
nearly zero quantum overlap since tMFG is inversely propor-
tional to the energy-level separation of the system, and this
equals [4x2γ + (1 − γ )2]E [31,46]. Imposing the condition
expressed in Eq. (36), the long-time limit is recovered when
n 
 1 since such a condition requires tMFG to be proportional
to n with constant of proportionality coefficient given by
2h/(E ′ + E ). As a side remark, this long-time limit is reminis-
cent of the infinite temporal duration of highly efficient ideal
reversible thermodynamic processes that occur in the absence
of dissipation. To summarize, we can safely conclude from
our discussion that x /∈ (0, 1) for any positive integer γ ∈ Z+
with γ > 1 in any of the two energetic regimes (that is, E ′ 

E and E ′ > E ) of the modified quantum search scenario if
d2(t, λ) in Eq. (35) is required to be identically zero.
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