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A stochastic procedure is developed which allows one to express Pontryagin’s maximum principle for a
dissipative quantum system solely in terms of stochastic wave functions. Time-optimal controls can be efficiently
computed without computing the density matrix. Specifically, the proper dynamical update rules are presented
for the stochastic costate variables introduced by Pontryagin’s maximum principle, and restrictions on the form
of the terminal cost function are discussed. The proposed procedure is confirmed by comparing the results to
those obtained from optimal control on Lindbladian dynamics. Numerically, the proposed formalism becomes
time and memory efficient for large systems, and it can be generalized to describe non-Markovian dynamics.
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I. INTRODUCTION

Modern quantum technology [1], including quantum com-
putation [2–10], quantum sensing, metrology, and imaging
[11–20], and quantum communication [21–27], commonly
relies on coherent control of the state of the system. A typ-
ical quantum task starts from an easily prepared initial state,
undergoes a designed control protocol, and hopefully ends up
with a state sufficiently close to the target state (not necessar-
ily known in advance). When the closeness to the target state
can be characterized by a scalar “terminal cost function,” this
quantum problem can be mathematically formulated as an op-
timal control problem. Many quantum applications (or at least
an intermediate step of the application) fit this description.
Relevant examples include state preparation [28–31], where
the cost function is the overlap with the known target state;
“continuous-time” variation-principle-based quantum compu-
tation [7,9,32–34], where the cost function is the ground-state
energy; and quantum parameter estimation [20,35], where the
cost function is the quantum Fisher information.

Pontryagin’s maximum principle (PMP) [36–39] is a pow-
erful formalism in classical control theory, and it has been
applied to quantum state preparation [28,40] and nonadia-
batic quantum computation [41,42]. Due to the linearity of
Schrödinger’s equation, PMP implies the time-optimal con-
trol typically has the so-called bang-bang form (the control
takes its extreme values); the bang-bang form puts strong con-
straints on the structure of optimal solutions and is found to be
the case in some problems [28,41,43]. For general quantum
problems, however, the optimal control often includes a sin-
gular part [40,42,44,45], which makes PMP less informative
about the solution. While one can, in principle, explicitly solve
for the behavior on the singular arcs [40], such analysis is
restricted to small systems as it quickly becomes intractable.
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The main usefulness of PMP thus appears to be numerical:
first, it provides an efficient way to compute the gradient of
the terminal cost function; second, PMP gives the necessary
conditions for an optimal solution which can be used to check
the quality of any numerical solutions.

The application of PMP to quantum dissipative systems
using a Lindblad master-equation approach has been pro-
posed and discussed in the literature [46–49]. In Ref. [40]
we demonstrated that the singular controls are essential in
open systems by examining the PMP optimality conditions.
In this paper, we develop a stochastic formalism to evalu-
ate important quantities introduced by PMP. Specifically, we
derive a procedure to consistently update the wave function
and its costate for the stochastic Schrödinger equation so that
the optimal control can be determined without constructing
the density matrices. The procedure is checked against the
results obtained using the Lindbladian equation. The proposed
stochastic procedure not only saves time and memory for
simulating large systems but can be helpful for problems
in which the wave function description is intuitive, such as
gate-based quantum computation [4–6,50–53], quantum er-
ror correction [54–57], and coherent feedback control [58].
Moreover, the generalization to describe systems coupled to a
non-Markovian bath [59–61] is straightforward.

The rest of the paper is organized as follows. In Sec. II we
recapitulate relevant conclusions from classical control the-
ory. In particular, we express important quantities introduced
by PMP in terms of the density matrix which are essential
for open quantum systems. In Sec. III we describe how to use
the stochastic Schrödinger equation to simulate the dissipative
system, with an emphasis on determining the optimal control.
In Sec. IV we numerically implement the proposed stochastic
procedure to the single-qubit system. In particular we compare
the results from the deterministic Lindbladian with those from
the stochastic Schrödinger equation. A brief conclusion is
given in Sec. V.
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II. DENSITY-MATRIX FORMULATION AND
PONTRYAGIN’S MAXIMUM PRINCIPLE

Consider a quantum system characterized by the density
matrix ρ, evolving in time under some general Markovian
quantum dynamics

ρ̇ = Lt [ρ], (1)

with Lt being a Liouvillian superoperator which depends on
some control variable u(t ). In particular, we will be concerned
with dynamical systems with linear controls such that Lt =
L0 + u(t )Lu, where L0 represents the bare dynamics of the
system beyond our control and Lu is the controllable part. The
control field u(t ) is further assumed to be bounded |u(t )| � 1.
While most of our discussion is completely general and ap-
plies to arbitrary Liouvillians, we are primarily concerned
with coherent controls, i.e.,

Lu[ρ] = −i[Hu, ρ], (2)

where Hu is the part of the Hamiltonian that can be controlled.
Moreover, the present goal is to maximize the overlap between
the final state at time t f and the target state |ψtar〉, which can
be expressed by the terminal cost function C (to minimize),

C(t f ) = −Tr[ρ(t f )ρtar] = −〈ψtar|ρ(t f )|ψtar〉. (3)

This cost function has the benefit of being linear in the state
ρ(t f ). Notice that for a pure target state 〈ψtar|ρ(t f )|ψtar〉 corre-
sponds to the standard Uhlmann fidelity [62,63]. Here we shall
focus the discussion on a target state that is pure, but since
the cost function is just the Hilbert-Schmidt inner product
between the terminal state and the target state, the same cost
function could be used for mixed states as well. Following
PMP, we proceed by introducing the control Hamiltonian (c-
Hamiltonian) Hc,

Hc = Tr(λρ̇) = (λL0[ρ]) + u(t ) Tr(λLu[ρ]), (4)

which is a real-valued scalar and should not be confused with
the Hamiltonian H of the system [64]. The c-Hamiltonian Hc

is constructed such that one of Hamilton’s equations simply
yields the equation of motion for the state, i.e.,

ρ̇ = ∂Hc

∂λ
, (5)

where the canonical momentum λ, typically referred to as the
costate in the context of optimal control, satisfies

λ̇ = −∂Hc

∂ρ
. (6)

The initial condition for the state is typically ρ(t0) = ρ, and
according to PMP, the boundary condition for the costate
should satisfy

λ(t f ) = ∂C(t f )

∂ρ(t f )
= −|ψtar〉〈ψtar|. (7)

Necessary conditions for optimal solutions to the time-
optimal control problem are simultaneously satisfying
Eqs. (5) and (6), together with Hc = const over the entire

interval t0 to t f and

u(t ) =
⎧⎨
⎩

+1 if �(t ) < 0,

−1 if �(t ) > 0,

undetermined if �(t ) = 0,

(8)

with the switching function �(t ) = Re(Tr[λLu[ρ]]), which
for coherent controls becomes

�(t ) = Im {(Tr(λ[Hu, ρ])}. (9)

It is worth noting that the switching function corresponds to
the gradient of the terminal cost function, i.e., �(t ) ∼ ∂C

∂u(t ) .
When the goal is to minimize C, u(t ) takes the extreme value
with a sign opposite to �(t ) �= 0; this is referred to as “bang
control” and is exactly Eq. (8). When �(t ) = 0 for a finite
amount of time, the controls might not be extremal, and their
structure can be determined by looking at higher time deriva-
tives of the switching function. This is beyond the present
discussion, but some complementary derivations, including a
discussion of singular controls, can be found in Refs. [40,42].

Before moving on to discuss stochastic dynamics, let us
consider some particularly relevant dynamics. First of all, con-
sider the dynamics to be unitary such that L[ρ] = −i[H, ρ].
The c-Hamiltonian then reads

Hc = Im{Tr(λ[H, ρ])} = −Im{Tr(ρ[H, λ])}, (10)

where the latter just follows from the cyclic properties of the
trace. Consequently, the costate evolution,

λ̇ = −i[H, λ], (11)

is identical to that of the state ρ. This is not the case for
dissipative dynamics; consider, for example,

L[ρ] = LρL† − 1
2 (L†Lρ + ρL†L), (12)

where L are Lindblad jump operators. The c-Hamiltonian now
takes the form

Hc = Re
(
Tr

[
λ
{
LρL† − 1

2 (L†Lρ + ρL†L)
}])

= Re
(
Tr

[
ρ
{
L†λL − 1

2 (L†Lλ + λL†L)
}])

; (13)

consequently, the costate evolution

λ̇ = −[
L†λL − 1

2 {L†L, λ}], (14)

where the anticommutator is defined as {A, B} = AB + BA.
Note that in the case of Hermitian jump operators Eq. (14)
simply amounts to a time reversal t → −t of Eq. (12). The
sum of Eqs. (10) and (13) gives the c-Hamiltonian for systems
with both unitary and dissipative dynamics. In principle, op-
timal control solutions can be found by iteratively solving for
the (co)state, extracting the switching function, and updating
the controls [40]. The downside is that one has to explicitly
propagate the density matrix and its costates.

III. STOCHASTIC CONTROL

In this section we describe the proposed stochastic proce-
dure that extracts the switching function and related quantities
from a stochastic Schrödinger simulation by properly correlat-
ing the Poisson random processes between the wave function
and its costate. The limitation of the procedure will also be
pointed out.
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A. Stochastic simulation of density matrix

The formalism to simulate the density matrix ρ [Eq. (12)]
by averaging the stochastic wave function was developed in
the early days of quantum optics [65–67]. To facilitate later
discussion, we briefly review it. Denoting |dψ〉 ≡ |ψ (t +
dt )〉 − |ψ (t )〉, the stochastic update of the wave function is
given by

|dψ〉 = G|ψ〉 dt + (L|ψ〉 − |ψ〉)dN (t ), (15a)

where

G|ψ〉 =
[
−iH − γ

2
L†L + γ

2
1
]
|ψ〉. (15b)

In Eqs. (15), dN (t ) is the Poisson random variable whose
mean and variance are both γ dt , i.e., dN (t ) = dN (t )2 =
γ dt ; H is the Hamiltonian of the system. The wave function
evolves forward in time as |ψ (t )〉 → |ψ (t + dt )〉 = |ψ (t )〉 +
|dψ (t )〉. The density matrix can then simply be extracted as
ρ = E[|ψ (t )〉〈ψ (t )|], with the expectation value taken over
the Poisson process (with the same initial state |ψini〉) that
generates the quantum jumps:

ρ(t ) = E[|ψ (t )〉〈ψ (t )|] ≈ 1

N

N∑
n=1

|ψ (n)(t )〉〈ψ (n)(t )|, (16)

where the superscript n labels the nth realization. The same
procedure can be repeated for the costate λ by unraveling it in
stochastic wave function |π〉. Recall that the costate needs to
evolve backward in time from t f ; hence, denoting |−dπ〉 ≡
|π (t − dt )〉 − |π (t )〉, one has

|−dπ〉 = G̃|π〉 dt + (L†|π〉 − |π〉)dN (t ), (17a)

G̃|π〉 =
[
iH − γ

2
L†L + γ

2
1
]
|π〉. (17b)

dN (t ) is again the Poisson random variable with mean and
variance of γ dt ; further note that G̃ = G†. To extract λ, one
repeats Eq. (17) to obtain |π (n)〉 starting from the same final
state |π (t f )〉, the costate density matrix is then computed
using

λ(t ) = E[|π (t )〉〈π (t )|] ≈ 1

N

N∑
n=1

|π (n)(t )〉〈π (n)(t )|. (18)

It is worth noting that the stochastic procedure outlined
in Eqs. (16) and (18) does not apply to cases of negative γ

even though the Lindbladian equation can be solved no matter
what the sign of γ is. Since the stochastic procedure always
increases the entropy, it can describe only the forward prop-
agation of ρ and backward propagation of λ. We also point
out that both Eqs. (16) and (18) can be used to simulate the
mixed state. One simply has to, in conjunction with sampling
the Poisson process, take random samples out of the initial
density matrix.

B. Two stochastic procedures for the switching function

For the specific cost function given by expression (3),
the boundary condition for the costate becomes λ(t f ) =
−|ψtar〉〈ψtar|. The switching function �(t ) can thus straight-
forwardly be computed from Eq. (9) with ρ(t ) from Eq. (16)
and λ(t ) from Eq. (18). Once ρ(t ) and λ(t ) are known, the

c-Hamiltonian can also be evaluated using Eqs. (10) and (13).
This procedure works generally, and a numerical example
will be provided in Sec. IV B. In this procedure, ρ and λ

have to be constructed explicitly, which makes the procedure
numerically quite involved; for example, one has to store
all stochastic realizations of |ψ (n)(t )〉 and |λ(n)(t )〉 and then
explicitly perform the trace in (9).

In the first procedure just described, the Poisson random
variables that generate the state and the costate are completely
uncorrelated. By correlating the random variables, however,
the switching function can be obtained without computing ρ

and λ explicitly as long as the terminal cost function is a linear
function of the state ρ. This is natural in many situations, and
the present cost function (3) is clearly of that form.

To see how the second procedure works, consider first
the cost function (3). Expressed in terms of stochastic wave
functions |ψ〉, this becomes

C(t f ) = −〈ψtar|E[|ψ〉〈ψ |]|ψtar〉 = −E[|〈ψtar|ψ〉|2]. (19)

The linearity ensures that we can interchange the order in
which we take the quantum expectation value and the aver-
age of the classical random process. Hence, consider the nth
stochastic realization defined by the Poisson random process
dN (n)(t ), |ψ (n)〉, and its costate |π (n)〉, where the latter satisfy
Eqs. (15a) and (17a) [with the same dN (t )], respectively; then

C(t f ) ≈ − 1

N

∑
n

|〈ψtar|ψ (n)(t f )〉|2 ≡ − 1

N

∑
n

C (n)(t f ). (20)

Consequently, according the PMP, the boundary condition for
the nth realization of the costate |π (n)(t )〉 is fixed by

|π (n)(t f )〉 = ∂ C (n)(t f )

〈ψ (n)(t f )| = − |ψtar〉〈ψtar|ψ (n)(t f )〉. (21)

The switching function is then computed as

�(t ) = 1

N

N∑
n=1

�(n)(t ), �(n)(t ) = Im〈π (n)(t )|Hu|ψ (n)(t )〉.

(22)

In contrast to the naive (first) procedure, the latter does not
explicitly estimate any density matrix, which saves time and
computer memory. Note that, apart from the Poisson random
processes used in |ψ〉 and |π〉 being identical in every realiza-
tion, the nth costate also explicitly depends on the nth solution
of state |ψ〉 through its boundary condition.

Equation (22) can be generalized to compute other quan-
tities. In particular, Im{Tr(λ[H, ρ])) in Eq. (10) can be
evaluated by replacing Hu by H (t ) in Eq. (22); the anticom-
mutator Re(Trλ{L†L, ρ}) in Eq. (13) can be evaluated by
averaging over Re[〈π (n)(t )|L†L|ψ (n)(t )〉]. These expressions
are numerically tested (not shown). The c-Hamiltonian Hc,
however, can be computed using only the first stochastic pro-
cedure because Tr(λLρL†) cannot be expressed as the average
of stochastic realizations in the form of Eq. (22).

To conclude this section, we notice that Eq. (15) is by
no means the unique stochastic unraveling. Notably, when
L = L†, one can define H − iγ (t )L as the non-Hermitian
Hamiltonian where γ (t ) is the Gaussian random process
with dt-dependent variance; averaging many stochastic re-
alizations also properly simulates the Lindblad equation

052605-3



LIN, SELS, MA, AND WANG PHYSICAL REVIEW A 102, 052605 (2020)

[66,67]. Both proposed procedures for the switching function,
particularly the second one that correlates the random vari-
ables for |ψ〉 and |π〉, apply to this stochastic implementation
as well (tested, not shown). An interesting open question is
to consider the non-Markovian random process, beyond the
Lindbladian formalism.

IV. NUMERICAL IMPLEMENTATION

In this section we confirm the proposed formalism by
applying it to the specific single-qubit problem where the
numerically exact solutions are nontrivial but known.

A. Single-qubit problem

To numerically test the proposed formalism, we consider a
dissipative qubit system where the density matrix satisfies the
Lindbladian equation:

∂

∂t
ρ = −i[H (t ), ρ] + γ

[
LρL† − 1

2
{L†L, ρ}

]
. (23)

For unitary dynamics, we consider the Landau-Zener-type
Hamiltonian where H (t ) = H0 + u(t )Hu = σx + u(t )σz, with
u(t ) being the single control field bounded by |u(t )| � 1 and
σ ’s denoting Pauli matrices [44,45]. For dissipative dynamics,
we choose L = σx, γ = 0.5, and a total evolution time of t f =
0.9π . These parameters produce nontrivial control protocols
[40]; in particular, the combined choice of H and L leads to
an optimal control that prevents the system from decaying to
the maximal-entropy state even when t f → ∞, independent
of the initial and target states.

Two sets of initial and target states are considered: the
state-retention problem where the initial and target states
|ψini〉 and |ψtar〉 are

|ψini〉 = |ψtar〉 =
[

1
0

]
(24)

and the state-preparation problem where

|ψini〉 = 1√
10 + 4

√
5

[
1

−2 − √
5

]
,

|ψtar〉 = 1√
10 − 4

√
5

[
1

2 − √
5

]
. (25)

The corresponding density matrix is given by ρ = |ψ〉〈ψ |: for
the state-retention problem, ρini = ρtar = 1

2 (I + σx ); for the
preparation, ρini (tar) = 1

2 [I − 1√
5
σx − (+) 2√

5
σz]. The bound-

ary condition of the costate is given by λ(t f ) = −|ψtar〉〈ψtar|.
The choices of Eqs. (24) and (25) describe two limits: the
initial and target states are close to (identical here) or far away
from each other. Using the formalism developed in Ref. [40],
the optimal controls, switching functions, and c-Hamiltonians
for both problems are given in Fig. 1; these solutions are
referred to as the “exact” solutions and will serve as the
reference for comparison.

B. Switching functions

We now compute the switching functions using both pro-
cedures outlined in Sec. III B. The first procedure requires the

FIG. 1. The optimal controls (dashed curves) for (a) the state-
retention and (b) state-preparation problems. A bang control
corresponds to nonzero � (dotted curves), whereas a singular control
corresponds to the vanishing �. The exact optimal controls (dashed
curves) are obtained using the formalism developed in Ref. [40]. The
c-Hamiltonian (solid curves) is a constant over the entire evolution
time t f . The dotted curves are the numerical solutions obtained using
the gradient-based method with the switching function computed by
solving the Lindbladian equation; good agreement is seen.

explicit constructions of the density matrix and its costates.
Using the optimal control for the state-retention problem
[given in Fig. 1(a)], we compute ρ [Eq. (16)], λ [Eq. (18)], and
thus � [Eq. (9)] and Hc [Eq. (10) and (13)]. The results are
shown in Fig. 2 and agree well with the exact results (i.e., the
results from the deterministic Lindbladian formalism). Note
that in Fig. 2(c), � and Hc display larger errors around the
switching times; we have tested that this discrepancy becomes
weaker upon increasing the time points (not shown). To test
the second procedure, Fig. 3 compares the switching functions
computed using Eq. (22) with the exact ones. In these simu-
lations, the nonoptimal control u(t ) = −1 + 2
(t − t f /2) is
used. Good agreement is seen for both state-retention and
state-preparation problems, numerically confirming Eq. (22).

C. Optimal control

With the switching functions tested, Eq. (22) is now ap-
plied to determine the optimal control for both state-retention
and state-preparation problems. Due to the noisy nature of
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FIG. 2. Comparison between the deterministic Lindbladian
(dashed curves) and the stochastic Schrödinger (solid curves) simula-
tions for (a) the density matrix ρ and (b) the costate density matrix λ.
The control is chosen to be the optimal control for the state-retention
problem [dotted curve in (c)]. The stochastic results use 100 time
points and average over 500 realizations. (c) Combination of ρ and λ

to evaluate the switching function and c-Hamiltonian.

stochastic simulations, filtering the functions at some point
helps. After some numerical experiments, we adopt two filter-
ing protocols: the (k + 1)th iteration is updated via

ũ(k+1)(t ) ← u(k)(t ) − η �̃(k)(t ), (26a)

u(k+1)(t ) ← Pε[ũ(k+1)(t )]. (26b)

We first elaborate Eq. (26a). After �(k)(t ) is computed
from Eq. (22), it is denoised by a total-variation (TV) norm
[68]:

�̃(k)(t ) = argmin
y(t )

∑
ti

[
1

2
{y(ti ) − �(k)(ti)]

2

+wTV ‖y(ti+1) − y(ti )‖
}
. (27)

wTV = 0.01 is adopted, and the proximal gradient descent is
used to solve Eq. (27). We decide to regularize �(t ) instead of

FIG. 3. The switching function computed using the Lindbladian
formalism [Eq. (9), dashed curves] and using the stochastic pro-
cedure described by Eq. (22) (solid curves, averaging over 500
simulations). Blue dotted curves specify u(t ). The initial and target
states are (a) the state-retention problem [Eq. (24)] and (b) the state-
preparation problem [Eq. (25)].

u(t ) because the TV norm tends to reduce the magnitude of the
discontinuity (jump): there will be a discontinuity in u(t ) once
�(t ) changes sign (the bang-bang protocol), whereas �(t ) is
generally continuous. In Eq. (26b), the projection Pε is defined
as

Pε[u(t )] ≡
{

1 if u(t ) > 1 − ε,

−1 if u(t ) < −(1 − ε).
(28)

ε = 0.1 is used. This is designed to promote the bang control
around �(t ) = 0. We choose ε = 0 in early iterations to avoid
biases when u(t ) is still far from the optimal solution. To
summarize, three optimization hyperparameters are chosen to
be (η,wTV , ε) = (0.5, 0.01, 0.1).

Figures 4(a) and 4(c) show the optimal control obtained us-
ing Eq. (22) for both the state-retention and state-preparation
problems. They generally agree with the exact solutions.
Compared to the solutions without filtering (wTV = ε = 0),
the filtering procedure generally results in controls that are
smoother over the singular regime [when �(t ) = 0] and
sharper near the transition regimes [when �(t ) changes sign
or changes between zero and nonzero]. Overall, the controls
with the filtering procedure are closer to the exact solutions.
Figures 4(b) and 4(d) give the negative of terminal cost
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FIG. 4. Results of (a) and (b) state-retention and (c) and (d) state-preparation problems. (a) and (c) Compared to the optimal controls
without filtering (solid curves), the optimal controls with the filtering procedure [Eq. (26), dashed curves] are closer to those obtained from
the Lindbladian formalism (dotted curves). (b) and (d) The fidelities computed from the deterministic Lindbladian [Eq. (9), dashed curves]
and the stochastic Schrödinger [Eq. (20), solid curves] formalisms. The values agree well. In the stochastic simulations, the first 100 iterations
average 50 realizations, whereas the last 100 average 200 (separated by the red vertical line). The expected fluctuation reduction due to the
larger sampling size is clearly seen.

function (fidelity) as a function of iterations. The fidelities
computed from the deterministic Lindbladian [Eq. (9), dashed
curves] and the stochastic Schrödinger [Eq. (20), solid curves]
formalisms are numerically consistent. For the stochastic
simulation, the first 100 iterations average N = 50 realiza-
tions, whereas the last 100 iterations average N = 200. The
expected reduction of the fluctuation due to the larger sam-
pling size is also clearly seen.

V. CONCLUSION

A quantum task was mapped to an optimal-control problem
once a proper terminal cost function was defined. In terms
of optimal control, an optimal solution extremizes the cost
function for a given evolution time, and practically, the most
crucial step to determine the optimal control is the evaluation
of the gradient of the terminal cost function. Using PMP, the
gradient was efficiently obtained by calculating the switching
function that requires solving the original dynamical problem
and an auxiliary problem composed of costate variables. In
this work, we formulated PMP in terms of density matrices

which are essential for open quantum systems and developed
a stochastic procedure to compute the switching function for
systems obeying Lindbladian dynamics. In particular, we de-
termined the rules to consistently update the wave function
and its costate in the stochastic Schrödinger formalism so
that the switching function can be evaluated without explicitly
constructing density matrices. We apply the proposed proce-
dure to determine the optimal control for a dissipative qubit
system, and the results are consistent with those obtained
directly from the deterministic Lindbladian equation. The pro-
posed formalism saves time and memory for simulating large
systems and can be straightforwardly generalized to describe
non-Markovian dynamics.
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trices forms a Hilbert space, and adopting the Hilbert-Schmidt
inner product immediately leads to Eq. (4). Also note that when

052605-7

https://doi.org/10.1088/2058-7058/25/05/28
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1038/ncomms5213
http://arxiv.org/abs/arXiv:1411.4028
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRevX.6.031033
https://doi.org/10.1103/PhysRevA.96.040304
https://doi.org/10.1103/PhysRevLett.117.110801
https://doi.org/10.1038/nphys2083
https://doi.org/10.1116/1.5119961
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevA.61.042302
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1038/nphys629
https://doi.org/10.1103/RevModPhys.66.481
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevA.97.062343
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1103/PhysRevX.8.021012
https://doi.org/10.1103/PhysRevLett.112.047601
http://arxiv.org/abs/arXiv:quant-ph/0001106
https://doi.org/10.1103/PhysRevLett.103.080502
https://doi.org/10.1103/PhysRevA.90.052317
https://doi.org/10.1103/PhysRevLett.124.060402
https://doi.org/10.1137/0325025
https://doi.org/10.1103/PhysRevA.101.022320
https://doi.org/10.1103/PhysRevX.7.021027
https://doi.org/10.1103/PhysRevA.100.022327
https://doi.org/10.1103/PhysRevA.98.012301
https://doi.org/10.1103/PhysRevLett.111.260501
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevA.76.023419
https://doi.org/10.1103/PhysRevA.78.052112
https://doi.org/10.1103/PhysRevA.80.045401
https://doi.org/10.1088/1367-2630/aaca62
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevA.55.900
http://arxiv.org/abs/arXiv:quant-ph/9705052
https://doi.org/10.1038/nature17404
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevA.87.052328
https://doi.org/10.1016/0034-4877(76)90060-4
https://doi.org/10.1080/09500349414552171


LIN, SELS, MA, AND WANG PHYSICAL REVIEW A 102, 052605 (2020)

ρ and λ are Hermitian and the dynamics is a proper completely
positive and trace-preserving map, Tr[λρ̇] is guaranteed to be
real.

[65] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[66] J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580
(1992).

[67] Y. Castin, J. Dalibard, and K. Molmer, arXiv:0805.4002.
[68] L. I. Rudin, S. Osher, and E. Fatemi, Phys. D (Amsterdam,

Neth.) 60, 259 (1992).

052605-8

https://doi.org/10.1103/PhysRevLett.68.580
http://arxiv.org/abs/arXiv:0805.4002
https://doi.org/10.1016/0167-2789(92)90242-F

